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                FRAILTY is a common geriatric syndrome, character-
ized by a constellation of systemic symptoms and a de-

creased resistance to stress. Fried and colleagues ( 1 ) defi ned 
a phenotype of frailty that predicts adverse outcomes, in-
cluding falls, disability, and mortality. Previous work has 
examined individual components of the frailty syndrome, 
including sarcopenia ( 2 ) and cardiovascular abnormalities 
( 3 ). However, the biological basis of frailty is not well un-
derstood. Beyond such individual components, the frailty 
syndrome may importantly involve impaired integration of 
regulatory mechanisms that control physiological function 
under both baseline (free-running) and stress conditions ( 4 ). 
An important challenge lies in quantifying the integrative 
dynamics that underlies adaptive systems such as those con-
trolling human balance and its degradation with frailty, the 
subject of the present study. 

 Previously, we showed that the dynamics of center of pres-
sure (COP) excursions on a balance platform exhibit complex 
fl uctuations over a broad range of timescales, as quantifi ed 
using the multiscale entropy (MSE) method ( 5 ). Furthermore, 
healthy individuals exhibited more complex postural sway 
fl uctuations than elderly individuals with a history of falls. 
The results were consistent with the general conceptual 
framework that complexity decreases with aging and disease 
under free-running conditions. Although studies of other reg-
ulatory systems, such as those controlling blood pressure ( 6 ), 
hormone levels ( 7 ), and heart rate ( 8 ), were also consistent 
with this framework, the relationship between changes in 
dynamical complexity and aging has been diffi cult to probe. 
Apparently contradictory fi ndings ( 9  –  11 ) may be due to 
(i) lack of an unifying defi nition of complexity; (ii) use of 
different methods to quantifying complexity, some of which 
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   Background.       Balance during quiet stance involves the complex interactions of multiple postural control systems, 
which may degrade with frailty. The complexity of center of pressure (COP) dynamics, as quantifi ed using multiscale 
entropy (MSE), during quiet standing is lower in older adults, especially those with falls. We hypothesized that COP 
dynamics from frail elderly individuals demonstrate less complexity than those from nonfrail elderly controls; complexity 
decreases when performing a dual task; and postural complexity during quiet standing is independent of other conven-
tional correlates of balance control, such as age and vision. 

   Methods.       We analyzed data from a population-based study of community-dwelling older adults. Frailty phenotype 
(nonfrail, prefrail, or frail) was determined for 550 participants (age 77.9  ±  5.5 years). COP excursions were quantifi ed 
for 10 trials of 30 seconds each. Participants concurrently performed a serial subtraction task in half of the trials. Com-
plexity of balance dynamics was quantifi ed using MSE. Root-mean-square sway amplitude was also computed. 

   Results.       Of the 550, 38% were prefrail and 9% were frail. Complexity of the COP dynamics in the anteroposterior 
direction was lower in prefrail (8.78  ±  1.91 [mean  ±   SD ]) and frail (8.38  ±  2.13) versus nonfrail (9.20  ±  1.74) groups 
( p  < .001). Complexity reduced by a comparable amount in all three groups while performing the subtraction task ( p  < .001). 
Quiet standing complexity was independently associated with frailty after adjusting for covariates related to balance 
while sway amplitude was not. 

   Conclusion.       Cognitive distractions during standing may further compromise balance control in frail individuals, lead-
ing to an increased risk of falls. 
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are single scale based and fail to capture the multiscale prop-
erties inherent in physiological control systems; (iii) different 
preprocessing techniques; and (iv) different experimental 
protocols (e.g., free-running vs goal-directed challenge). 
Based on prior work ( 12 , 13 ), we relate complexity with the 
coexistence of the following properties in a given system: (i) 
variability over multiple timescales, (ii) long-range correla-
tions, (iii) time irreversibility, and (iv) nonlinearity. 

 In this study of a diverse community-based population of 
elderly people, we sought to determine whether there is an 
association between frailty and a decrease in the complexity 
of COP dynamics during both free-running and stressed 
conditions associated with a cognitive task. We hypothe-
sized that (i) COP time series from frail individuals are less 
complex than those from nonfrail during quiet standing; (ii) 
performance of a cognitive  “ dual ”  task reduces the com-
plexity of balance dynamics in older adults, with greater 
reduction in frail individuals; and (iii) the loss of postural 
dynamical complexity associated with frailty is independent 
of other conventional correlates of balance control, such as 
age, vision, peripheral neuropathy, and executive function.  

 M ethods   

 Participants 
 The MOBILIZE Boston Study (MBS), which stands for 

 “ Maintenance of Balance, Independent Living, Intellect, 
and Zest in the Elderly of Boston, ”  is a prospective study 
examining risk factors for falls, including pain, cerebral 
hypoperfusion, and foot disorders in the older population. 
The study includes a representative population sample of 
765 elderly volunteers aged 70 years and older from the 
Boston area. After providing informed consent as approved 
by the Hebrew SeniorLife Institutional Review Board, all 
participants underwent a standardized evaluation. Study 
design details are presented elsewhere ( 14 ). Baseline data 
were available for the fi rst 600 participants.   

 Frailty Defi nition 
 Frailty status was determined using an adaptation of the 

Fried and colleagues ’  ( 1 ) defi nition. Frailty    characteristics 
included weakness, unintentional loss of weight, slow gait, 
exhaustion from Center for Epidemiological Studies-
Depression scale, and low daily activity ( Appendix 1 ), with 
the following modifi cations. Weakness was defi ned using 
the time required to perform fi ve repetitions of sit-to-stand 
( 15 ). Low daily activity was determined using the Physical 
Activity Scale for the Elderly ( 16 ). Persons exhibiting three 
or more of these fi ve characteristics were considered  “ frail, ”  
one to two characteristics were considered  “ pre-frail, ”  and 
those exhibiting none were considered  “ nonfrail. ”    

 Balance Assessment 
 Participants stood barefoot with the feet about 30 cm 

apart and eyes open on a force platform (Kistler 9286AA, 
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 Figure 1.        Power spectral density of center of pressure (COP) time series 
from a nonfrail participant (black) and of the calibration signal (gray) in the 
anteroposterior (AP) and mediolateral (ML) directions. The signal-to-noise 
ratio between 7.5 and 60 Hz in the AP direction (top) is more than 10, but in ML 
direction, it is less than 1. Therefore, no further analyses of the COP time series 
in the ML direction were performed   .    

Watertown, MA   ). No visual target was specifi ed. The COP dis-
placements under their feet in anteroposterior (AP) and medio-
lateral (ML) directions were sampled at 240 Hz. Participants 
performed two sets of fi ve quiet standing trials, 30 seconds 
each. One set included a cognitive task (dual-task challenge). 
The order of the sets was randomized. Trials were grouped by 
sets of fi ve to minimize carryover effects between conditions. 

 For the dual-task challenge, participants verbally counted 
backwards by 3 from 500 while standing. They continued the 
subtractions where they previously left off in subsequent 
trials. If fi ve counting errors were made, the task was modifi ed 
to: counting backward by 1 from 500, then counting backward 
by 1 from 100, then naming items found at a supermarket. 
Participants sat and rested for 1 minute between trials. 

 To assess the signal-to-noise ratio, we recorded the COP fl uc-
tuations for a 50 lb (22.7 kg), weight and compared its power 
with that of a COP time series from a nonfrail participant, across 
the bandwidth of interest (7.5 – 60 Hz). Because the signal-to-
noise ratio in the ML direction was lower than 1 ( Figure 1 ), we 
only analyzed the postural dynamics in the AP direction.       

 COP Data Processing 
 The complexity of COP time series was quantifi ed using 

the MSE method described elsewhere ( 17  –  19 ). Briefl y, 
MSE quantifi es the degree of irregularity of a time series 
over multiple timescales. Time series that are highly irregu-
lar, thus more entropic, over a broad range of timescales are 
considered more complex than those that show irregular be-
havior at only a single timescale. Single-scale methods, 
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such as approximate entropy and sample entropy (SampEn), 
yield higher entropy values for uncorrelated random signals 
than for signals with long-range correlations, which have 
been interpreted as indicating that the former are more 
complex than the latter. In contrast, MSE that quantifi es 
sample/approximate entropy over a range of scales resolves 
the apparent paradox between variability and complexity 
because it yields higher entropy values for correlated than 
for uncorrelated signals across a range of scales. 

 The MSE analysis consists of three steps: (i) coarse grain-
ing the original time series to derive multiple signals, each 
of which captures the system dynamics on a given scale; 
(ii) calculating a measure of entropy suitable for fi nite 
time series, SampEn in this case, for each coarse-grained 
time series; and (iii) integrating the entropy values over a pre-
defi ned range of scales to obtain an index of complexity ( C  I ). 

 The element  j  of the coarse-grained time series  y  for scale 

 n  is calculated according to the equation:   
jn

n
j i

i j n

y n x( )

( 1) 1

1   

( 18 ), where  x  i , with 1  ≤   i   ≤   N , are the data points of the 
original time series. MSE, as noted, uses SampEn to quan-
tify the degree of irregularity of a time series. SampEn is a 
conditional probability measure that quantifi es the likeli-
hood that if a vector with  m  data points matches, within a 
tolerance  r , a template of the same length, then the vector 
and the template will still match when their length increases 
from  m  to  m  + 1 data points. The MSE curve is obtained by 
plotting SampEn for each coarse-grained time series (ordi-
nate) as a function of scale ( Figure 2, right ). The  C  I  is the 
area under the MSE curve ( 17 , 18 ). The length of the origi-
nal time series,  N , determines the largest scale,  n , analyzed 
( 17 ). In this study, we used  n  = 8. Taking into consideration 
previous recommendations ( 17 , 20 , 21 ), we used  m  = 2 and 
 r  = 15% of the standard deviation of the original signal. Of 
note, SampEn is a self-consistent metric, that is, given two 
signals, A and B, if SampEn  N   1, m 1, r 1 (A) > SampEn  N   1, m 1, r 1 (B), 
then SampEn  N   2, m 2, r 2 (A) > SampEn  N   2, m 2, r 2 (B), for a wide 
range of parameter values. Consistently, high entropy values 
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 Figure 2.        Anteroposterior (AP) center of pressure time series from representative nonfrail and frail participants, root-mean-square (RMS) values, multiscale en-
tropy (MSE) curves and  C  I  values. Both the original and the high-pass fi ltered time series are presented during quiet stance and dual task. The RMS amplitudes were 
calculated for the original signals. The MSE plots and the  C  I  values were derived from the high-pass fi ltered time series.    
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error estimation ( 26 ) and unstructured covariance.  C  I  values 
were log-transformed to obtain a normal distribution. To 
determine if  C  I  or other COP measures were independently 
associated with frailty, we employed a multivariate ordinal 
logistic regression model using the three frailty categories 
as the outcome and adjusting for the covariates that may 
affect standing balance: age, vision, peripheral neuropathy, 
and TMT-B as defi ned above. Analyses were conducted 
using SAS 9.1 (SAS Institute, Cary, NC).    

 R esults  
 Among 600 persons in the MBS data set, frailty status 

and postural sway could be determined for 550 participants 

over a wide range of timescales, and thus high  C  I , indicate 
high complexity and vice versa. Scale 1 was excluded from 
the analysis because it is the most affected by superimposed 
uncorrelated noise generated by recording devices or round-
ing errors ( 13 ).     

 We preprocessed the data to remove low-frequency fl uctua-
tions and outliers that lead to spuriously low entropy values in 
short time series such as those analyzed here ( 17 , 22 ). We 
defi ned outliers as values outside the interval mean  ± 3  SD s. 
We used the empirical mode decomposition (EMD) method, 
described elsewhere ( 23 ), to high-pass fi lter the data. Briefl y, 
the EMD method decomposes a signal into  n  intrinsic mode 
functions (IMFs), each of which has a dominant frequency 
given by: sampling frequency/2  n   Hz. We restricted our analysis 
to the fi rst four IMFs ( n  = 1 – 4), thereby eliminating dynamical 
information on timescales larger than 133 milliseconds (2 5 /240 
seconds). This procedure is equivalent to applying a high-pass 
fi lter with a cutoff frequency at 7.5 Hz ( Figure 2 ). 

 We next tested the hypothesis that the dynamical properties 
of the COP time series could not be generated by uncorrelated 
random processes. To this aim, we compared the complexity 
of the original COP time series with that of a randomized time 
series obtained by shuffl ing the order of the data points of the 
original time series. Because, by construction, both the physi-
ological and the shuffl ed (surrogate) time series have the same 
mean, variance, and distribution, any differences in the com-
plexity indexes are due to differences in the temporal order of 
the data points and their correlation properties. 

 In addition to  C  I , which is independent of the amplitude of 
the fl uctuations, we calculated the following three traditional 
sway parameters: root-mean-square amplitude for each COP 
time series (RMS sway) before and after high-pass fi ltering, 
COP path length, and mean power frequency (MPF) of the 
COP data ( 24 ). Signal processing was performed using C 
and  Matlab  7.04 (Mathworks, Natick, MA).   

 Measuring Factors Associated With Balance 
 Postural control involves the interaction of sensory sys-

tems, central processing, and the musculoskeletal system. 
We considered multiple covariates related to balance that 
might explain the association between the frailty and the 
dynamical measures described above. Vision was quantifi ed 
using a Snellen eye chart. Tactile sensation in the feet was 
quantifi ed using Semmes – Weinstein monofi laments of two 
sizes (4.1 and 5.6 g). Peripheral neuropathy was defi ned as 
sensing one of these of the fi laments less than three times 
out of four in either foot. Executive function was determined 
using the Trail Making Test Part B (TMT-B) ( 25 ).   

 Statistics 
 We compared the complexity indices among different 

groups, for quiet standing and dual-task conditions, and as-
sessed their interactions using a mixed-model analysis of 
variance. To account for multiple observations per person, 
the analysis was done with empirical ( “ sandwich ” ) standard 

 Table 1.        Participant Characteristics  

  Not frail Prefrail Frail  p  Value  

   N  (%) 292 (53) 209 (38) 49 (9)  
 Sex (% female) 61 68 51 .92 *  
 Age (y  ±   SD ) 76.6  ±  5.1 78.8  ±  5.6 79.6  ±  5.6 <.001 
     65 – 74 ( n ) 122 55 11  
     75 – 84 ( n ) 147 117 28  
      85+ ( n ) 23 37 10  
 Race (% Caucasian) 81 78 69 .10 *  
 Education (grades 
 completed)

14.7  ±  2.8 14.1  ±  3.0 12.2  ±  3.5 <.001 

 Cognitive function 
 (MMSE)

27.7  ±  2.3 27.0  ±  2.7 25.3  ±  3.5 <.001 

 Executive function 
 (TMT-B(s))

127.9  ±  82.6 156.3  ±  104.8 208.7  ±  118.8 <.001 

 Depression (DSM-IV)  
     % with minor 
  symptoms

2.7 9.6 16.3 <.001 *  

     % with major 
  symptoms

0 0.5 4.1  

 Height (m) 1.63  ±  0.09 1.63  ±  0.10 1.65  ±  0.10 .29 
 Weight (kg) 72.4  ±  14.4 73.2  ±  16.1 76.2  ±  19.6 .28 
 Body mass index 
 (kg/m 2 )

27.0  ±  4.5 27.3  ±  5.0 28.1  ±  5.9 .27 

 PASE 128.2  ±  64.8 85.3  ±  63.5 38.7  ±  36.6 <.001 
 4-m walk time (s) 3.9  ±  0.7 4.7  ±  1.2 6.7  ±  1.6 <.001 
 5× Sit-to-stand 
 time (s)

11.1  ±  2.2 14.3  ±  3.9 18.3  ± 7 4.6 <.001 

 ADL  
     % with little 
  diffi culty

6.5 16.6 36.7 <.001 *  

     % with a lot of 
  diffi culty

1.0 9.1 20.4  

 IADL  
     % with little 
  diffi culty

17.5 25.8 12.2 <.001 *  

     % with a lot of 
  diffi culty

9.9 25.8 51.0  

 Hypertension  
     % controlled 48.8 55.8 59.6 <.004 *  
     % uncontrolled 23.0 25.5 31.9  
 Falls Effi cacy Scale 98.0  ±  4.5 95.9  ±  8.0 88.0  ±  13.9 <.001 
 % with Neuropathy 6.5 13.5 31.9 <.001 *  
 % Recurrent fallers 17.8 14.4 25.0 .60 *  
 Falls over past year 0.67 0.74 1.26 .11  

    Notes : ADL: activities of daily living disability index; IADL: instrumental ac-
tivities of daily living disability index; MMSE = Mini-Mental Status Examination; 
PASE: Physical Activity Scale for the Elderly; TMT-B: Trail Making Test Part B.  

  *       Mantel – Hansel  c  2  test.   
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 Of note, the MSE curves for the shuffl ed time series 
showed a monotonic decrease of SampEn values with scale 
factor, characteristic of uncorrelated noise ( 17 ) ( Figure 3 ). In 
contrast, the MSE curves for the original COP time series 
show a  “ plateau ”  for large timescales. These results demon-
strate that the COP sway dynamics over timescales ranging 
from 17 to 133 milliseconds (7.5 – 60 Hz) are  not  consistent 
with uncorrelated processes but represent complex behavior. 

 The     C  I  values were reliable within a set (intraclass cor-
relations [ICC](2,1) = 0.87 without dual task and 0.66 with 
dual task). No systematic order effects or fatigue effects 
were seen. Frail participants had greater diffi culty in per-
forming the subtractions by 3 and performed more of the 
easier tasks. However   , the different dual tasks had similar 
effects on all three frailty groups ( p   ≥  .16, least-squared dif-
ference [LSD] post hoc comparisons).  

 Frailty and Traditional COP Measures 
 Root-mean-square (RMS) amplitude of sway both before 

and after high-pass fi ltering ( p  < .001), COP path length ( p  = 
.001), and MPF ( p  = .06) were higher in frail individuals and 
increased with the dual task ( p  < .001;  Table 2 ). The  C  I  and 
the RMS sway were not correlated ( r  =  − .02,  p  = .6). Filtered 
RMS sway ( r  =  − .56), MPF ( r  =  − .58), and path length ( r  = 
 − .57) were signifi cantly correlated with  C  I  ( p  < .001).       

 Determinants of Physiological Complexity and Frailty 
 In the adjusted logistic regression analysis with frailty 

status as outcome,  C  I  during quiet stance ( p  = .017) was 
independently associated with frailty status after including 
covariates.  C  I  was also associated with neuropathy ( t  = 3.35, 
 p  = .001), vision score ( r  = .12,  p  = .005) but not with TMT-B 
( r  =  − .01,  p  = .76). RMS sway was not associated with frailty 
when covariates were taken into account ( Table 3 ).        

 D iscussion  
 The results are consistent with the hypothesis that bal-

ance dynamics of frail individuals are less complex than 

( Table 1 ). Among these 550 participants, 38% were prefrail 
and 9% were frail. Frail individuals were older and exhib-
ited more disability and depression, worse mini-mental state 
scores ( p  < .005), and reduced executive function ( p  < .001; 
 Table 1 ). Of the 21 participants without balance data, 12 
were prefrail and 6 were frail, most of who had diffi culty 
standing. Of the 29 whose frailty status could not be deter-
mined due to missing data, 8 showed some frailty symp-
toms.  C  I  of sway in these 29 participants was not different 
from the 550 considered in the fi nal analysis ( p  = .88).     

  Figures 3  and  4  show that (i) for all three groups,  C  I  
values from quiet standing trials were higher than those 
from the dual-task trials ( p  < .001 – 0.04, Scales 2 – 7) and (ii) 
 C  I  values were higher for the nonfrail than for the prefrail or 
frail groups ( p  < .001 – .02, Scales 2 – 8). Differences in the 
 C  I  between frailty groups remained signifi cant ( p  = .006) 
when age ( p  < .001) was included as a covariate. The reduc-
tion of  C  I  due to the dual task was not different among the 
three groups (Frailty × Dual-task interaction,  p  = .6).         
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 Figure 3.        Multiscale entropy (MSE) analysis of COP sway dynamics for the nonfrail, prefrail, and frail groups during quiet standing and dual-task conditions. The 
MSE curves were obtained by connecting the group mean values of sample entropy for each scale. The error bars represent standard errors. The MSE curves for the 
surrogate shuffl ed time series (see text) are also presented.    
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 Figure 4.        Complexity indices ( C  I ) for nonfrail, prefrail, and frail groups dur-
ing quiet standing and dual-task conditions. Solid bars and error bars represent 
group mean values and standard errors, respectively. The  C  I  for the frail ( p  = 
.003; post hoc LSD) and prefrail ( p  < .001) groups were lower than for the 
nonfrail group and dropped further with dual task ( p  < .001). Prefrail and frail 
groups were not different ( p  = .2).    
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 We quantifi ed the dynamical properties of sway on times-
cales shorter than 133 milliseconds (>7.5 Hz), not selec-
tively analyzed in other COP studies. The small signal 
power in this bandwidth may affect the stability of these 
measures and comparability to previous work. However, we 
identifi ed dynamics clearly distinct from random noise, and 
our complexity measures are stable as shown by the ICC 
values. Furthermore, both RMS amplitude and complexity 
of these high-frequency fl uctuations that quantify comple-
mentary properties of the COP signal change with frailty 
status and dual task ( 27 ). 

 The high-frequency components of the dynamics that we 
quantifi ed may arise from postural refl exes that operate over 
timescales as short as approximately 40 milliseconds re-
lated to tactile sensation from the feet, as  C  I  was associated 
with neuropathy. In addition, leg muscle activity that pro-
duces force fl uctuations around 8 – 12 Hz ( 28 ) may also 
contribute to the high-frequency fl uctuations in COP sway. 
Force fl uctuations become more variable with aging possi-
bly due to loss and remodeling of muscle motor units ( 29 ) 
associated with sarcopenia ( 2 ). Additional roles of attention 
and verbal effects ( 30 ) in these high-frequency mechanisms 
need further examination. 

 To our knowledge, we present the fi rst report on quan-
titative posturography measures in frail individuals dur-
ing a dual-task paradigm, with a representative population 
sample. Apparent discrepancies between our results and 
other on the effects of dual-task challenges on postural 
sway amplitude may be due to different experimental 
paradigms ( 31  –  33 ). Recently, Duarte and Sternad ( 27 ) 
studied COP data from 30 minutes of standing using 
MSE. They did not fi nd signifi cant differences between 
young and old groups. However, comparison between 
their study and ours is diffi cult due to differences in par-
ticipant groups (health status, age, and sample size) and 
the effects of marked low-frequency dynamics induced 
by prolonged standing. 

 There are several limitations to our study. To prevent par-
ticipant fatigue, each trial lasted for only 30 seconds, thus 
limiting the timescales that could be analyzed. However, the 
effects of frailty and dual task still could be seen over the 
range of timescales considered. The observed association 
between frailty and complexity is cross-sectional. Future 

those of nonfrail older adults during both quiet standing and 
dual-task challenges. Low dynamical complexity in frail 
older adults may be a marker of degraded postural control 
mechanisms similar to those with a history of falls. For all 
three groups, the superimposition of a concurrent mental 
task lowers the complexity of balance dynamics. The re-
duction of balance complexity during a dual task and the 
increase in RMS sway may be due to the diversion of at-
tentional resources away from postural control. However, 
 C  I  appears more sensitive to the onset of frailty than RMS 
sway ( Table 2  and  Figure 4 ) because it could distinguish 
prefrail from nonfrail individuals. Frail individuals did not 
exhibit a greater drop in  C  I  with dual task than the others 
groups, possibly due to a relatively low number of frail in-
dividuals and the fact that their  C  I  indexes may already be 
very close to a minimum value of postural complexity com-
patible with the ability to stand. The decrease of balance 
complexity in frail older adults may bring them closer to a 
threshold for falls. The contribution of cognitive distrac-
tions to fall risk needs further investigation. 

  C  I  could independently predict frailty status after ac-
counting for other physiological variables thought to affect 
balance control, thus suggesting that the MSE method may 
quantify an aspect of frailty not captured by functional tests 
of individual physiological systems. Our results support the 
notion that frailty is a global syndrome that degrades integra-
tive physiological function beyond that of each subsystem. 

 Table 2.        Traditional COP Parameters  

  

Not Frail Prefrail Frail  p  value 

 QS DT QS DT QS DT Frailty Task Interaction  

  RMS sway (mm) 4.45 (1.61) 4.99 (2.18) 4.70 (1.75) 4.91 (2.04) 5.52 (2.10) 5.84 (2.66) .005 <.001 .08 
 RMS sway (high-pass fi ltered, mm) 0.085 (0.074) 0.124 (0.130) 0.108 (0.097) 0.145 (0.140) 0.172 (0.224) 0.213 (0.251) .002 <.001 .99 
 Mean power frequency (Hz) 0.28 (0.13) 0.33 (0.15) 0.29 (0.14) 0.34 (0.16) 0.32 (0.17) 0.38 (0.22) .06 <.001 .53 
 COP path length (mm) 430.3 (95.9) 487.9 (134.2) 458.0 (119.9) 512.8 (157.0) 545.4 (225.9) 595.7 (213.7) .001 <.001 .86  

    Note : Mean ( SD ) are shown for each traditional COP measure ( 21 ).  p  Values are from the mixed-model analysis of variance as described in the text. All COP variables 
are calculated from anteroposterior sway. The RMS sway and COP path length of nonfrail and prefrail groups were not different ( p  = .41; post hoc least-squared difference 
[LSD]) from each other. The frail group exhibited larger sway amplitude than the other two ( p   ≤  .005). RMS for high-pass fi ltered time series could distinguish all three 
groups ( p  < .001; post hoc LSD). COP = center of pressure; DT= dual task; Interaction = interaction of frailty and dual task; QS= quiet stance; RMS = root-mean-square   .   

 Table 3.        Multivariable-Adjusted Associations of Balance Measures 
With Frailty  

  Multivariate Models OR 95% CI *  p  Value  

   C  I 0.303 0.114 – 0.805 .017 
 RMS sway 1.039 0.943 – 1.144 .44 
 RMS sway (high-pass fi ltered) 10.3 1.312 – 80.76 .027 
 Mean power frequency 1.266 0.246 – 6.50 .77 
 COP path length 1.002 1.000 – 1.004 .017  

    Notes : Dependent variable: frailty status. Each line represents a different 
model that includes the listed COP-derived measure, with age, neuropathy, vi-
sion, and Trail Making Test Part B as covariates. All covariates were statistically 
signifi cant in the each model. Including education in the model did not affect the 
fi nal results. Neuropathy was defi ned dichotomously.  C  I , COP path length, and 
RMS of high-pass fi ltered sway signal were signifi cantly associated with frailty 
even after adjusting for these covariates.  C  I  = complexity index; COP = center 
of pressure; OR = odds ratio; RMS = root-mean-square.  

  *       95% CI = 95% confi dence interval of the OR.   
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work is needed to assess whether the complexity of COP 
dynamics predicts the onset of frailty and related adverse 
outcomes.   
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 Appendix 1  

 Criteria for Frailty Characteristics 
 Weight loss: Self-report of unintentionally losing 10 lb 

(4.53 kg) over the past year. 
 Exhaustion: Answering the Center for Epidemiological 

Studies-Depression scale question  “ I could not get going ”  
as 3 or more days a week. 

 Physical activity: Lowest quintile of Physical Activity 
Scale for the Elderly score, stratifi ed by sex: women <40; 
men <45. 

 Slow gait: Highest quintile of 4-m walk time, stratifi ed by 
sex and height (median split):

   Women:  
     Height <1.583 m >5.9 s;  
     Height  ≥ 1.583 m >5.0 s  
  Men:  
     Height <1.73 m >5.3 s;  
     Height  ≥ 1.73 m >4.8 s   

  Weakness: Highest quintile of 5× sit-to-stand time: >15.2 s 
(did not differ by sex or body mass index) or inability to 
perform the task.     


