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Gaucher disease, the most common lysosomal storage dis-
ease, can be treated with enzyme replacement therapy
(ERT), in which defective acid-B-glucosidase (GlcCerase)
is supplemented by a recombinant, active enzyme. The
X-ray structures of recombinant GlcCerase produced in
Chinese hamster ovary cells (imiglucerase, Cerezyme®) and
in transgenic carrot cells (prGCD) have been previously
solved. We now describe the structure and characteristics
of a novel form of GlcCerase under investigation for the
treatment of Gaucher disease, Gene-Activated™ human
GlcCerase (velaglucerase alfa). In contrast to imiglucerase
and prGCD, velaglucerase alfa contains the native human
enzyme sequence. All three GlcCerases consist of three
domains, with the active site located in domain III. The
distances between the carboxylic oxygens of the catalytic
residues, E340 and E235, are consistent with distances pro-
posed for acid—base hydrolysis. Kinetic parameters (K,, and
Vmax) of velaglucerase alfa and imiglucerase, as well as their
specific activities, are similar. However, analysis of glycosy-
lation patterns shows that velaglucerase alfa displays dis-
tinctly different structures from imiglucerase and prGCD.
The predominant glycan on velaglucerase alfa is a high-
mannose type, with nine mannose units, while imiglucerase
contains a chitobiose tri-mannosyl core glycan with fuco-
sylation. These differences in glycosylation affect cellular
internalization; the rate of velaglucerase alfa internaliza-
tion into human macrophages is at least 2-fold greater than
that of imiglucerase.
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Introduction

Gaucher disease is caused by mutations in the gene encod-
ing the lysosomal enzyme, acid-pB-glucosidase (glucocerebrosi-
dase, GlcCerase, E.C. 3.2.1.45) (Beutler and Grabowski 2001;
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Futerman and Zimran 2006). The most common treatment for
Gaucher disease is enzyme replacement therapy (ERT), in which
defective GlcCerase is supplemented with an active enzyme.
ERT using imiglucerase, a recombinant analog of human Glc-
Cerase expressed in Chinese hamster ovary (CHO) cells has
been available for ~15 years. After expression and purifica-
tion, imiglucerase is modified by exo-glycosidase treatment
(Friedman and Hayes 1996) to expose the core mannose
residues that can be recognized by macrophages. Glycan re-
modeling greatly improves targeting to and internalization by
macrophages, the main cell type affected in Gaucher disease
(Futerman and Zimran 2006). An alternative means of pro-
ducing GlcCerase (prGCD) in transgenic carrot root cells has
been developed (Aviezer et al. 2009). The X-ray structures of
imiglucerase and prGCD have been previously reported (Dvir
et al. 2003; Shaaltiel et al. 2007).

In the current study, we have used gene activation in
a well-characterized, continuous human cell line to pro-
duce gene-activated human acid-p-glucocerebrosidase (ve-
laglucerase alfa). Gene activation refers to targeted recombi-
nation with a promoter that activates the endogenous GlcCerase
gene in the selected human cell line. Velaglucerase alfa is se-
creted as a monomeric glycoprotein of approximately 63 kDa
and is composed of 497 amino acids with a sequence identical
to that of the natural human protein (Zimran et al. 2007). Glyco-
sylation of velaglucerase alfa is altered by using kifunensine, a
mannosidase I inhibitor, during cell culture, which results in the
secretion of a protein containing predominantly high-mannose
type glycans (Elbein et al. 1990).

Herein we describe the crystal structure of velaglucerase alfa,
using a preparation that had been partially deglycosylated, and
show that it is similar to that of imiglucerase (Dvir et al. 2003)
and prGCD (Shaaltiel et al. 2007). Velaglucerase alfa differs
from imiglucerase and prGCD as the latter two enzymes contain
a mutation at residue 495 (an Arg to His substitution: R495H),
and prGCD contains seven additional residues at the C terminus
(DLLVDTM) and two additional residues at the N terminus
(EF). Moreover, the kinetic parameters and specific activity of
velaglucerase alfa are very similar to those of imiglucerase. We
also compare the glycosylation patterns of velaglucerase alfa
and imiglucerase by use of LC-MS and assess the impact of the
different glycosylation patterns by analyzing internalization in
human macrophages.

Results and discussion

X-ray structure

Diffraction-quality crystals of velaglucerase alfa were obtained
after partial deglycosylation using N-glycosidase F, by a proce-
dure similar to that previously described for imiglucerase (Dvir
et al. 2003). Velaglucerase alfa crystallized in the same space
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Table I. Data collection and refinement statistics

Velaglucerase alfa

Data collection

Space group C222;
Cell dimensions
a, b, c(A) 109.37, 285.55, 91.69
abg (°) 90.00, 90.00, 90.00
Resolution (A) 19.9-2.7 (2.75-2.70)*
Ryym(%) 15.7 (51.0)
IIs<I> 14.4 (4.6)
Completeness (%) 100 (100)
Redundancy 7.5 (7.6)
Refinement
Resolution (A) 19.9-2.7
Number of reflections 39,776
Ryork/Riree 17.3/23.4
Rms deviations
Bond lengths (A) 0.012
Bond angles (°) 1.486
Number of refined atoms
Protein 7871
Carbohydrates 70
Tons 90
Solvent 326
Ramachandran outliers (%) 0.4

4The highest resolution shell is shown in parentheses.

group, C222,, as imiglucerase (Table I), and unit cell parameters
were similar to the previously published GlcCerase structures
(Dvir et al. 2003; Premkumar et al. 2005; Brumshtein et
al. 2006). The asymmetric unit contained two copies of ve-
laglucerase alfa, designated as molecules A and B. The root
mean square deviation (RMSD) value between molecules A and
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B (<0.3 A) shows that they are virtually identical. A compari-
son of the structures of imiglucerase, prGCD, and velaglucerase
alfa demonstrates that these structures are very similar, with an
RMSD of 0.35-0.46 A (Table II).

Velaglucerase alfa thus consists of three noncontiguous do-
mains, with the catalytic site located in domain III (residues 76—
381 and 416-430), which is a (B/a)g (TIM) barrel (Figure 1).
A more detailed analysis of the active site reveals that it is
virtually identical to that of imiglucerase (Figure 2), with the dis-
tances between the carboxylic oxygens of the catalytic residues,
E340 and E235 (5.2 A in molecule A and 5.1 A in molecule B),
similar to those obtained previously (Brumshtein et al. 2006)
and in agreement with the distances proposed for acid—base hy-
drolysis (Davies and Henrissat 1995). Moreover, the three loops
(loop 1, residues 345-350; loop 2, residues 393-399; and loop
3, residues 312-319) observed in previous structures (reviewed
in Kacher et al. (2008)) are also seen in velaglucerase alfa.
Similarly to prGCD (Shaaltiel et al. 2007), loops 2 and 3 show
differences in their backbone angles and side chain orientations
in the two molecules of the asymmetric unit, whereas loop 1,
since it makes crystal contacts, exhibits less pronounced con-
formational changes (Figure 2). In the case of loop 3, a helical
conformation is seen in molecule B, whereas a coiled confor-
mation is seen in molecule A (Figure 3), as previously reported
for imiglucerase (Brumshtein et al. 2006). Although the crystal
was cryo-protected with 25% ethylene glycol, we did not detect
any ethylene glycol molecules in the electron density map.

Imiglucerase and prGCD both contain an Arg to His muta-
tion at residue 495, with H495 making an H-bond (2.6 1&) with
the peptide carbonyl of F31. In contrast, velaglucerase alfa con-
tains a sequence identical to that of the natural human enzyme,

Table II. RMS deviations of velaglucerase alfa compared to imiglucerase and prGCD. RMS deviations (A) are shown for each of the two copies of the molecules
in the asymmetric unit and were calculated using PyMol (www.pymol.org). The PDB codes for imiglucerase and pr-GlcCerase are 2J25 and 2V3F, respectively

Imiglucerase-A Imiglucerase-B prGCD-A prGCD-B
Velaglucerase alfa-A 0.39 0.35 0.36 0.40
Velaglucerase alfa-B 0.38 0.43 0.46 0.46
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Fig. 1. Comparison of the crystal structures of velaglucerase alfa and imiglucerase. The three domains of the enzymes are colored pink (domain I, residues 1-29
and 383-414), blue (domain II, residues 30-75 and 431-497), and gray (domain III, residues 76382 and 415-430).
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Fig. 2. Active site of velaglucerase alfa. Stereo representation of an overlay of the active sites of imiglucerase (blue and magenta) and velaglucerase alfa (yellow
and green). Catalytic residues are shown as red sticks. Loops near the entrance to the active site are indicated (L1, loop 1; L2, loop 2; L3, loop 3).

with an Arg at residue 495, which does not make a similar
H-bond. No major structural differences were observed in ve-
laglucerase alfa around residue R495, relative to imiglucerase or
prGCD. Two mutations which cause Gaucher disease, R496 and
D474 (Figure 4) (Kawame et al. 1992; Beutler et al. 1993; Choy
et al. 1998), are in close proximity to R495 near the N-terminus
of GlcCerase. D474 is at the end of a B-strand, and R496 is
part of a coil with no clear secondary structure, and their side-
chains form a salt bridge and hydrogen bonds with each other;
mutations in either of these two residues would disrupt these
interactions. By analyzing the geometry and the interactions be-
tween the side chains of these two residues, and the secondary
structure of the region, we conclude that R496 or D474 may be
involved in stabilizing the conformation of the N-terminus of
the enzyme by their side chain interactions, with disruption of
these bonds resulting in a flexible N-terminus and hence in a
less stable structure. However, neither of these residues interacts
with R495.

Kinetic analysis

To further compare velaglucerase alfa and imiglucerase, and to
determine if the mutation at residue 495 has any effect, kinetic
parameters and specific activity were determined using a natu-
ral glucosylceramide (GlcCer) substrate, rather than a surrogate
substrate typically used to assess enzyme activity. Velaglucerase
alfa has a ke, of 2100 min~!, a K, of 19 M, and a Vi of
0.61 WM min~'. Imiglucerase has a ke, of 1900 min~', a K,
of 15 uM, and a Vp,y of 0.56 uM min~! (Figure 5). Similar
K., values were reported in the literature; GlcCerase derived
from brain tissue and fibroblasts both have a K, of 32 uM us-
ing GlcCer from Gaucher spleen (Vaccaro et al. 1982), while
imiglucerase and prGCD have a K, of 15.2 and 20.7 pM, re-
spectively, using a fluorescent GlcCer analog, C6-NBD-GlcCer
(Shaaltiel et al. 2007). In addition, at a 210 .M GlcCer substrate
concentration, velaglucerase alfa and imiglucerase have similar
specific activities of 26 and 24 U/mg, respectively. These results

Fig. 3. Electron density around the catalytic center. Catalytic residues E235 and E340 are shown as red balls and sticks and surrounding residues are in dark gray.
Contours of the 2F,—F; map are shown as a blue mesh (at 1.20); contours of the F,—F. map are shown in green mesh (at 30) and in magenta (at —30). Several
F,—F. peaks are visible in the active site, but they did not overlap with the 2F,—F; map, nor are they continuous; hence, at this resolution they appear to be noise. A
and B show the catalytic centers of molecules A and B, respectively, in the asymmetric unit.
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Fig. 4. Mutations at the C-terminus of GlcCerase. Imiglucerase and
pr-GlcCerase contain a His at residue 495 (yellow), whereas velaglucerase alfa
contains Arg (green). Mutations R496 and D474, which cause Gaucher
disease, are shown in magenta. Residues within 4 A distance of R495 and

R496 are shown in cyan.
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Fig. 5. Kinetic analysis of velaglucerase alfa and imiglucerase. Vipax and K,
values were determined using a natural GlcCer substrate (n = 2).

demonstrate that human and CHO-cell derived GlcCerase, pre-
pared by two different manufacturing processes, have similar
enzymatic activities for the natural substrate.

Glycan composition

We next examined which sugars could be detected in the crystal
structure of velaglucerase alfa. Even after partial deglycosyla-
tion using N-glycosidase F, two sugar residues were observed
attached to residue N19 in both molecules A and B (Figure 6).
One sugar was detected on N146 in molecule A whereas no
sugars were detected on N146 in molecule B (Figure 6). As
reported previously for imiglucerase, no sugars were detected
attached to either N270 or N59 in velaglucerase alfa. It should
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be noted that sugars attached to N270 have not been seen in any
of the crystal structures solved to date, and sugars have been
seen only occasionally on N59 (Brumshtein et al. 2006). The
inability to detect sugars on either N59 or N270 is most likely
due to the high flexibility of the corresponding glycan chains
since nano-liquid chromatography electrospray ionization tan-
dem mass spectrometry (nano-LC-ESI-MS/MS) analysis of in-
tact imiglucerase (Kacher et al. 2008), and of velaglucerase alfa
(see below) showed that glycan chains were attached to both
these residues.

Velaglucerase alfa and imiglucerase bear distinctly different
glycan chains due to the differences in their manufacture. In our
comparative study of the carbohydrate content of unmodified
velaglucerase alfa and imiglucerase by LC-ESI-MS, four of the
five potential glycosylation sites, namely, N19, N59, N146, and
N270, were observed to be fully occupied in both. As expected
from the crystal structures, N462 is fully unoccupied in both,
due to its buried location.

According to LC-ESI-MS analysis of glycopeptide maps, ve-
laglucerase alfa contains primarily high-mannose type glycans,
consisting of six to nine mannose units. Listed as the predomi-
nant structure in Table III, the most abundant ion present in the
averaged spectra for each site corresponds to a glycan with nine
mannose units. Glycan microheterogeneity was observed at each
site and the less abundant structures are listed as other glycans.
These other glycans consist of mannose residues with phospho-
rylation at the C-6 position to create a mannose-6-phosphate
(M6P) residue. The lowest levels of M6P were at N19; N59
and N146 had similar but higher levels relative to N19, while
N270 had the highest amount of M6P. Despite the site-specific
variation in relative levels of M6P, nonphosphorylated glycans
remained the predominant species for all four sites. Also ob-
served on N59, N146 and N270 were mono-sialylated mono-
antennary hybrid and complex-type structures with core fuco-
sylation, which were quantified by glycan map analysis. These
structures are consistent with a low percentage of glycosylation
sites escaping kifunensine inhibition, resulting in glycan matu-
ration and core fucosylation. In the case of hybrid-type glycans,
only a single antenna maturated.

The results from site-specific glycan characterization were
corroborated by glycan map analysis (Figure 8), which demon-
strates high-mannose type glycans consisting of six to nine
mannose units with a predominant nine-mannose structure. Es-
timates from glycan map analysis show that the mono-sialylated
mono-antennary hybrid structures account for ~2% of the total
glycan pool. The map also demonstrates the presence of high-
mannose glycans containing one GlcNAc-capped M6P, a result
of incomplete glycan processing, as well as high-mannose gly-
cans bearing a single M6P. Also consistent with these results
were data obtained from monosaccharide compositional analy-
sis that demonstrates approximately 0.8 mole of M6P per mole
of velaglucerase alfa, and approximately 0.6 moles of M6P per
mole of imiglucerase.

Site-specific glycan analysis demonstrated that imiglucerase
contains primarily complex-type glycans with core fucosy-
lation that terminate with the chitobiose tri-mannosyl core
(Table 1V), with an exception at the N19 site, which was
observed to be devoid of fucose. These structures are as ex-
pected for GlcCerase with exoglycosidase treatment to expose
the core mannose residues. Imiglucerase also contains glycan
microheterogeneity at each site of glycosylation, with lower
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Fig. 6. Glycosylation sites seen in the crystal structure of velaglucerase alfa. 2F,—F. electron density maps are shown, which are contoured at 1.2¢ in the vicinity of
two of the putative glycosylation sites, N19 and N146 for molecule A, and N19 for molecule B. (A) Glycosylation sites detected in molecule A are shown in green.
(B) Glycosylation site detected in molecule B is shown in yellow. (C) Superposition of the two individual molecules in the asymmetric unit reveals their similarity.
In all three representations, catalytic residues E235 and E340 are shown as red sticks.

Table III. Carbohydrate composition of velaglucerase alfa. Predominant structures are those observed to be most abundant at each N-linked glycosylation site. The
other glycans consisted mostly of high-mannose type structures (some with M6P) and with the hybrid and complex types observed at low levels (~2% of the total
as determined by glycan map analysis)

Glycosylation site Predominant glycan Other glycans
Asnl9 High mannose High mannose
(Man)g(GIcNAc), (Man)g_g(GlcNAc),

Phosphorylated high mannose
(PhOS)] (Man)g,Q(GICNAC)z

GlcNAc-capped phosphate
(Phos);(Man)g_o(GlcNACc)3

Hybrid
(Hex),(Man)3(GlcNAc)3 (Fuc)y
Asn59 High mannose High mannose
(Man)g(GlcNAc), (Man)s_g(GlcNAc),

Phosphorylated high mannose
(Phos)| (Man)7_9(GIcNAc),

GlcNAc-capped phosphate
(Phos);(Man)g_o(GlcNAc)3

Hybrid
(NeuAc);(Gal);(Man)s5(GlcNAc)3(Fuc),

Complex
(NeuAc)p—2(Gal)2(Man)3(GlecNAc)4 (Fuc)y
(Gal)3(Man)3(GlcNAc)s(Fuc);

Asnl46 High mannose High mannose
(Man)g(GlcNAc), (Man)s_g(GlcNAc),

Phosphorylated high mannose
(Phos)| (Man)7_9(GIcNAc),

GlcNAc-capped phosphate
(Phos);(Man)g(GlcNACc)3

Hybrid
(NeuAc);(Gal); (Man)s(GlcNAc)3(Fuc),
Asn270 High mannose High mannose
(Man)g(GlcNAc), (Man)s_g(GlcNAc),

Phosphorylated high mannose
(Phos);(Man)g_9(GlcNACc),
GlcNAc-capped phosphate
(Phos)(Man)g(GlcNACc)3
Hybrid
(Gal);(Man)7(GlcNAc)3(Fuc);
(NeuAc);(Gal);(Man)s(GlcNAc)3(Fuc);
Complex
(NeuAc);(Gal);(Man)3 (GlcNAc)4(Fuc),
Asn462 Not detected Not detected

28



velaglucerase alfa Key
{7 Mannose
Qo0 QG ] N-Acetyl Glucosamine
“f%::'}’ \g}"_‘-? » Fuccse
] .
= E
Asnl9 Asnl46
Asn270 Asn462
|
oo
o0 C
imiglucerase
g e
Asnl9 Asnld46
Asn59 Asn270 Asnd62
H -
&b &%

Fig. 7. Glycan structures of velaglucerase alfa and imiglucerase. Predominant
N-linked carbohydrate structures on velaglucerase alfa (top) and imiglucerase
(bottom) are shown graphically at their relative positions along the protein
backbone.
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Fig. 8. Glycan map analysis of velaglucerase alfa. Glycans released by
N-glycosidase F were analyzed by anion-exchange chromatography with
amperometric detection. The method resolves glycans based on negative
charge where peak group 1 corresponds to high-mannose type neutral glycans
that are resolved into multiple peaks according to the number of mannose
units, peak group 2 corresponds to high-mannose type glycans with one M6P
that retained its GIcNAc cap (one negative charge), and peak group 3
corresponds to high-mannose type glycans containing one fully processed
MBG6P (two negative charges). In peak group 1, smaller peaks are resolved that
correspond to positional isomers of the various oligomannose types observed.

levels of core structures terminating with N-acetylglucosamine
(GIcNAc) that are likely a result of incomplete digestion with
N-acetylglucosaminidase. At N146 and N270, high-mannose
type glycans were observed containing five to six mannose units
with one M6P.

The glycan graphics shown in Figure 7 help to visualize the
predominant structures for both forms of GlcCerase as described
in Tables IIT and I'V. These structures were consistent with gly-
can types and levels observed with glycan map analysis as well
as with previous reports (Van Patten et al. 2007). In the current
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Table IV. Carbohydrate composition of imiglucerase. Predominant structures
are those observed to be most abundant at each N-linked glycosylation site.
The other glycans consisted mostly of core structures with additional GIcNAc

and high-mannose structures with M6P

Glycosylation
site Predominant glycan Other glycans
Asnl9 Complex Complex
(Man)3(GIcNAc), (Man)3(GIcNAc)3
Asn59 Complex Complex
(Man)3(GIcNAc); (Fuc) (Man)3(GIcNAc)3(Fuc),
Asnl46 Complex Complex
(Man)3(GlcNAc); (Fuc); (Man)3(GIcNAc)3—_4(Fuc);
Phosphorylated high mannose
(Phos); (Man)s_g(GIlcNAc),
GlcNAc-capped phosphate
(Phos); (Man)s_g(GIcNAc)3
Asn270 Complex Complex
(Man)3(GIcNAc); (Fuc), (Man)3(GIcNAc)3_4(Fuc);
Phosphorylated high -mannose
(Phos);(Man)s_¢(GlcNACc),
GlcNAc-capped phosphate
(Phos); (Man)s_g(GlcNAc)3
# Velaglucarase alfa
20000 — M Imiglucerase
A Velaglucerase + mannan
i ] Imiglucerase + mannan
3 15000 # Velaglucerase vehicle
% M Imiglucerase vehicle
2 10000 -
o
5
w5000 4
2
& & — = .
0 20 40 60 80 100 120 140

Glucocerebrosidase (pg/mi)

Fig. 9. Velaglucerase alfa and imiglucerase internalization into differentiated
macrophages. The ordinate of the graph represents the fluorescence data
normalized for the cellular protein concentration and incubation time
(RFU/pg/h). The GlcCerase dose is shown on the abscissa.

study, the glycans of prGCD were not characterized, but earlier
studies demonstrated the presence of core a-(1,2)-xylose and
core a-(1,3)-fucose (Shaaltiel et al. 2007), which are unique to
plant-derived proteins and would not be expected to be present
on either velaglucerase alfa or imiglucerase.

Internalization by macrophages

Internalization of proteins by endocytosis is highly dependent
upon their carbohydrate composition and has been well char-
acterized (Kornfeld 1986). A comparison of the internalization
rate of velaglucerase alfa to that of imiglucerase in U937-derived
macrophages demonstrated that velaglucerase alfa is internal-
ized approximately 2.5-fold more efficiently than imiglucerase
(Figure 9). Internalization of both enzymes could be inhibited
by the addition of mannan to the culture medium, demonstrat-
ing that internalization was mediated via mannose receptors;
moreover, U937 cells were shown by immunohistochemistry to
express mannose receptors (CD206) (data not shown). It should
be noted that during optimization of this assay, variations in
results were obtained when different culture media were used.
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Therefore, additional research will be required to determine the
exact nature of the uptake since different mannose receptors
exist, which may be involved in this cellular internalization.
In contrast, the addition of M6P to the culture medium had
no effect, confirming that the M6P receptor is not involved in
internalization (data not shown). Since velaglucerase alfa and
imiglucerase display similar kinetic parameters, specific activi-
ties, and structural features, the different rates of internalization
can be ascribed to differences in glycosylation patterns between
velaglucerase alfa and imiglucerase, with the increased rate of
internalization of velaglucerase alfa likely due to the expression
of longer chain high-mannose type glycans compared to the
core mannose structures found on imiglucerase.

Conclusions

In summary, the X-ray structure of velaglucerase alfa is
very similar to those of recombinant GlcCerases produced in
other expression systems, with the R495H mutations found in
imiglucerase and prGCD having no effect on the secondary
structure. The main difference between imiglucerase and ve-
laglucerase alfa concerns their glycan structures, with the latter
containing longer chain high-mannose type glycans compared
to the core mannose structures found on imiglucerase. This dif-
ference in glycosylation appears to lead to the increased cellular
uptake of velaglucerase alfa over imiglucerase. The role of pro-
tein glycosylation in cellular uptake is widely established in
many cell types (Barton et al. 1991). However, while the func-
tion of the macrophage mannose receptor (MR; CD206) in inter-
nalization of mannosylated proteins is well characterized (East
and Isacke 2002), a growing family of carbohydrate-binding re-
ceptors have been implicated in diverse macrophage functions
including removal and disposal of endotoxin (Ono et al. 2006),
utilization of secreted lysosomal enzymes (Abe et al. 2008),
phagocytosis (Kang et al. 2005), and regulation of the innate
immune response to microbial pathogen-associated structures
(Garner et al. 1994). Thus, the differences in uptake observed
between imiglucerase and velaglucerase-alfa can be attributed
to differences in affinity for CD206, or alternatively could be due
to differential uptake mediated by other macrophage mannose
receptors such as Endo180. This observed increase in cellu-
lar uptake of velaglucerase-alfa over imiglucerase can be envi-
sioned to lead to a more rapid time to improvement of clinical
parameters and potentially increased therapeutic efficacy

Material and methods

Crystallization, structure determination, and refinement

Velaglucerase alfa was partially deglycosylated (Kacher et al.
2008) prior to crystallization, as previously described for
imiglucerase (Dvir et al. 2003; Premkumar et al. 2005), us-
ing N-glycosidase F (88 h at 25°C), which removes carbohy-
drate chains from proteins and peptides by cleaving the amide
bonds between Asn residues and N-acetylglucosamine (Glc-
NAc) (Han and Martinage 1992), but does not necessarily re-
move all carbohydrate chains from native proteins. Subsequent
to N-glycosidase F-treatment, velaglucerase alfa was diluted
in the crystallization buffer (10 mM citrate pH 5.5, 7% (v/v)
ethanol, 0.02% (w/v) NaN3) and passed through a Centricon
YM-30 centrifugal filter device with a molecular mass cut-off
of ~30 kDa, to give a final concentration of 4-5 mg/mL. Ve-
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laglucerase alfa crystals were obtained by micro-batch crystal-
lization under oil (Chayen et al. 1990) using a Douglas Instru-
ments Oryx6 robot. The crystallization solution had a 1:1 ratio of
the concentrated enzyme solution and of 1 M (NH,4),S04/0.1 M
HEPES, pH 7.0, containing 0.5% (w/v) PEG8000. Crystalliza-
tion was performed under Al’s oil (D’ Arcy et al. 1996) (1:1 ratio
of paraffin and silicone liquid oils) for 5—-14 days at 20°C. Data
were collected on beam line ID14eh2 at the ESRF synchrotron
(Grenoble, France). Crystals were cryo-protected with a 25%
ethylene glycol solution, mounted, and flash cooled to 100 K.
X-ray diffraction images were processed using HKI.2000 and
scaled with SCALEPACK (Otwinowski et al. 1997). The struc-
ture was solved using the molecular replacement method based
on PDB 2J25 (Brumshtein et al. 2006) and refined with Ref-
mac5 (Murshudov et al. 1997). During the course of refinement,
the electron density map showed significant improvement, and
putative sugars could be seen adjacent to N19 and N146 for
molecule A, and adjacent to N19 for molecule B. Table I sum-
marizes data collection and processing. Structures and structure
factors were deposited in the PDB (code 2WKL).

Enzyme kinetics and specific activity

The novel enzymatic activity assay described below measures
the ability of GlcCerase to release glucose from GlcCer obtained
from Gaucher spleen (Matreya LLC, PA, Cat. no. 1057). Ve-
laglucerase alfa (drug substance lot EP06-003) and imiglucerase
(commercial product lot C7036C01) were assayed. The re-
leased glucose was quantified by anion-exchange chromatogra-
phy equipped with a pulsed amperometric detector. The appro-
priate amount of GlcCer in chloroform/methanol (2:1, v/v) was
dried by a SpeedVac in the presence of 0.2 M taurocholic acid
in methanol and 20% (v/v) oleic acid in chloroform/methanol
(2:1). The dried pellet was reconstituted in the 0.1 M citrate/0.2
M phosphate buffer (pH 5.0) and diluted to the desired con-
centrations. Enzyme samples were diluted to a concentration of
0.2 ng/uL with the dilution buffer (50 mM sodium citrate, pH
6.0 with 0.75 mg/mL BSA) and 2 ng of enzyme was incubated
for 30 min at 37°C with serial dilutions of GlcCer in a 110 nL
reaction volume. The reaction was stopped by heat denaturing
samples at 100°C for 5 min. Sample manipulations were inter-
nally controlled by adding 100 wL of a galactosamine (GalN)
solution to the reaction mixture. Dionex OnGuard II RP car-
tridges were used to remove the detergent and lipid. The analysis
was carried out on a Dionex high-performance anion-exchange
chromatography device, coupled with a pulsed amperometric
detection apparatus (HPAE-PAD), using a CarboPac PA-10 an-
alytical column equipped with a CarboPac PA-10 guard column.
An isocratic flow of 6 mM NaOH at 0.25 mL/min for 25 min
was used to separate monosaccharides (Glc and GalN). The
amount of glucose (Glc) was calculated from linear regression
analysis of GalN and Glc standards in the range of 10—480 pmol
per injection. The assay was carried out in a range of substrate
concentrations of 5-150 WM, and obeyed Michaelis—Menten
kinetics, thus permitting assignment of K,,, and Vy,,x values.

Site-specific characterization of glycans

Velaglucerase alfa (drug substance lot EP06-003, Shire Human
Genetic Therapies, Hampshire, UK) and imiglucerase (com-
mercial product lot HA163BL) were prepared for enzymatic
digestion by reductive denaturation with DTT, followed by and



cysteine alkylation with iodoacetic acid. Alkylated samples were
digested first with the endoproteinase Lys-C (Roche Diagnostics
GmbH, Mannheim, Germany) (1:42 enzyme to substrate ratio,
w/w, for 6 h at 37°C), followed by digestion with endoproteinase
Glu-C (1:25 enzyme to substrate ratio, w/w, for 16 h at room
temperature). Digested samples were analyzed by peptide mass
mapping using reversed phase chromatography with in-line UV
(214 nm) and electrospray ionization with mass spectrometric
detection (LC-ESI-MS). By comparing the peptide maps before
and after glycan release using N-glycosidase F (New England
Biolabs, Ipswich, MA), the five potential glycosylation sites
were identified. The glycan mass was calculated by subtract-
ing the expected peptide mass from the observed glycopeptide
masses. Using software to match the observed glycan masses
with potential monosaccharide compositions, glycan composi-
tions for each site were determined. To verify monosaccharide
compositions, treatments (according to manufacturer’s recom-
mendations) with neuraminidase (Roche Diagnostics GmbH),
alkaline phosphatase (Roche Diagnostics GmbH, Mannheim,
Germany), and a-mannosidase (Glyko, Inc., Hayward, CA)
were used to verify the presence of sialic acid, phosphate,
and alpha-linked mannose, respectively. MS/MS fragmentation
analysis was used to verify glycan phosphorylation.

Glycan map analysis

The procedure involves heat denaturation of the protein at 100°C
for 3—4 min in the presence of 0.5% SDS, followed by enzymatic
release of glycans with N-glycosidase F (Prozyme, San Leandro,
CA). Velaglucerase alfa (drug substance lot EP06-001, Shire
Human Genetic Therapies) was incubated with N-glycosidase
F (30 mU/3 pL) for 4-6 h at 37°C with 0.9% NP40, followed
by a second addition of N-glycosidase F, and an additional 17—
19 h incubation at 37°C. Analysis of the released glycans was
performed by HPAE-PAD, using a CarboPac PA-1 analytical
column equipped with a CarboPac PA-1 guard column (Dionex,
Sunnyvale, CA). Glycans were applied to the column in 12
mM sodium acetate/100 mM NaOH, followed by elution with
a 12-300 mM sodium acetate gradient (6.4 mM/min) in 100
mM NaOH in 45 min. Using a flow rate of 1 mL/min and the
column at ambient room temperature, glycans elute in the order
of increasing negative charge.

Cellular internalization

Human U937 cells were cultured in growth media contain-
ing RPMI 1640 with 2 mM L-glutamine, 10 mM HEPES, 1
mM sodium pyruvate, 4.5 g/L. glucose, 1.5 g/L sodium bi-
carbonate, and 10% FBS. Treatment with phorbol myristate
acetate (PMA) for 3 days was used to induce differentiation
into macrophages (Amento et al. 1984). The U937-derived
macrophages were seeded into 96-well microtiter plates at
50,000 cells per well in growth medium, and allowed to ad-
here to the plates for 48 h. Seeded macrophages were incubated
for 3 h with equimolar preparations of velaglucerase alfa (drug
substance lot FEC06-003, Shire Human Genetic Therapies) or
imiglucerase (Cerezyme®; commercial product lot C7036C01,
Genzyme, Cambridge, MA) at pH 7.5, in growth medium con-
taining RPMI 1640 devoid of phosphate, 0.1% BSA, 10 mM
HEPES, pH 7.5, 2 mM L-glutamine, 1 mM DTT, and 10 mM
CaCl,. In all assays, the cells were treated with GlcCerase for
a 3-h duration which was previously determined to be in the

Characterization of gene-activated human acid-B-glucosidase

linear range of internalization. For dose response curves uti-
lized to demonstrate mannose-receptor specificity, 10 mg/mL
mannan was used to antagonize the receptor. After a series of
wash steps (wash buffer: 0.05 M Tris, 0.138 M NaCl, 0.0027 M
KCl, with 0.05% Tween 20, 0.5% BSA, pH 8.0), the cells were
lysed (lysis buffer: 10 mM Tris pH 8.0, 0.5% NP40, 0.2% de-
oxycholate, Complete Mini Protease Inhibitor Cocktail Tablets
in EASYpacks and PhosSTOP Phosphatase Inhibitor Cocktail
Tablets in EASYpacks, Roche Applied Science), and the inter-
nalized GlcCerase was quantified by an assay employing the
synthetic substrate, 4-methylumbelliferyl-pg-D-glucopyranoside
(4-MU-glc), which releases a fluorescent product upon cleavage.
The protein content in the well was determined (BCA method
according to the manufacturer’s protocol) and was used to nor-
malize the assay signal to total protein from each sample. The
assay signal for the GlcCerase samples was tested in vitro to de-
termine the extent of activity or signal disparity between the two
drugs, and there was no difference in activity (data not shown).
For these assays, 2-fold serial dilutions of velaglucerase alfa and
imiglucerase (starting at 30 nM enzyme) were made in the assay
lysis buffer and tested using the 4-MU-glc enzymatic activity
assay. Plates were read with a Perkin Elmer Envision multi-label
plate reader.
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