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Background information. In the embryos of various animals, the body elongates after gastrulation by morphogenetic
movements involving convergent extension. The Wnt/PCP (planar cell polarity) pathway plays roles in this process,
particularly mediolateral polarization and intercalation of the embryonic cells. In ascidians, several factors in this
pathway, including Wnt5, have been identified and found to be involved in the intercalation process of notochord
cells.

Results. In the present study, the role of the Wnt5 genes, Hr-Wnt5α (Halocynthia roretzi Wnt5α) and Hr-Wnt5β,
in convergent extension was investigated in the ascidian H. roretzi by injecting antisense oligonucleotides and
mRNAs into single precursor blastomeres of various tissues, including notochord, at the 64-cell stage. Hr-Wnt5α is
expressed in developing notochord and was essential for notochord morphogenesis. Precise quantitative control
of its expression level was crucial for proper cell intercalation. Overexpression of Wnt5 proteins in notochord and
other tissues that surround the notochord indicated that Wnt5α plays a role within the notochord, and is unlikely
to be the source of polarizing cues arising outside the notochord. Detailed mosaic analysis of the behaviour of
individual notochord cells overexpressing Wnt5α indicated that a Wnt5α-manipulated cell does not affect the
behaviour of neighbouring notochord cells, suggesting that Wnt5α works in a cell-autonomous manner. This
is further supported by comparison of the results of Wnt5α and Dsh (Dishevelled) knockdown experiments. In
addition, our results suggest that the Wnt/PCP pathway is also involved in mediolateral intercalation of cells of the
ventral row of the nerve cord (floor plate) and the endodermal strand.

Conclusion. The present study highlights the role of the Wnt5α signal in notochord convergent extension move-
ments in ascidian embryos. Our results raise the novel possibility that Wnt5α functions in a cell-autonomous
manner in activation of the Wnt/PCP pathway to polarize the protrusive activity that drives convergent extension.

Introduction
In the embryos of various animals, the body elong-
ates along the anterioposterior axis and becomes nar-
rower across the mediolateral axis. This morphogen-
etic movement after gastrulation involves convergent
extension, in which embryonic cells converge mediol-
aterally (Gerhart and Keller, 1986; Keller et al., 2000;
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Wallingford et al., 2002). The PCP (planar cell pol-
arity) pathway is involved in mediolateral polariz-
ation and intercalation of embryonic cells in both
invertebrates and vertebrates (Fanto and McNeill,
2004; Kiefer, 2005; Barrow, 2006; Wang and
Nathans, 2007). Various players in this pathway
have been identified so far, such as the Frizzled, Dsh
(Dishevelled), Strabismus and pk (Prickle) proteins,
although some of these factors are commonly used
in the Wnt canonical pathway. Although there is
no clear evidence of involvement of the Wnt signal
protein in the PCP pathway of invertebrates, verteb-
rates utilize Wnt5 and Wnt11 to activate the PCP
pathway in convergent extension after the initiation
of gastrulation (Rauch et al., 1997; Tada and Smith,
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Figure 1 Convergent extension movement of ascidian notochord
Confocal images of frontal section of H. roretzi stained with Alexa Fluor® 488 phalloidin to visualize cellular boundaries.

(A) At the initial tail-bud stage, 40 post-mitotic notochord cells are aligned in two bilateral lines. Anterior is at the top. (B) Each

notochord cell is polarized, elongates along the left–right axis and starts mediolateral intercalation. (C) The notochord is made

of disc-shaped cells aligned in a single line after intercalation. (D) At the mid tail-bud stage, each notochord cell elongates in a

process of post-convergent extension elongation. In consequence, the tail further elongates. (E) Representation of notochord

morphogenesis. a, anterior; p, posterior. Scale bar, 100 μm.

2000; Heisenberg et al., 2000; Wallingford et al.,
2001; Wallingford, 2004).

Convergent extension movement occurs in a rather
simple way in ascidian embryos, in which exactly
40 notochord cells intercalate with each other in
a way similar to that described in the axial meso-
derm of vertebrates (Cloney, 1964; Miyamoto and
Crowther, 1985; Munro and Odell, 2002a; Munro
et al., 2006). These notochord cells are derived
from ten blastomeres of the 110-cell stage embryo
that are linearly aligned along the left–right axis
(Nishida, 1987), and during gastrulation and neur-
ulation the notochord precursors divide twice, gath-
ering into a large single cell mass. By the initial
tail-bud stage, the 40 post-mitotic cells are aligned
in two bilateral lines in the frontal section (Fig-
ure 1). Then they begin intercalation to form a
single file of disc-shaped notochord cells. In this
process, notochord cells become motile and extend
actin-rich lamellipodia (Munro and Odell, 2002a).
After the mid tail-bud stage, the notochord fur-
ther elongates in a post-convergent extension pro-
cess, which is simply mediated by shape changes

of each constituent cell, such as elongation and va-
cuolation (Jiang and Smith, 2007) (Figures 1C and
1D). Eventually, the notochord in hatched tadpoles
serves as a hydrostatic skeleton for tail beats driven by
bilateral muscles.

Evidence has accumulated that the Wnt/PCP path-
way is also responsible for the intercalation of ascidian
notochord cells. Two Wnt genes, Hr-Wnt5α (Halocyn-
thia roretzi Wnt5α) and Hr-Wnt5β, have been isolated
from the ascidian H. roretzi (Sasakura et al., 1998;
Miya and Nishida, 2002). At the neurula and tail-
bud stages when convergent extension takes place, the
Wnt5α gene is expressed in notochord and Wnt5β is
expressed in muscle that bilaterally flanks the central
notochord. When Wnt5α mRNA is overexpressed
in embryos, aberrant morphogenesis of the noto-
chord occurs and notochord cells fail to converge.
Nevertheless, expression of differentiation markers of
various tissues, including the notochord, is not af-
fected, suggesting that amounts of Wnt5α have to
be precisely controlled in ascidian convergent exten-
sion (Sasakura and Makabe, 2001). There has been
to date no functional analysis of Wnt5β. In Ciona
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intestinalis embryos, when Dsh function is disrup-
ted by the dominant-negative form, intercalation of
notochord cells is prevented (Keys et al., 2002). Sim-
ilarly in a pk mutant (called aimless) in Ciona sav-
ignyi, notochord cells fail to intercalate (Jiang et al.,
2005). In these kinds of embryos, notochord cells
initially extend motile processes in all directions,
as in the wild-type, but these fail to resolve into
the bipolar protrusive activity that drives convergent
extension. In wild-type embryos, the Dsh and pk
proteins are localized to plasma membranes of noto-
chord cells, except for the cell membranes that face
the flanking muscle cells. In the pk mutant, Dsh pro-
teins are mislocalized into the cytoplasm, supporting
that these proteins are in the same cascade (Jiang
et al., 2005). However, embryos in which the PCP
pathway is disrupted are able to perform the post-
convergent extension process that occurs in the last
phase of tail elongation, mediated by elongation of
each constituent cell (Jiang and Smith, 2007). Studies
of another short-tailed mutant in C. savignyi, chong-
mague, revealed the importance of laminin-mediated
boundary formation in convergent extension
(Veeman et al., 2008). In this laminin mutant, no-
tochord cells initiate intercalation, but then migrate
inappropriately to become dispersed in the tail, be-
cause of the absence of a morphological boundary
around the notochord.

Microsurgical removal of various parts of embryos
has revealed that the notochord has to be surroun-
ded by other cells for its convergent extension, but
no particular neighbouring tissue has been shown
to be indispensable for intercalation of notochord
cells (Munro and Odell, 2002b). A major unre-
solved question concerning convergent extension in
animal development is the source of polarizing cues
along the axis. The PCP pathway plays roles in the
integration of extrinsic polarizing signals into the
intracellular programme of cell motility. However,
the precise function of the Wnt signal proteins in
convergent extension remains unclear, as does the
source of the Wnt signal during this process. In the
present study, we investigated, in detail, the func-
tion of the Hr-Wnt5α and Hr-Wnt5β proteins in
convergent extension of notochord cells of the as-
cidian H. roretzi, particularly focusing on mediolat-
eral intercalation cell movement. We also examined
the tissue-specific requirements of the Wnt pro-
teins, and carried out mosaic analysis within the

notochord to elucidate the cell autonomy of Wnt
function.

Results
Wnt5α and Wnt5β in Halocynthia
Two Wnt5 cDNAs have been cloned previously in
H. roretzi (Sasakura et al., 1998; Miya and Nishida,
2002). The amino-acid sequences of Hr-Wnt5α and
Hr-Wnt5β show 53% identity. At the neurula and
tail-bud stages when convergent extension takes
place, the Wnt5α gene is expressed in notochord and
the Wnt5β gene is expressed in muscle (Figures 2A
and 2B). In the C. intestinalis genome, a single Wnt5
gene is found, and there is no Wnt11 gene (Hino
et al., 2003; Hotta et al., 2003). Localization of ma-
ternal mRNA of Ci-Wnt5 (C. intestinalis Wnt5) is
similar to that of Hr-Wnt5α, as it is localized to the
posterior region of eggs and embryos as a member
of the post-plasmic/PEM (posterior end mark) RNA
(Sasakura et al., 1998; Imai et al, 2004). However,
the zygotic expression pattern of Ci-Wnt5 seems to
be a mixture of that of Hr-Wnt5α and Hr-Wnt5β,
as Ci-Wnt5 shows a very clear expression in muscle
precursors during the cleavage stages. At the neur-
ula stage, Ci-Wnt5 is faintly expressed in both noto-
chord and muscle in addition to the strong expression
present in the tail tip epidermis (Imai et al, 2004).

Over/mis-expression and knockdown of Wnts
The spatiotemporal expression patterns of the two
Wnt5 genes suggest their involvement in convergent
extension of the notochord. This is in agreement with
a report that overexpression of Wnt5α mRNA dis-
rupts the movement of notochord cells without inter-
fering with notochord differentiation (Sasakura and
Makabe, 2001). In the present study, we injected fer-
tilized eggs with the mRNAs for Wnt5α and Wnt5β,
and both of them had the effects reported previously
for Wnt5α injection (Figures 2C–2H) (Sasakura and
Makabe, 2001). The resulting embryos did not have
recognizable tails, although they possessed differen-
tiated notochord cells as detected with the Not-1 an-
tigen (Nishikata and Satoh, 1990). The arrangement
of notochord cells within the embryos was disorgan-
ized. These observations suggest that the Wnt5α and
Wnt5β proteins can exert similar effects, although in
normal embryos they are expressed in distinct tissues,
notochord and muscle.
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Figure 2 Effects of Wnt5 MOs and mRNAs injected into eggs
(A, B) Expression of Hr-Wnt5α and Hr-Wnt5β genes at the neurula stage in developing notochord and muscle cells respectively.

Anterior is to the left. Arrowhead indicates Hr-Wnt5α expression in the posterior pole, which is concentrated Hr-Wnt5α maternal

mRNA, as it is a member of postplasmic/PEM RNAs in ascidians (Sasakura et al. 1998). (C–E) Morphology of uninjected

and Wnt5α and Wnt5β mRNA-injected embryos at the tail-bud stage. (F–H) Detection of the notochord differentiation marker

antigen, Not-1, in uninjected and Wnt5α and Wnt5β mRNA-injected embryos. (I–K) Morphology of uninjected, Wnt5α and Wnt5β

MO-injected embryos at the tail-bud stage respectively. (L) Expression of Bra gene in ten notochord precursor blastomeres at

the 110-cell stage. (M) Embryo co-injected with Wnt5α MO and a lineage tracer (rhodamine dextran) into a single notochord

precursor (A7.3) blastomere of the 64-cell embryo. At the 110-cell stage, two sister blastomeres are labelled with red fluorescence

(white arrowheads). (N) The same embryo normally expressed the Bra gene in notochord precursors, including the labelled cells.

(O) The Not-1 antigen is expressed in notochord. The embryo was slightly overstained with the antibody, and the signal is spread

in the trunk region. (P) At the tail-bud stage, several descendants of the injected blastomere can be recognized from their content

of red fluorescent label. (Q) The same embryo expressed Not-1 antigen in notochord cells including the injected and labelled

cells (arrowheads). Scale bar, 100 μm.

Then we attempted to inhibit the functions of
the Wnt5α and Wnt5β proteins by injecting fer-
tilized eggs with antisense MOs (morpholino oligo-
nucleotides). Nakamura et al. (2006) reported that
injected Wnt5α MO suppresses notochord forma-
tion, interfering with the early processes of notochord

cell-fate specification at the cleavage stage by sup-
pressing gene expression of a notochord-specific key
transcription factor, Bra (brachyury), at the 64-cell
stage. We confirmed the absence of notochord in
such embryos (Figures 2I and 2J). Since MO injected
into eggs abrogates the early processes of notochord
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Figure 3 Effects of Wnt5α MO injected into a notochord
precursor blastomere of the 64-cell embryo
(A) Lineage illustration of notochord. Four pink blastomeres of

the 64-cell embryo (vegetal view, anterior is up) give rise to the

major part of the notochord in the tail. A7.3 and A7.7 are

the notochord precursors. Each blastomere divides three

times and gives rise to eight notochord cells randomly in-

tercalated in the notochord. Injected blastomeres and their

descendants are indicated in dark pink. (B) Tail-bud embryos

co-injected with the lineage tracer and control universal MO

into the A7.3 blastomere. The dark spot in the centre of each

notochord cell is the nucleus. (C) Injection of Wnt5α MO. Ar-

rows indicate normally intercalated notochord cells that are

labelled with red fluorescence. Arrowheads show cells that

failed to intercalate. (D) Closer view of the neck region of (C).

(E) Another example of injection of Wnt5α MO observed with

a confocal microscope. Cell boundaries are demarcated by

green fluorescence. (F) Embryos that showed a severe phen-

otype. Labelled notochord cells are clustered and not incor-

porated into the aligned notochord. Scale bar, 100 μm.

cell-fate specification, we injected a single notochord
precursor (A7.3) blastomere of 64-cell embryos with
the MO, together with a lineage tracer (rhodamine
dextran), after Bra expression had already begun (see
Figure 3A). In these embryos, Bra expression was

detected in ten notochord precursors at the 110-cell
stage, as in normal embryos, including those labelled
with Rhodamine Red fluorescence (Figures 2L–2N).
At the tail-bud stage, the MO-injected descendants
also showed the Not-1 differentiation marker, but
the labelled cells tended to be present at the kinked
positions of the tail (Figures 2O–2Q). These results
suggest that Wnt5α plays roles in notochord specific-
ation and proper morphogenesis of notochord cells in
early and late embryogenesis respectively.

Injection of Wnt5β MO into eggs also resulted in
aberrant morphology (Figure 2K). As Wnt5β is ex-
pressed in muscle precursor cells, we injected Wnt5β
MO into a single muscle precursor (B7.4) blastomere
of 64-cell embryos (see Figure 5A). However, the em-
bryos developed normally, as shown below (see Fig-
ure 6B). Therefore it is likely that Wnt5β has early
roles during embryogenesis.

Disruption of Wnt5α in notochord lineage cells
By using the procedures described above, the role of
Wnt5α in notochord morphogenesis was examined
in more detail. The A7.3 or A7.7 blastomere of
the 64-cell embryo gives rise exclusively after three
rounds of cell division to eight post-mitotic noto-
chord cells, which are randomly positioned along the
anterior–posterior axis because of random intercala-
tion (Figures 3A and 3B). The MO and a lineage tracer
were co-injected into the A7.3 or A7.7 blastomere
(Figures 3C–3F). In all embryos (n = 62; Table 1),
some of the descendants failed to intercalate properly,
resulting in a kinked tail, although the other descend-
ants intercalated normally. The number of notochord
cells that failed to intercalate varied. In the most
severe cases, several descendants were clustered and
excluded from the uninjected and properly aligned
notochord (Figure 3F). The variation in failure of
intercalation is analysed in detail below. In contrast,
every non-labelled cell intercalated successfully, as
long as it was not next to labelled cells. When la-
belled cells are clustered, neighbouring non-labelled
cells often failed to intercalate (Figure 3E; see also
Figures 4H and 4I).

Overexpression of Wnt5α by injecting the A7.3
or A7.7 blastomere with Wnt5α mRNA essentially
resulted in disorganization which was similar to
that observed after knockdown of Wnt5α (91% of
110 cases; Table 1). Figure 4 shows several specimens
of injected embryos (arrowheads indicate failure of
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Table 1 Intercalation of notochord cells in embryos in which Wnt-5α/Wnt-5β/Dsh antisense MOs or mRNA were injected into
specific blastomeres
n = total number of embryos analysed. The percentage of failure is the percentage of embryos in which at least one notochord cell failed to
intercalate.

Notochord intercalation (%)

Injected blastomeres n Normal Failure

Rhodamine dextran Notochord (A7.3/A7.7) 14 100 0

Muscle (B7.4) 2 100 0

Nerve cord (A7.4) 2 100 0

Control MO Notochord (A7.3/A7.7) 6 100 0

Muscle (B7.4) 1 100 0

Wnt-5α MO Notochord (A7.3/A7.7) 62 0 100

Wnt-5β MO Muscle (B7.4) 55 100 0

Dsh MO Notochord (A7.3/A7.7) 50 12 88

Muscle (B7.4) 16 100 0

Nerve cord (A7.4) 20 100 0

Nerve cord (A7.8) 11 100 0

FS Wnt-5β mRNA Notochord (A7.3/A7.7) 18 72 28

Nerve cord (A7.4) 3 100 0

Wnt-5α mRNA Notochord (A7.3/A7.7) 110 9 91

Muscle (B7.4) 21 100 0

Nerve cord (A7.4) 40 65 35

Nerve cord (A7.8) 20 95 5

Endodermal strand (B7.2) 13 100 0

Endoderm (A7.2) 13 100 0

Wnt-5β mRNA Notochord (A7.3/A7.7) 24 8 92

Muscle (B7.4) 29 100 0

Nerve cord (A7.4) 12 58 42

Nerve cord (A7.8) 4 100 0

intercalation and arrows indicate normal intercala-
tion). As with MO injection, there was variation in
the number of notochord cells that failed to inter-
calate. Notochord cells injected with universal con-
trol MO or control FS (frame-shifted) Wnt5α mRNA
intercalated normally (100% and 72% normal re-
spectively; Table 1). The results from knockdown and
overexpression of Wnt5α indicated the importance of
the precise control of the amount of Wnt5α protein
in the developing notochord.

Wnt5α ectopic expression in surrounding tissues
does not affect notochord morphogenesis
Next, we mis-expressed Wnt5α in various tissues
that surround the notochord in the tail (Table 1 and
Figure 5). Injection of Wnt5α mRNA into the B7.4
muscle precursor at the 64-cell stage did not affect the
normal arrangement of muscle cells or notochord cells

(Figures 5A–5C). The left and right B7.2 cells are
the precursors of the endodermal strand. Their des-
cendants intercalate mediolaterally to form a strand
of cells aligned in a single file ventrally to the no-
tochord (Figure 5D). The punctate labelling along
the tail nerve cord in control embryos (Figure 5E,
insert) substantiates this mediolateral intercalation.
Injection of the mRNA into the left or right B7.2
cells did not affect notochord morphogenesis, but
mediolateral intercalation of their bilateral descend-
ants into the endodermal strand was prevented (Fig-
ures 5E and 5F). The A7.2 cell is adjacent to the no-
tochord precursor blastomere in early embryos, but
its descendants develop into trunk endoderm, and
during late morphogenesis are distanced from the
notochord. Ectopic expression of Wnt5α in A7.2 des-
cendants did not affect normal embryogenesis (Fig-
ures 5G–5I).
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Figure 4 Effects of Wnt5α mRNA injected into a notochord precursor blastomere
(A) Lineage illustration of notochord. (B) Tail-bud embryos co-injected with the lineage tracer and control FS Wnt5α mRNA

into the A7.3 blastomere. (C) Injection of Wnt5α mRNA. Arrows indicate normally intercalated notochord cells. Arrowheads

show cells that failed to intercalate. (D) Closer view of the blue rectangle in (C). Three notochord cells successfully intercalated.

(E) Closer view of the red rectangle in (C). The two cells marked with arrowheads failed to intercalate with each other. (F–I) Four

examples of Wnt5α mRNA-injected embryos to show the wide spectrum of abnormality in intercalation. In (I), post-convergent

elongation of notochord cells is taking place. Scale bar, 100 μm.

The tail nerve cord dorsally flanks the notochord.
In the ascidian, the structure of the tail nerve cord is
remarkably simple, consisting of four rows of cells,
namely the dorsal, ventral, left and right rows. Des-
cendant cells of the left and right A7.4 blastomeres
intercalate into the midline and form the single vent-
ral row of the tail nerve cord (Nishida, 1987). The
punctate labelling along the tail nerve cord (Fig-
ures 5J and 5K; see also Figure 6G) in control em-
bryos substantiates this mediolateral intercalation. In
contrast, descendant cells of the left and right A7.8
blastomeres give rise to the left and right rows re-
spectively, without intercalation. Ectopic expression
of Wnt5α in nerve cord did not substantially dis-

rupt notochord morphogenesis. However, when the
mRNA was injected into A7.4 blastomeres, the me-
diolateral intercalation of the descendant nerve cord
cells was abrogated in 91% of cases, forming a con-
tinuous line of labelled cells (n = 22, compare Fig-
ures 5K and 5L). In addition to the abnormality in
the nerve cord, the notochord was deformed in 35%
of the cases (Table 1). The failure in extension of
dorsal nerve cord could indirectly affect the noto-
chord shape, or alternatively ectopic expression of
Wnt5 in the nerve cord may somehow affect noto-
chord morphogenesis. In contrast, injection into A7.8
blastomeres did not affect nerve cord morphogenesis
in 82% of cases (n = 17, Figures 5M and 5N). These
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Figure 5 Effects of Wnt5α mRNA injected into various tissue precursors
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(A, D, G, J, M) Lineage illustration of muscle, endodermal strand, endoderm and nerve cord (A7.4 and A7.8) respectively

(Nishida, 1987). Injected blastomeres and their descendants are indicated in dark colours. (B, E, H, K, L, N) Bright-field images

are merged with fluorescent images to show the position of labelled descendant cells. (C, F, I) Confocal views. Cell boundaries

are demarcated by green fluorescence. (B, C) The muscle precursor was injected. (E, F) The precursor of the endodermal

strand was injected. The notochord is normal, but intercalation of the endodermal strand, which is present on this side of

the notochord, was prevented as the labelled cells did not intercalate with the cells of the other bilateral side as they formed

a continuous line. (F) is a confocal closer view of such a specimen. (E, insert) Control embryo. The endodermal strand is

intermittently labelled in the tail. (H, I) The endoderm precursor was injected. (K, L) Control mRNA and Wnt5α mRNA were

injected into the precursor of the ventral row (floor plate) of the nerve cord respectively. In the control, the nerve cord is

intermittently labelled in the tail, indicating intercalation of left and right descendants. In Wnt5α mRNA-injected embryos, the

labelled cells failed to intercalate as they formed a continuous line. (N) Wnt5α mRNA was injected into the precursor of the lateral

row of the nerve cord in addition to two muscle cells at the tip of the tail (red). (O) Every A-line nerve cord precursor blastomere

was ablated at the 64-cell stage by bursting them with injected seawater. The notochord of the embryo developed normally,

indicating that the neural tube is dispensable for notochord morphogenesis. Scale bar, 100 μm.

results suggest that Wnt5α plays a role in the inter-
calation of notochord cells within the notochord, and
probably is not the source of polarizing cues arising
outside the notochord. In the embryo shown in Fig-
ure 5(O), we ablated all of the A-line nerve cord
precursor blastomeres at the 64-cell stage. The noto-
chord of the embryo developed normally, indicating
that the presence of the neural tube is dispensable for
notochord morphogenesis in ascidians.

Then we evaluated the effects of Wnt5β MO. As
Wnt5β is expressed in muscle cells, B7.4 blastomeres
were injected with the MO. The development of the
embryos appeared to be normal (Figures 6A and 6B).

Injection of Wnt5β mRNA into notochord, muscle
and nerve cord blastomeres gave results similar to
those of Wnt5α mRNA injection (Figures 6C–6H
and Table 1), namely that notochord intercalation
was affected only when Wnt5β was overexpressed
in notochord blastomeres. Again, when the A7.4
blastomeres were injected with Wnt5β mRNA, me-
diolateral intercalation of the ventral nerve cord cells
was abrogated in 55% of cases (n = 11; compare Fig-
ures 6G and 6H, punctate labelling and continuous
labelling respectively). Therefore Wnt5α and Wnt5β
are expressed in distinct tissues, but they are inter-
changeable in these overexpression experiments.

Mosaic analysis of Wnt knockdown and
overexpression within the notochord
Next, the results of injection of Wnt5α MO and
mRNA into notochord precursor blastomeres were
analysed in more detail at the single cell level. In the
experiments described above, the mixture of eight
injected/labelled notochord cells and the other 32

uninjected notochord cells form a whole notochord
in a mosaic manner and in random order along
the anterior–posterior axis. We categorized the ab-
normalities associated with each notochord cell to
evaluate the cell-autonomous and -non-autonomous
behaviour of the cell (Figure 7 and Table 2). First, we
noticed that if a single labelled notochord cell was
isolated and sandwiched between unlabelled noto-
chord cells, it was incorporated normally into the
aligned notochord. In contrast, if two or more labelled
notochord cells came in contact, they failed to inter-
calate properly. Some examples of abnormality are
shown in Figure 7. The detailed proportions of abnor-
malities are described in Table 2. In the knockdown
experiment, notochord cells intercalated normally in
77% of cases when the labelled cell happened to be
isolated. In contrast, only 11% of cases showed nor-
mal intercalation when two labelled cells were in con-
tact. Wnt5α-overexpressing notochord cells showed
behaviour similar to those observed in the knock-
down experiments (normal intercalation in 76% of
isolated and in 21% of juxtaposed cases).

To evaluate how far the Wnt5α protein diffuses
within the notochord, we injected an mRNA that
encodes the Wnt5α–YFP (yellow fluorescent protein)
fusion protein. As shown in Figures 8(A) and 8(B),
overexpressed protein stayed close to the expressing
cells, as shown in other animals (Christian, 2000).

Mosaic analysis of Dsh knockdown
Then we examined the effects of suppressing Dsh
function in a mosaic manner within the notochord.
Dsh encodes an intracellular protein and controls PCP
in a cell-autonomous manner in Drosophila (Theisen
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Figure 6 Effects of Wnt5β MO and mRNA injected into
various tissue precursors
(A, B) Control and Wnt5β MO were injected into the muscle

precursor (B7.4) blastomere as Wnt5β is expressed in

muscle. (C–H) Control FS Wnt5β mRNA and wild-type Wnt5β

mRNA were injected into the precursors of notochord (A7.3),

muscle (B7.4) and the ventral row of nerve cord (A7.4).

Arrow indicates a normally intercalated notochord cell. Ar-

rowheads show cells that failed to intercalate. (G) In the

control, the nerve cord is intermittently labelled in the tail,

indicating intercalation of left and right descendants. (H)

In Wnt5β mRNA-injected embryos, the labelled cells failed

to intercalate as they formed a continuous line. Scale bar,

100 μm.

et al., 1994). It is involved in the control of conver-
gent extension during axis elongation in vertebrates
(e.g. Wallingford et al., 2000). Dsh is also essential
for ascidian notochord morphogenesis and shows
cell autonomy, as the dominant-negative form exerts
its effect only in the notochord cells in which it is
expressed (Keys et al., 2002).

First, when Dsh MO was injected into fertilized
eggs, tail formation was strongly suppressed (Fig-
ure 8C). Then Dsh MO was injected into an A7.3
blastomere of the 64-cell embryo. The results of mo-
saic analysis were again rather similar to those ob-
tained from the Wnt5α knockdown and overexpres-
sion experiments (Figures 8D–8F). Notochord cells
intercalated normally in 79% of cases when the la-
belled cell was isolated, suggesting that a cell with
an impaired intracellular PCP pathway can intercal-
ate when flanked by normal cells. Accordingly, only
14% of cases showed normal intercalation when two
labelled cells were adjacent (Tables 1 and 2).

Discussion
Role of the Wnt/PCP pathway in intercalation of
ascidian notochord cells
We studied the role of the Wnt/PCP pathway in
intercalation of ascidian notochord cells. In Halocyn-
thia embryos, two Wnt5 genes are expressed. Wnt5α
is expressed in the developing notochord. Wnt5α
was overexpressed in a previous study (Sasakura and
Makabe, 2001), and Wnt5α was knocked down in
the present study. Together, the results of these ex-
periments indicate that precise quantitative control of
Wnt5α expression is crucial for proper cell intercal-
ation. Therefore the function of Wnt5 in conversion
extension during axis elongation is common to ascid-
ians and vertebrates (Rauch et al., 1997; Wallingford
et al., 2001). In contrast, Wnt5β is expressed in
muscle precursors and its role in morphogenesis is
unclear. When Wnt5β MO was injected into eggs,
the embryos developed into abnormally shaped lar-
vae, whereas we did not observe any effect when the
MO was injected into muscle precursor blastomeres
of 64-cell embryos. These observations suggest that
Wnt5β might have similar early functions to those
of Wnt5α, although the efficacy and specificity of
Wnt5β MO need to be confirmed in more detailed
studies. Overexpression of Wnt5β in muscle cells
had no effect on the spatial arrangement of muscle
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Table 2 Intercalation of notochord cells in embryos in which Wnt-5α/Dsh antisense MOs or mRNA were injected into notochord
blastomeres
Relative positions of labelled cells within the notochord are indicated in red. Isolated single cell: labelled cells are present in isolation.
Neighbouring two cells: two labelled cells are adjacent. n = number of individual labelled notochord cells counted. Representative specimen
of each normal or abnormal case is shown in Figure 7. Note that the results obtained from injection of Wnt5α MO or mRNA, or of Dsh MO,
are quite similar. Concentrations of the injected solutions are indicated in parentheses.

Isolated single cell Neighbouring two cells

Intercalation (%) Intercalation (%)

Normal Failed Normal Failed

n n

Wnt-5α MO (10–20 μg/μl) 48 77 6 17 28 11 11 11 7 61

Total 23 Total 89

Wnt-5α mRNA (0.8–3.6 μg/μl) 104 76 12 13 42 21 21 26 14 17

Total 24 Total 79

Dsh MO (5–10 μg/μl) 52 79 4 17 14 14 21 0 21 43

Total 21 Total 86

Figure 7 Mosaic analysis of Wnt knockdown and overexpression within the notochord
A single notochord precursor blastomere was injected with Wnt5α MO or mRNA, or with Dsh MO. Examples of normal and

abnormal intercalation of the labelled cells (asterisks) in the two situations where labelled cells are present in isolation or two

labelled cells are adjacent. Abnormal positioning of labelled cells is categorized into two and four types respectively. The detailed

frequency of each abnormality is shown is Table 2.

and notochord cells, but over/mis-expression in
notochord abrogated cell intercalation. Therefore, al-
though Wnt5α and Wnt5β are expressed in distinct
tissues, they were interchangeable in our overexpres-
sion experiments.

After the mid tail-bud stage, the notochord fur-
ther elongates in a post-convergent extension process
mediated by simple elongation of each constitu-
ent cell along the anterio–posterior axis. This post-
convergent extension elongation was not affected in
Wnt-manipulated embryos, as shown in Figure 4(I).
Consistent with this observation, embryos in which
the PCP pathway is interrupted demonstrate nor-

mal post-convergent extension elongation (Jiang and
Smith, 2007).

Wnt5α overexpression within the notochord, but
not in the surrounding tissues, affects notochord
morphogenesis
To inhibit the intercalation of notochord cells, Wnt5
mRNA had to be injected into notochord precursor
blastomeres. Ectopic expression in surrounding tis-
sues flanking the central notochord, such as nerve
cord, muscle and endodermal strand, essentially had
no effect on notochord morphogenesis. These results
suggest that Wnt5α plays its role in intercalation
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Figure 8 Wnt5α may function in a cell-autonomous manner
(A, B) The lineage tracer (rhodamine dextran; red) and mRNA encoding the Wnt5α–YFP fusion protein (green) were co-injected

into a notochord precursor blastomere. The green signal remains close to the injected descendant cells. (C) An embryo in which

Dsh MO was injected into fertilized eggs. (D) An embryo in which Dsh MO was injected into a notochord precursor blastomere.

Arrows indicate normally intercalated notochord cells. Arrowheads show cells that failed to intercalate. (E, F) Closer views of the

blue and red rectangles shown in (D). Scale bar, 100 μm. (G) A descendant cell of the MO- and mRNA-injected blastomere (red)

is present in isolation. Flanking normal cells (light blue) may migrate on the surface of the anomalous cell. Blue arrows indicate

the direction of movement of the normal cells. Yellow circular arrows refer to the autocrine Wnt5α action. Anterior is to the left.

A, anterior; P, posterior. (H) When anomalous cells are closely adjacent they fail to migrate on each other. See the text for further

details.

of notochord cells within the notochord, and is un-
likely to be the source of polarizing cues arising
outside the notochord. This is consistent with its
expression pattern in the developing notochord and
the requirement for its expression in the notochord
revealed by injection of the MO, as well as with
the observation that the Wnt5α–YFP fusion protein
did not appear to diffuse across tissue boundaries.
It is also unlikely that Wnt5β expressed in flank-

ing muscle cells functions in convergent extension of
notochord.

Wnt5α may control PCP in a cell-autonomous
manner
The results of knockdown experiments appeared to
indicate a cell-non-autonomous effect of Wnt5α, be-
cause the targeted cell was able to intercalate nor-
mally if it was flanked by normal cells. However,
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caution is required when concluding the cell non-
autonomy of Wnt5α function. First, the results of
overexpression are difficult to interpret according to
cell-non-autonomous function of Wnt5α. Detailed
observations at the single cell level gave essentially
similar results in both knockdown and overexpres-
sion experiments. Most of the cells overexpressing
Wnt5α were able to intercalate normally if they were
flanked by normal cells, as was also observed in the
knockdown experiments. It is difficult to imagine
that neighbouring normal notochord cells, which
themselves express Wnt5α, are able to annul the
deleterious effects of overexpression of Wnt5α in the
injected cells, causing Wnt5α-overexpressing cells to
intercalate normally. In addition, unlabelled cells ad-
jacent to an overexpressing labelled cell intercalated
normally, regardless of whether the labelled cell was
integrated into the aligned notochord or not (see
Figures 4C and 4G), suggesting that overexpressed
Wnt5α does not affect the morphogenetic move-
ments of the neighbouring cells.

To overcome such difficulties in explaining what
we observed in mosaic analyses, we propose an alter-
native model in which Wnt5α controls intercalation
movement in a cell-autonomous manner (Figures 8G
and 8H). When a descendant cell of the MO- or
mRNA-injected blastomere is present in isolation
(indicated in red), the cell loses its polarity and is
unable to show proper motility for mediolateral in-
tercalation. However, flanking normal cells (shown in
light blue) may migrate on the surface of the anom-
alous cell. In consequence, this group of cells appears
to be normally intercalated (Figure 8G). In contrast,
when anomalous cells are closely adjacent they fail
to migrate on each other, and consequently they fail to
intercalate (Figure 8H). This explanation also resolves
the contradiction of why, in the situations shown in
Figures 8(G) and 8(H), the red cell succeeds in inter-
calation only in the case of Figure 8(G), even though
the red cells are sandwiched by normal cells in both
Figures 8(G) and 8(H). If Wnt functions cell-non-
autonomously, the red cells would receive a Wnt sig-
nal from flanking normal cells and would intercalate
with each other, even in Figure 8(H).

A cell-autonomous function of Wnt5α is con-
sistent with the observation that the overexpressed
Wnt5α–YFP fusion protein did not appear to diffuse
over a long distance. The cell-autonomous model is
further supported by the observation that mosaic ana-

lysis of Dsh MO-injected embryos gave results similar
to those of Wnt5α disruption. As Dsh is an intra-
cellular protein that has been shown to function in a
cell-autonomous manner, the similarity in the results
suggests a similarity in mode of function, namely that
Wnt5α also functions in a cell-autonomous manner.
The results with Dsh MO suggest that, even if a cell
has an impaired intracellular PCP pathway, it can
apparently intercalate when flanked by normal cells,
supporting our cell-autonomous model of Wnt5α
function. Thus, as shown in Figure 8, it is plausible
that Wnt5α functions in an autocrine manner to po-
larize protrusive activity that drives cell intercalation
in convergent extension morphogenesis.

Role of Wnt/PCP pathway in other tissues
Injection of the mRNAs for Wnt5α and Wnt5β into
the precursor blastomere of the endodermal strand
and into that of the ventral row of the tail nerve
cord resulted in failure of mediolateral intercalation
of the descendants of the injected cells. In contrast,
injection into the precursor blastomere of the lat-
eral row of the tail nerve cord had no effect. There-
fore, Wnt/PCP-mediated intercalation at the midline
may also operate in the endodermal strand and the
ventral row of the tail nerve cord, resulting in align-
ment of cells in a single row. However, these results
were obtained in ectopic expression experiments, and
there is no evidence for Wnt5 expression in these tis-
sues. Other members of the Wnt family might be
expressed and function in these tissues. Indeed, it has
been reported that the Wnt7 gene is specifically ex-
pressed in the dorsal and ventral rows of developing
nerve cord (Sasakura and Makabe, 2000), suggest-
ing a role in intercalation of the nerve cord cell at
the midline. We have injected the ventral nerve cord
precursor blastomere, A7.4, with Dsh MO, and ob-
served malformation of the nerve cord in 13% of cases
(n = 23; data not shown). The proportion is relatively
lower than that observed in the notochord when Dsh
MO was injected into notochord precursors (88%,
Table 1). Therefore further analysis is needed to ad-
dress the functions of the Wnt/PCP pathway in the
nerve cord and the endodermal strand.

In the present study, the role of Wnt signalling
in ascidian convergent extension was investigated.
Future analysis would further address the cell-
autonomous model of Wnt function. A still un-
resolved issue concerning convergent extension in
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animal development is the source of the polarizing
cues that define the anterior–posterior axis orienta-
tion of the extension and that presumably arise out-
side the converging tissues.

Materials and methods
Animals and embryos
Adults of the ascidian H. roretzi were collected near the Asamushi
Research Center for Marine Biology, Aomori, Japan, and the
Otsuchi International Coastal Research Center, Iwate, Japan.
Naturally spawned eggs were fertilized with a suspension of non-
self sperm and raised in Millipore-filtered seawater containing
50 μg/ml streptomycin sulfate and 50 μg/ml kanamycin sulfate
at 9–13◦C. At 13◦C, embryos develop to the tail-bud stage at
18 h and into swimming tadpoles at 35 h after fertilization.

Plasmid construction for mRNA synthesis
Hr-Wnt5α (Sasakura et al., 1998; accession no. AB006608)
and Hr-Wnt5β (Miya and Nishida, 2002; accession no.
AB072595) mRNAs were transcribed from pBluescriptHTB
(Akanuma et al. 2002), each containing an open reading frame,
with the mMessage mMachine T3 kit (Ambion) and a Poly(A)
Tailing kit (Ambion). FS Hr-Wnt5β, in which the cDNA has
a frameshift at 470 bp and encodes a truncated protein, was
provided by Dr T. Miya (Department of Biological Sciences,
Tokyo Institute of Technology, Yokohama, Japan) and used as a
control. To visualize Hr-Wnt5α protein distribution, cDNA of
Venus–YFP (Nagai et al., 2002) was conjugated in-frame to the
3′ end of the cDNA of the Hr-Wnt5α protein-coding region.
Then the construct was subcloned into the pBluescriptHTB
vector and was used for mRNA synthesis. Synthetic mRNAs
were dissolved in sterile distilled water at 2 μg/μl and injected
into eggs and blastomeres as described previously by Miya et al.
(1997).

Antisense MOs
To suppress the function of Hr-Wnt5α and Hr-Wnt5β and of
Dsh, we used antisense MOs (Gene Tools). The nucleotide se-
quence of Hr-Wnt5α MO was 5′-ATTGTATTCTTGTCATTC-
CGACCAT-3′ (Nakamura et al., 2006), that of Hr-Wnt5β MO
was 5′-ATAATTTCGTTTTCAAGATTCCGCA-3′, and that
of Hr-Dsh (accession no. AB290435) MO was 5′-AACTAT-
CTTGGTTTCTTCCGCCATA-3′ (Kawai et al., 2007). MOs
were dissolved in sterile distilled water at 5 μg/μl and injected
into eggs and blastomeres. To trace the descendants of injec-
ted blastomeres, 0.5% dextran tetramethylrhodamine
(10000 Da molecular mass; Molecular Probes) was injected,
together with synthetic mRNA and MO.

Visualization of cellular boundaries
Alexa Fluor® 488 phalloidin (Molecular Probes) is a drug that
binds to filamentous actin and emits green fluorescence. This is
used to visualize cellular boundaries during notochord formation
(Munro and Odell, 2002a). Embryos were fixed in 4% paraform-
aldehyde dissolved in 45 mM EGTA/360 mM sucrose, buffered
with 90 mM Tris/HCl (pH 6.9), for 30 min at room temperature
(20◦C) or for 16 h at 4◦C. Embryos were rinsed four times with
PBST (PBS with 0.2% Triton X-100), then stained with a solu-

tion of 5 units/ml Alexa Fluor® 488 phalloidin in PBST for 1 h
at room temperature or for 16 h at 4◦C. They were rinsed with
PBST, mounted in 80% glycerol and observed with a fluorescence
microscope (Olympus BX61) or confocal microscope (Yokogawa
CSU10).

Immunostaining and in situ hybridization
Differentiation of notochord cells was monitored by staining
with the Not-1 monoclonal antibody (Nishikata and Satoh,
1990; Nakatani and Nishida, 1994). Specimens were fixed at
the tail-bud stage with 4% paraformaldehyde for 1 h at room
temperature and then with methanol cooled to −20◦C for 10–
40 min. Indirect immunofluorescence was carried out by stand-
ard methods using a TSATM fluorescein system (PerkinElmer
Life Sciences). Specimens were mounted in 80% glycerol and
examined under a fluorescence microscope. Whole-mount in situ
hybridization was performed as described by Miya and Satoh
(1997). Specimens were hybridized with a DIG (digoxigenin)-
labelled Hr-Bra probe. Hr-Bra encodes the Halocynthia Bra gene,
and was used to assess notochord specification (Yasuo and Satoh,
1993). The expression of Hr-Bra was monitored at the 110-cell
stage.
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