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ABSTRACT

Motivation: Next-generation parallel sequencing technologies
produce large quantities of short sequence reads. Due to
experimental procedures various types of artifacts are commonly
sequenced alongside the targeted RNA or DNA sequences.
Identification of such artifacts is important during the development
of novel sequencing assays and for the downstream analysis of the
sequenced libraries.
Results: Here we present TagDust, a program identifying artifactual
sequences in large sequencing runs. Given a user-defined cutoff for
the false discovery rate, TagDust identifies all reads explainable by
combinations and partial matches to known sequences used during
library preparation. We demonstrate the quality of our method on
sequencing runs performed on Illumina’s Genome Analyzer platform.
Availability: Executables and documentation are available from
http://genome.gsc.riken.jp/osc/english/software/.
Contact: timolassmann@gmail.com

1 INTRODUCTION
Next-generation sequencing is applied to address a whole range of
biological questions (Mardis, 2008; von Bubnoff, 2008). A widely
recognizable challenge lies in the computational treatment of the
huge volumes of data being generated. An initial step is to verify
whether a sequencing run was successful. A low mapping rate to a
reference genome is commonly a good indicator of the run quality,
however, it fails to explain the source of the unmapped sequences.
From experience we know that large fractions of the unmapped
sequences often correspond to artifacts arising from linker and
adaptor sequences used in the library construction. Such artifacts
are comparable with vector sequences found in traditional Sanger
sequencing (White et al., 2008).

The identification of these artifacts is important during the
development of novel sequencing assays. More importantly, a
fraction of artifacts commonly maps to reference genomes and can
thus influence the biological interpretation of the libraries. The
situation is particularly problematic when comparing two RNA
samples sequenced at different biological states. If the total number
of sequences from states A and B is the same but the fraction of
artifacts is increased in state B, it may appear that non-artifactual
sequences are downregulated compared with state A.
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Identification of known library sequences in sequenced reads
should be trivial. However, sequencing errors, PCR errors, short
read lengths, combinations of several fragmented sequences and
their reverse complements complicate this task dramatically. To
resolve this basic issue we developed TagDust, a program employing
a fast, fuzzy string-matching algorithm to identify partial matches to
library sequences in the reads. A read is annotated as an artifact if a
large fraction of its residues can be explained by matches to library
sequences.

2 METHODS
We previously employed the Muth–Manber algorithm (Muth and Manber,
1996) in the context of multiple alignments to quickly assess sequence
similarity (Lassmann et al., 2008). It allows for multiple string matching
with up to one error (mismatch, insertion or deletion). The latter is achieved
by creating libraries of k-mers from both query and target strings. The library
is then extended to patterns of length k −1 by deleting each character in all
the original k-mers in turn. For example, the 4mer ACGT will be converted
into CGT, AGT, ACT and CGT. We will refer to these extended patterns
as lk-mers. A comparison of these libraries via fast exact string matching
reveals all matches with up to one error. For example, a mismatch in the
original sequences is detected with an exact match of the lk-mers lacking the
mismatched residues. As a default, TagDust used a k-mer length of 12.

For detecting artifacts, we are not really interested in the individual
matches to a read but instead whether a large proportion of a read can
be labeled as matching library sequences. Hence, we altered the default
Muth–Manber algorithm to return the percentage of nucleotides involved in
matches to library sequences and to run efficiently on very large datasets.
Briefly, we record all lk-mers derived from the library sequences in a bitfield,
scan all reads and identify matches with quick bit-lookups.

Since the sequenced reads are currently short, between 30–50 nt in length,
spurious hits often occur. Discarding reads based on these matches is
obviously undesirable. Therefore, it is crucial to select a suitable cutoff
on the percentage of residues covered by library sequences. We approach
this problem in a manner analogous to recent work by Zhang et al.
(2008) relating to the interpretation of ChIP-sequencing data. Initially,
we simulate a sequencing dataset with the same length distribution and
nucleotide composition as the input dataset. Secondly, we apply the modified
Muth–Manber algorithm to the simulated reads to derive a distribution
of the number of reads labeled as 5%, 10%, … ,100% library sequences.
The distribution reflects how often we expect reads to be labeled as X%
library sequence by chance. Finally, we obtain P-values from this null
distribution and adjust them using the Benjamini–Hochberg method to reflect
the controlled false discovery rate (FDR; Benjamini and Hochberg, 1995).
The lowest sequence coverage that gives the requested FDR is then used as
the cutoff value.
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Table 1. Percentages of reads identified as artifacts in five sequencing runs at varying FDR thresholds

Description Accession Sequences FDR 0.05 (%) FDR 0.01 (%) FDR 0.001 (%) CPU sec.

Genomic PE (18 nt) ERR000017 6 381 596 1.4 (98.79) 0.4 (98.91) 0.1 (98.61) 28
Genomic PE (36 nt) ERR000130 10 209 914 3.2 (84.05) 0.8 (52.72) 0.4 (11.44) 84
Genomic (25 nt) SRR000723 7 230 975 1.7 (57.64) 0.5 (54.26) 0.1 (36.44) 45
Chip-Seq (25 nt) SRR000731 6 011 079 3.7 (29.15) 2.5 (12.81) 2.0 (1.73) 37
RNA-Seq (33 nt) SRR002052 12 099 833 1.8 (23.32) 0.6 (22.30) 0.1 (20.38) 103

The mapping rates of the artifactual sequences to the human genome are indicated in brackets. The last column lists the runtime of TagDust in CPU seconds for the 0.05 FDR cutoff.

For efficiency, TagDust is implemented in the C programming language.
TagDust uses <5 MB of memory since only single reads are read into memory
at a time for processing. Hence, it is applicable to current datasets and
the large volume of data expected with future next-generation sequencing
instruments. A computational bottleneck is the calculation of the adjusted
P-values since this step, in principle, requires sorting of millions of P-values.
However, since sequence lengths are natural numbers, only a selection of
coverage cutoffs and associated P-values is possible. For example, a 20-nt
sequence can be 95% or 100% labeled as library sequences but not by 97%.
We take advantage of this and use a bit-sort-like algorithm to perform this
step in linear memory and time. TagDust is freely available from the OMICS
software repository or by request from the author.

3 RESULTS AND DISCUSSION
Obtaining suitable datasets for benchmarking our method is not
trivial since partially failed sequencing runs are commonly not
deposited in public databases. Nevertheless, we obtained five
datasets sequenced by the Illumina GenomeAnalyzer from the NCBI
short read archive. We used the standard Illumina adaptors and
primers used in the different sequencing assays as target sequences
to be filtered out from the reads. As expected, only a relatively
small percentage of the deposited reads can be explained by library
sequences (Table 1). To determine whether the same sequences
could be filtered out by simply mapping to the reference genome,
we mapped all artifactual sequences with up to two mismatches to
the human genome (hg18 assembly) using nexalign (T.Lassmann,
manuscript in preparation). Evidently, a varying percentage of the
artifactual sequences map to the genome. In the absence of replicates
it is difficult to determine whether such tags are actual artifacts
and hence we recommend users to merely flag such reads and their
mapping positions.

TagDust processes even the largest dataset here in <2 min on a
standard desktop PC while using <5 MB of memory. Conceivably,

the time it takes to map libraries can be reduced by using TagDust
to filter out artifacts before the mapping.

The two main applications for TagDust are to troubleshoot
failed large-scaled sequencing runs and to filter out artifactual
sequences from successful ones. The latter may affect the biological
interpretation of the produced data since some artifactual sequences
map to the respective reference genomes.
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