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Summary

Osteoporosis is a common skeletal disease with a strong ge-
netic component characterized by reduced bone mass and in-
creased risk of fragility fractures. Bone mineral density (BMD)
is considered the best established risk factor for osteoporotic
fractures.

Over the last years a large number of studies have pointed to
the variability in many target genes and their relation with
BMD and other determinants of fracture risk such as ultra-
sound bone properties, skeletal geometry and bone turnover
markers. The importance of genetic factors in the bone quality
is substantial, but no consensus exists yet on the genes that
are involved.

Although osteoporosis is world healthy problem, there are
many differences in human ethnics regarding both disease
morbidity and drug treatment efficacy. Heterogeneity in drug
response may reflect varying responsiveness to osteoporosis
treatments due to allele variation in signaling pathway genes
such as vitamin D receptor (VDR) or estrogen receptor a
(ERa). Polymorphisms of VDR and ERa loci appear genetic
determinants of their corresponding hormonal treatment re-
sponse such as vitamin D and estrogens. Because of their
specific ethnic distribution, polymorphisms of VDR and ERa
genes may be involved in reported human differences of os-
teoporosis treatment responses.

Knowledge of the molecular and functional consequences of
the gene polymorphisms is crucial to fully appreciate their
significance and understand their potential clinical implica-
tions. Future studies and preventive strategies to manage-
ment osteoporosis need to take in account these genetic fac-
tors.
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nomics, polymorphism, vitamin D receptor.

Introduction

Osteoporosis affects an estimated 75 million people among

Europe, the United States (US) and Japan (1) and represents a
major health problem, especially in countries where life ex-
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pectancy has dramatically increased during the past decades.
Hip and vertebral fractures, which are frequent complications of
osteoporosis, represent one of the most important causes of
morbidity and mortality among elderly people around the world
(2, 3). Bone mineral density (BMD) is the major determinant of
fragility fracture (4). Although many environmental factors,
such as dietary intakes, physical activities, education, etc., play
an important role in BMD, it is strongly inherited. From studies
of monozygotic and dizygotic twins, inheritance was estimated
to account for 60-80% of BMD in both men (5) and women (6,
7). In this regards, a large number of polymorphisms in multiple
candidate genes have been investigated (8). Of them, vitamin
D receptor (VDR) and estrogen receptor a (ERa) have been
among of the most intensively studied genes in genetic regula-
tion of BMD.

To date, interest of most scientists and clinicians working in ge-
netics, is to arrange genetic markers useful in the patient treat-
ment. In this view, genetics not only offer possibility to antici-
pate pathological phenotype even before real disease onset
but also to foresee the specific patient response to drugs. An
early specific and efficacious medicine means greater healthy
chances for patient and less hospital economic loss.

The present analysis reviews available molecular data of two
major osteoporotic treatments based on vitamin D and estro-
gens regarding predictor markers for their clinical drug re-
sponse. Many clinical clues suggest human genetic back-
grounds play major role determining treatment effectiveness.
Treatment responses to vitamin D or estrogens are affected by
specific genotypes of target genes such as VDR and ERa. In
our opinion, this review could offer argument of pharmacologi-
cal data reanalysis and/or new future health strategies.

Vitamin D receptor gene

Since 1990s, the gene encoding for VDR was proposed as ma-
jor genetic locus of bone mass (9). The VDR gene is located
on the long arm of chromosome 12 (12g12-14) and is com-
posed by 10 exons, the first of which is not transcribed, and 8
introns (10). The nine coding exons are transcribed into the
VDR messenger RNA (mRNA), which in turn is translated into
the functional VDR protein. Several restriction fragment length
polymorphisms (RFLPs) in the human VDR gene locus have
been used in population-based studies (Figure 1). The respec-
tive restriction endonuclease enzymes have been convention-
ally indicated with lowercase letter (t, a, b or f, respectively for
Taql, Apal, Bsml and Fokl restriction endonucleases), while
uppercase letter (T, A, B or F) indicates the absence of the re-
striction site. The Bsml and Apal polymorphisms lie in an VDR
untranslated region (intron 8) and probably do not confer any
functional diversity per se. Similarly, the silent nucleotide sub-
stitution in exon 9 that creates the Taql polymorphism does not
affect the amino acid composition of VDR protein (9). Because
of their next sites, these VDR 3’end polymorphisms (i.e. Bsml,
Taqgl and Apal RFLPs) were in linkage disequilibrium such that
A and B alleles were strongly associated with t allele, while a
and b alleles with the absence of Taql restriction site (T allele).
Morrison et al. (11) used for the first time a candidate gene ap-
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Figure 1 - Gene polymorphisms in the human VDR locus potentially in-
volved in vitamin D treatment response.

proach to related common Bsml allelic variants at VDR 3’end
region with bone turnover. Subsequently, the same authors
suggested a major contribution by VDR 3’end RFLPs to the
BMD genetic determination: VDR gene was originally claimed
to contribute to almost 75% of the genetic variation on the
BMD (9). In both twin pairs and unrelated post-menopausal
women, they showed significantly decreased BMD values at
lumbar spine and proximal femur in relation to Bsml B allele
(9). After this original report, conflicting data have been pub-
lished on the association of the diallelic Bsml RFLP in the VDR
locus and BMD both in pre- (12-15) and post-menopausal (16-
26) women. Several population studies have essentially con-
firmed this association, with differences in BMD ranging from 4
to 13% between the opposite BB and bb genotypes (14, 16,
17, 22, 23). Other studies found no significant association be-
tween VDR alleles and BMD (12, 15, 19, 26), whereas others
reported an inverse association to that originally proposed, with
subjects with the BB genotype showing higher and not lower
BMD values than the bb genotype (13, 20, 21). Similarly, stud-
ies examining the relationship of this VDR polymorphism with
bone turnover markers (12, 19, 24, 27), rates of bone loss (19,
28-30) and osteoporotic fractures (21, 30-35) yielded conflict-
ing results.

Also using combined VDR RFLP analysis, the found BMD as-
sociations were not confirmed in all ethnics around the world.
In a large and ethnically homogeneous Caucasian population
study (16), a significant segregation of VDR genotypes with
lumbar BMD was observed, similar to what previously reported
in Australian Caucasians (9, 36). The AABBtt genotype
showed a spinal BMD 13% less than aabbTT genotype (16).
However, the BMD data were not confirmed by other showing
different or no VDR genotype associations with BMD both in
Caucasian and Asian populations (19, 20, 37-39). From these
population based studies, it is also evident that the VDR poly-
morphism distribution presents specific ethnic patterns (40).
Considering the 4 most frequent genotypes of VDR 3’end,
there are 3 specific ethnic patterns (Figure 2A). In Asian popu-
lations, AabbTT and aabbTT genotypes (more than 75%) are
predominant than AABBtt and AaBbTt genotypes which are the
most frequent in Caucasians (about 53%) (40).

Do VDR genotypes influence clinical response to osteoporosis
drug treatments? Few studies actually analyzed vitamin D
treatment response regarding VDR genotype producing con-
fuse data. At first, Matsuyama et al. (41) assayed VDR geno-
type response to 1aOHD3 treatment (1 mg per day) in an 1-yr
retrospective trial based on 120 Japanese osteoporotic
women. Although they found only 2 Bsml BB genotypes, the
more common genotypes (aabbTT and AabbTT, 75% of sub-
jects) were associated with higher 1aOHD3 response than
AABDTt and AaBbTt genotypes (p<0.001) (41). In a UK twin
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Figure 2 - Ethnic frequencies of VDR genotypes detected by Apal-
Bsml-Taqgl (A) and Fokl (B) endonucleases, respectively. Data modified
from ref. 40.

pairs study, there was a modest trend toward a positive effect
of 800 IU Ds/day treatment in total hip BMD for the VDR TT
genotype (42). By contrast, the poor response in the genotype
Tt, the most common in Caucasians, could account for the
generally good responses to vitamin D recorded in Japanese
compared to Caucasian subjects (40, 41). Collectively these
data could suggest VDR TT genotype (or linked VDR bb geno-
types) is associated to higher vitamin D response.

In an Australian women study, Howard et al. (27, 43) reported
a greater PTH response in VDR bb genotype vs. BB geno-
type with short-term calcitriol administration (2 pg of
1,25(OH)2D3/week). However, their original findings of differ-
ences in osteocalcin and 1,25(0OH)2D3 levels between geno-
types were not confirmed in the reanalysis (43). Because of
VDR B allele is in linkage disequilibrium with t allele in Cau-
casian populations (38), these VDR data could agree with
above Taql genotype data. By contrast, Graafmans et al. (44)
reported that BMD increases in the vitamin D group (400 IU
Ds/day) relative to the placebo group, was significantly higher
in BB (ABMD 4.4%) and Bb (ABMD 4.2%) genotype compared
with bb genotypes (ABMD -0.3%). Finally, an probably expla-
nation for the inconsistency regarding which VDR RFLP allele
is associated with low BMD response, is that Bsml-Tagl RFLPs
do not represent functional loci but are in linkage disequilibrium
with a bone-related gene elsewhere.

Because vitamin D and estrogen systems present many cross-
talk levels, allelic variants of their signaling pathways could
modify mutual hormone response (45-48). In this view, some
authors analyzed VDR genotype as response marker to hor-
mone replacement therapy (HRT). A US study based on 108
European Caucasian women, reported Bsml BB genotype was
associated with larger spinal BMD increase using low HRT
dose whereas VDR bb genotype was associated with larger
decrease in the placebo group (49). As previously reported
(50) and irrespective for VDR Apal or Fokl sites, Japanese
women with VDR TT genotype showed significantly higher
ABMD with HRT than those with Tt genotype (2.6% + 0.5% vs.
-0.8 + 1.4%; p = 0.016) at 1 year and slightly higher ABMD
(3.8% + 0.6% vs. 0.8 = 1.6%; p = 0.069) at 2 years, but no sig-
nificant differences between TT and Tt genotypes were seen at
3 years or later (51). Considering that Bsml B allele is Taqgl t-al-
lele-linked, these studies produced conflicting data. Giguere et
al. (52) found, in a cross-sectional study, that results of quanti-
tative ultrasound examination of the heel in postmenopausal
women receiving HRT for more than 5 years were affected by
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variations in VDR and ERa loci. On the contrary, in a recent
Danish study (429 Caucasian women), no VDR genotype ef-
fect on changes in bone mass during the subsequent 5 years
could be detected, irrespective of HRT (1-2 mg estradiol/day)
or not (53). VDR Bsml genotype may be also involved in indi-
vidual response to cyclic etidronate, raloxifene, alendronate
treatments (54, 55). Although the picture is still complicated,
there seems to be a trend for the VDR ABt haplotype (linked to
short poly(A) microsatellite in the 3'UTR, see below) to display
somewhoat better responses than the abT haplotype (linked to
long poly(A) repeat alleles) (56).

The above data regarding Apal, Bsml and Taql RFLPs, sug-
gest that these VDR neutral polymorphisms should therefore
be considered as possible markers, in linkage disequilibrium
with functional genetic variants affecting structure or expres-
sion of VDR gene. 3'untranslated terminal region (3'UTR) of
eukaryota genes contain sequence elements regulating mR-
NA stability expression (57, 58). The 3'UTRs associated with
Bsml-Apal-Tagl haplotypes, result in substantial differences in
VDR gene expression using a reporter gene assay (9); howev-
er, the responsible sequence variants have not yet been identi-
fied. Therefore, a major confounding factor in VDR studies,
could be various linkage patterns of VDR 3'UTR RFLPs pre-
sent in different human ethnics which confer different associa-
tions between BMD and VDR 3'UTR haplotypes (40).

In 1997, Ingles et al. (59) described a polymorphic microsatel-
lite located approximately 1-kb upstream from the VDR 3'UTR.
The microsatellite consists of a string of adenosine residues
[poly(A) repeats] with polymorphic length varying from 13 to 24
adenosine repeats. Although at least 12 alleles were identified
(A13 to A24) of VDR poly(A) repeats, allele size follows a bi-
modal distribution with distinct short (A13-A17) and long (A1s-
A24) allele populations. As shown in figure 3, various distribu-
tions of VDR poly(A) repeats have been reported in human eth-
nic groups (40).

Assuming that VDR Bsml B and b alleles are in disequilibrium
with short and long poly(A) alleles respectively, agreement was
high in human ethnics though only in Afro-Americans: more
than 90% in Asians, 93% in Caucasians and 81% in Hispanics
(60). About only 2 VDR 3'UTR haplotypes exist in no-African
populations (i.e. Caucasian, Asian and Hispanic subjects):
Bsml B allele with short poly(A) repeats (B-short poly(A) haplo-
type) in contrast to b allele with long poly(A) repeats (b-long
poly(A) haplotype) (60). Therefore, Bsml site (and highly linked
Tagql site) is not a good marker of VDR 3'UTR itself, as judged
by the poly(A) site (60). Misclassification of 3'UTR poly(A) alle-
les by Bsml (and also Taql) site is most severe in African
Americans (37%), lesser in Caucasians (7%) and Asians
(8,5%) (60).

Grundberg et al. (61) recently investigated poly(A) microsatel-
lite and linked Bsml site of VDR gene in a population-based
cohort of 343 Swedish women aged 20-39. They showed that
women with short poly(A) repeats and/or absence of linked
Bsml restriction site on both alleles (BB genotype) have signifi-
cantly higher BMD (61). Importantly, the regression analysis

VDR 3'UTR| Long poly(A) repeats Short repeats
Caucasians | 59 | 41
Hispanics | 69 | 31
Asians 91 9
Negroes | 71 | )

Figure 3 - Ethnic distribution of VDR poly(A), repeat polymorphism. Al-
lele cutoffs: short allele (Ai3-Ai7 repeats) and long allele (Aig-Azs re-
peats). Data from ref. 60.
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showed that VDR Bsml genotype was significantly associated
with lumbar spine BMD also when taking fat mass, lean mass,
height and age into account (p=0.03) (61). The same trend was
seen concerning the effect of VDR poly(A) genotype on lumbar
spine BMD after adjustments (p=0.06) (61).

If Apal-Bsml-Taql polymorphisms are not probably functional
but disequilibrium marker liked to other VDR polymorphisms,
which is the molecular effect of poly(A) repeats on the VDR
function? Long poly(A) allele (A1s-A24 repeats), displays higher
vitamin D-induced transcriptional activity than short poly(A) al-
lele (A13-A17 repeats), although it does not achieve statistical
significance (62). Since poly(A) polymorphism occurs in exon
9, but is expressed only in the 3'UTR of VDR mRNA, long
poly(A) allele may produce VDR mRNA that is more stable
and/or is translated more efficiently into protein than short al-
lele. Other data using RFLP approach, agree with this hypothe-
sis (9, 62-66). Interestingly, high presence of long poly(A) allele
in Asians than others (60), may be involved in the suggested
higher “vitamin D-sensibility” of Asians than VDR RFLPs (i.e.
Apal-Bsml-Taql or Fokl RFLPs) (40-41). However, as clearly
shown by Haussler's group, simultaneous analysis of poly(A)
repeats and Fokl RFLPs is needed to determine the specific ef-
fects of VDR variants on the overall VDR function (62).
Regarding VDR Fokl site, F allele produces a more active VDR
protein than f allele (62, 67-69) and F and long poly(A) alleles
have synergic effect increasing VDR protein activity (62). Data
indicating a more active VDR F allele is consistent with many
clinical studies which suggest F allele (vs. opposite f allele) is
associated with increased BMD (67, 70-74), higher rates of
bone turnover (50), lower risk for primary hyperparathyroidism
(75, 76), lower risk for intervertebral disc degeneration (77) and
lower incidence of vertebral fracture (78). Figure 2B showed
VDR Fokl genotype distribution regarding ethnic groups around
the world. Because F allele is more represented in Caucasians
than Asians, its genetic effects may contrast those of poly(A)
polymorphism (40).

The above data suggest that the assaying of genotypic effects
on the VDR function, needs a simultaneous analysis of all func-
tional variants (i.e. Fokl RFLP, poly(A) repeats and Cdx-2 poly-
morphisms (79)) and not only of the disequilibrium markers (i.e.
Apal-Bsml-Taql RFLPs) which are frequently ethnic-depen-
dent.

Estrogen receptor alpha gene

The genes encoding estrogen receptors, ERa and ERp, have
been considered as important candidate markers of osteo-
porotic risk. The importance of ERa gene in the bone tissue
has been indicated by the osteoporotic phenotype in a man
with a nonsense mutation in the ERa gene (80) as well as the
reduced BMD values in mice lacking a functional ERa gene
(81, 82), but not in those lacking ERf (82, 83), strongly propos-
ing ERa gene as major mediator of estrogen response at least
in bone system.

The human ERa gene is located on the chromosome 6p25.1,
comprises eight exons, and spans more than 140 kb (84). Ac-
tually, some ERa polymorphisms are proposed as involved in
the bone system (Figure 4). Two single nucleotide polymor-
phisms have been identified in intron 1 of ERa gene: a T-397C
polymorphism that is recognized by the restriction endonucle-
ase Pvull [T and C alleles correspond to the presence (p allele)
and absence (P allele) of the Pvull restriction site, respectively]
and an A-351G polymorphism that is recognized by Xbal [A
and G alleles correspond to the presence (x allele) and ab-
sence (X allele) of the Xbal restriction site, respectively] (40).
These ERa intron 1 RFLPs, alone or in combination, have
been associated with bone mass in post-menopausal women
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Figure 4 - Gene polymorphisms in the human ERa locus potentially in-
volved in estrogen treatment response.

(85-89) or pre-menopausal women (90, 91). However, other
studies have not confirmed these observations (16, 92-96). In
addition, a microsatellite (TA), repeats polymorphism, located
in ERa promoter area and strongly linked to Pvull-Xbal sites
(93), was associated with BMD and with the prevalence of frac-
tures (86, 93-94).

Actually, few studies analyzed ERa polymorphisms related to
HRT responsiveness. In Korean post-menopausal women, Han
et al. (96) found no significant effects of ERa intron 1 geno-
types on the BMD and on the HRT responsiveness. Similarly,
in a Japanese study, although ERa PP genotypes had signifi-
cantly higher spine BMD than Pp and pp genotypes, no signifi-
cant BMD change between ERa genotypes were present after
1-yr-HRT treatment [0.625 mg conjugated equine estrogens
(CEE) plus 2.5-5 mg medroxyprogesterone acetate [MPA]/dai-
ly) (49). Also, Xbal variants were not associated spinal BMD
with and without HRT treatment (49). Another Japanese study
recently reported that response to HRT (0.625 mg CEE or 2
mg transdermal estradiol) in postmenopausal period were
greater in pp genotype than in women with other Pvull geno-
types only within first 6 HRT months (97). The significant differ-
ence in the BMD gain observed at 6 months, was not con-
firmed after 12 months of HRT. In addition, there were no sig-
nificant difference related to Xbal genotypes (97).

In a study based on different Asian genetic background (Thai
women), Ongphiphadhanakul et al. (98) reported that women
on 0.3 mg CEE with P allele (PP and Pp genotypes) had signif-
icantly higher increase in lumbar spinal BMD compared to
those without P allele (pp genotype) after 1-year treatment
(p<0.05). No difference in the BMD change at femoral neck
was found on 0.3 mg CEE treatment. Neither the changes in
vertebral nor femoral BMD were different among subjects on
0.625 mg CEE with different Pvull genotypes (98). These Thai
data were consistent with a Caucasian elderly women study,
which suggested a relationship between BMD changes after
low estrogen dose replacement (0.3 mg CEE/day) and ERa
genotypes (48). For 3.5 years period of HRT treatment, BMD
changes were analyzed at the spine, femoral neck, distal ra-
dius and total body BMC. Where ERa genotypic effects were
significant, PP (or xx) genotype was generally associated with
larger decreases (or smaller increase) of bone mass, whereas
pp (or XX) genotype was associated with smaller decreases (or
larger increase) of bone mass on HRT treatment (48). Recent-
ly, Rapuri et al. (99) evaluated the influence of ERa intron 1
RFLPs in 79 postmenopausal women receiving HRT (0.625 mg
CEE plus 2.5 mg MPA) for 3 years. The percent change in
BMD was higher in women with ERa genotype, XX or PP com-
pared to women with ERa genotype xx or pp but was signifi-
cant only for total body of Pvull genotype PP. Collectively the
above data suggest that ERa pp genotype is a relatively estro-
gen-insensible genotype, and that women with P allele (Pp and
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PP genotypes) benefit more from the protective effect of HRT
on fracture risk than women with pp genotype, though long-
term HRT seemed to eliminated the ERa genotype related dif-
ferences in the BMD (100, 101).

Regarding other estrogen-sensible tissues, Herrington and col-
leagues (102, 103) studied ERa RFLP effects in women affect-
ed by coronary artery disease. As major results, they reported
statistical associations between clinical parameters (i.e. re-
sponse of E-selectin and of HDL-cholesterol to HRT) and
women with PP genotype than the opposite pp genotype (102,
103). PP genotype had greater increase in the HDL-cholesterol
(and also decrease in the E-selectin) level by HRT (0.625 mg
CEE/day) than level changes observed in other Pvull geno-
types. Similar patterns of response were observed for Xbal
polymorphism (102, 103).

The functional significance of Pvull-Xbal polymorphisms, how-
ever, is not clear: Pvull P allele disrupts a potential recognition
site for the transcriptional factor AP4 which recognizes
CAGCTG sequence. Three studies recently detected enhancer
activities in the ERa intron 1. These enhancer activities differed
among Pvull-Xbal RFLPs: P allele confers higher transcription-
al activity than p allele in gene reporter constructs (102, 104,
105).

Finally, all the above studies based on different ethnic popula-
tions (Asians and Caucasians) suggested that ERa P allele
confers relatively estrogen-resistant than the opposite p allele
using low estrogen dose (equivalent to 0.3 mg CEE/day). Us-
ing higher estrogen dose, these Pvull genotype effect seems to
disappear at least in skeleton system while in cardiovascular
systems, a different genetic response regarding ERa intron 1
polymorphisms could persist even using higher estrogen doses
than 0.3 mg CEE.

As shown in figure 5A, because estrogen-sensible Pvull P al-
lele is more represented in Caucasians than Asians, it supports
the clinical feeling of an higher Caucasian responsiveness to
estrogen treatments than Asians (40). On the other hand, the
relatively estrogen-resistance of Asian background may be a
selection force consequence: because Asians meanly present
higher exposure to environmental estrogens, such as soy di-
etary phytoestrogens, the selection of more estrogen-resistant
genotype (i.e. ERa pp genotype) could represent a defensive
mechanism against environment (106-108). ERa Xbal poly-
morphism also presents different genotype distribution in hu-
man populations with x allele more represented in Asians than
Caucasians (Figure 5B). This does not surprise because the
strong and highly significant linkage disequilibrium between
Pvull and Xbal sites as expected for two sites separated by 45
bp (40, 93). Generally, P and X alleles, as well as p and x alle-
les were strongly associated with each other although com-
bined Pvull-Xbal genotype frequencies vary regard to different
ethnics (Figure 5C). The haplotype pX was not observed in the
majority of studies, were haplotype Px was detected even
though at low frequency suggesting the disequilibrium is not
complete and either recombination or multiple mutations have
occurred between or at these two polymorphic restriction sites
(40).

ERa microsatellite (TA), repeats proposed as strong risk mark-
er of postmenopausal osteoporosis, may be also involved in
the estrogen-sensibility. Indeed, for clinical data and for their
position in promoter area, (TA), repeat polymorphisms could
be functional modifying ERa expression and/or regulation (93).
In addiction, Yim et al. (109) recently reported the percent
change of lumbar spine BMD after 1-yr HRT (0.625 mg CEE
with/without 2.5 mg MPA) significantly decreased (r = —0.131,;
p = 0.035) with an increase in the mean number of (TA), re-
peats.

As represented in figure 6, similar (TA), repeat frequencies
were reported in Asian and Caucasian studies with compara-
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Figure 5 - Ethnic frequencies of ERa genotypes detected by Pvull (A)
and Xbal (B) endonucleases, and of the 8 most frequent Pvull-Xbal
genotypes (C), respectively. Data modified from ref. 40.

tive bimodal distributions peaked around 12-16 and 22-24
(TA)n repeats (93, 94, 98, 110-114). In contrast to ERa intron 1
RFLPs, (TA), repeat frequencies do not apparently differ in
Asians vs. Caucasians suggesting a lesser involvement in the
specific ethnic pharmaco-sensitivity. However, more studies
are needed to confirm or refuse this issue.

Clinically detected effects of ERa polymorphisms (i.e. Pvull-

Short (TA), allele Long (TA), allele
Caucasians

Asians

Figure 6. Ethnic distribution of ERa (TA), repeat polymorphism located
in the human ERa promoter area. Allele cutoffs: short (TA), repeat al-
lele (<TAss repeats) and long (TA), repeat allele (=TA;5 repeats). Data
modified from ref. 40.
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Xbal RFLP and (TA), repeats) are likely dependent, at least in
part, to linkage disequilibrium each other and with other func-
tional nucleotide changes in the nearby exons of ERa gene or
its 5’ regulatory sequence. This could be major confounding
factor in the ERa polymorphism studies. In this view, a synony-
mous nucleotide substitution from T to C at codon 10 of ERa
exon 1, was in linkage disequilibrium with intron 1 Pvull RFLPs
(115). The C262 allele appeared in linkage with P allele of the
intronic polymorphism. After treating 96 post-menopausal
women with 0.3-0.625 mg CEE for 2 years, vertebral BMD in-
creased regardless of the T262C genotype. However, with re-
gard to femoral neck BMD, only those subjects that were ho-
mozygous for T262C polymorphism had an increase in femoral
BMD (115).

T262C polymorphism at the ERa locus, may represent another
level of genetic modulation of estrogen responsiveness. Howev-
er, it is unclear how the synonymous nucleotide change could in-
fluence the ERa function. One of the possibilities is that T262C
polymorphism may affect an alternative translation initiation site.
Generally the ATG codon with appropriate context nearest the
5'end of the mRNA serves as the initiation codon (116) and a
polymorphism of nucleotide sequence around the initiation
codon influences the surface levels of cell adhesion receptors
(117). Occasional escape from this first-ATG rule occurs. The
ERa T262C polymorphism is located 29 nucleotides down-
stream from the putative translation site in the vicinity of another
ATG codon around which the context GCATC[T/C]GGGATGG
may be appropriate for it to serve as another translation initia-
tion site. So, T262C variants may influence the favorableness
of its being an alternative start codon (115). More studies re-
garding this issue are needed.

In conclusion, none of ERa allelic variations could completely
value the estrogen pharmacogenetics or heredity of complex
trait estrogen dependent such as BMD. As suggest Haussler’s
group data on VDR variants (62), only simultaneous analysis of
all alleles (i.e. Pvull-Xbal RFLPs, T262C, (TA), repeats and
others) present in ERa locus may offer an understanding of
phenotypic heredity regarding the ERa function.

Conclusion

It is well recognized that different patient respond in different
ways to the same medication. These differences are often
greater among members of a population than they are within
the same person at different times (or between monozygotic
twins) (118). The existence of large population differences with
small intrapatient variability is consistent with inheritance as
determinant of drug response; it is estimated that genetics can
account for 20 to 95% of variability in drug disposition and ef-
fects (119). Although many nongenetic factors influence the ef-
fects of medications, including age, organ function, concomi-
tant therapy, drug interactions, and the nature of the disease,
there are now numerous examples of cases in which interindi-
vidual differences in drug response are due to sequence vari-
ants in genes encoding drug-metabolizing enzymes, drug
transporters or drug targets (120). Unlike other factors influenc-
ing drug response, inherited determinants generally remain
stable throughout a person’s lifetime.

Clinical observations of inherited differences in drug effects
were first documented in the 1950s (121, 122), giving rise to
the field of pharmacogenetics, and later pharmacogenomics.
Although the two terms are synonymous for all practical pur-
poses, pharmacogenomics uses genome-wide approaches to
elucidate the inherited basis of differences between persons in
the response to drugs.

The potential implication of pharmacogenomics in clinical re-
search and clinical medicine is that disease could be treated
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according to genetic and specific individual markers, select-
ing medications and dosages that are optimized for individual
patients (“the right drug into the right patient”). The possibility
of defining patient populations genetically may improve out-
comes by predicting individual responses to drugs, and could
improve therapy safety and efficacy. This personalizing of
medicines has been the holy grail of pharmacogenomics
since sequencing the human genome was conceptualized.
The application of genomic technologies, such as gene se-
guencing, statistical genetics and gene expression analysis to
drug development, holds great promise for the future of medi-
cine. Unfortunately, our ability to identify patients at risk for dis-
ease, stratify patients by clinical outcome and treatment re-
sponse or predict adverse event occurrences is, in reality, sev-
eral years away.
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