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Accounting for the genetic substructure of human populations has become a major practical issue for study-
ing complex genetic disorders. Allele frequency differences among ethnic groups and subgroups and admix-
ture between different ethnic groups can result in frequent false-positive results or reduced power in genetic
studies. Here, we review the problems and progress in defining population differences and the application of
statistical methods to improve association studies. It is now possible to take into account the confounding
effects of population stratification using thousands of unselected genome-wide single-nucleotide poly-
morphisms or, alternatively, selected panels of ancestry informative markers. These methods do not require
any demographic information and therefore can be widely applied to genotypes available from multiple
sources. We further suggest that it will be important to explore results in homogeneous population subsets
as we seek to define the extent to which genomic variation influences complex phenotypes.

INTRODUCTION

Over the last 2 years a large number of allelic variants have
been associated with susceptibility to a wide variety of
common complex diseases. This progress has mainly resulted
from the use of genotyping arrays containing several hundred
thousand single-nucleotide polymorphisms (SNPs) that
capture a significant amount of the variation defined by the
HapMap. However, because of the generally modest nature
of these new associations, robust conclusions from these
genome-wide association (GWA) studies have also required
very careful analysis to exclude false-positive results that are
the consequence of stratification differences between cases
and controls (1–3). This stratification is most often due to
differences in population genetic structure and substructure
that cannot be accounted for by demographic information
derived from the subjects. Nevertheless, statistical methods
can be applied to discern and correct for these differences. It
has now become imperative to carry out such corrections,
both for whole genome association studies as well as in the
context of follow-up studies and other candidate gene
studies to explore suggestive, but not proven associations.

It should be noted that alternative approaches using
family-based controls has long been advocated to exclude

false-positives due to population stratification and can be
applied to GWA (4,5). These methods most commonly
apply variants of the transmission disequilibrium test (TDT)
(6) are effective but require first-degree relatives and at a
minimum necessitate genotyping of three individuals (the
proband and both parents) to achieve similar power to the
case–control method. The TDT methodology has the
additional advantage of being able to determine whether
maternally or paternally inherited alleles have differential
effects. However, successful recruitment of such families is
often difficult, especially for diseases of adult onset. There-
fore, the majority of GWA studies and replication studies
are dependent on the case–control design. Also, as discussed
below, the ability to use publically available population con-
trols may increase the power and efficiency of association
testing if the issues of population stratification and genotyping
differences between studies are appropriately addressed.

THE GENERAL PROBLEM: ALLELE FREQUENCY

DIFFERENCES IN DIFFERENT DATA SETS

Both in theory and practice, allele frequency differences
between two sample sets (cases and controls) may be unrelated
to the genetics of the particular phenotype under study. This
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can result in false associations of particular SNPs or markers.
There are four general causes for false-positive results in this
situation. (i) Inappropriate statistical thresholds including the
fail to account for multiple comparisons. This problem is
usually addressed by either the Bonferroni correction or by
the less conservative false discovery rate methods (7–9).
However, in situations where the power is low and the
expected number of true positives is therefore also low, false
discovery rate may not be appropriate. This issue has been
the subject of intense discussion and the several recommen-
dations including the use of Bayesian methods have been
suggested (1,10,11). (i) Genotype artifact (12,13); genotyping
artifacts can be largely addressed by quality filters. These
include exclusions based on completeness of genotyping
data and large deviations from Hardy–Weinberg equilibrium.
Similar DNA template preparation and genotyping of both
sample sets can of course also militate against such an artifact.
(iii) Environmental factors; environmental factors could
potentially lead to false associations but require extreme cir-
cumstances to result in changes in allele frequency in either
the case or control population sets. Excluding a recent epi-
demic, it is very unlikely that differences in environmental
factors will cause a major shift in the SNP frequency unless
the environmental factor itself determines the selection of
cases or controls. While this is not generally an issue,
certain control population groups have been selected for
specific demographic factors (e.g. smokers in lung cancer
studies), where allele frequencies could be skewed by
selection for nicotine addiction or lung cancer protection.
(iv) Unrecognized ancestry differences; once genotyping arti-
facts and statistical thresholds have been addressed, this is
probably the most common reason for false-positive findings.
In a set of 300K SNPs there may be thousands of SNPs with
substantial differences in allele frequency among population
subgroups. Even when studies are restricted to a single conti-
nental origin, many false-positive results may still be observed
due to subtle differences in the ethnic make-up of case and
control participants (12,14–19). While careful matching for
demographic factors can reduce this problem, statistical
methods can now be applied to address this issue and in our
opinion reduce the need in GWA studies to obtain the
ideally matched case and control groups selected using
population-based sampling.

To illustrate how population substructure and genotyping
errors can result in false-positive association tests, we
provide simple examples (Fig. 1A). First, differences in popu-
lation stratification in cases and controls are shown for a
hypothetical SNP in which the allele frequency difference
between northern and southern European populations is
10%. This magnitude of allele frequency difference is
observed for hundreds of SNPs (�3% of SNPs) when northern
European and southern European subjects are genotyped with
several hundred thousand SNPs. In this particular scenario, the
failure to account for the differences in subject origin (north
versus south) resulted in a highly significant false-positive
test. Second, the potential problem of genotyping error is simi-
larly illustrated for a relatively small difference in allele calls
(5% difference). Differential allele calling between genotyp-
ing platforms or between different laboratories has been
noted as a major source of false-positives (12). Thus, these

examples emphasize the importance of accounting for popu-
lation structure and measures to ensure that there are no sys-
tematic differences in SNP genotyping results.

Another issue of potential importance to finding
disease-associated alleles is that certain allelic variations will
only be important in specific ethnic or continental subgroups.
For complex genetic disease, one such example is PTPN22,
where an allelic variant associated with autoimmune disease
is only present with substantial frequency only in European
populations (20,21). If association tests are not performed in
specific population groups then a substantial decrease in
power can be observed (Fig. 1B). Thus, definition of ethnic
group subsets or homogeneous groups (see later section) is
another potentially valuable application of defining population
structure and substructure.

USING STRUCTURED ASSOCIATION AND

PRINCIPAL COMPONENT ANALYSES TO

CONTROL FOR TYPE 1 ERRORS

Several different methods have been developed to address
issues of population structure and substructure in the context
of whole genome association studies (16,22–27). Solutions
such as genomic control address the general inflation of the
x2 (or other test for significance) globally but do not account
for differences that are specific to each SNP (15,16). Impor-
tantly, as has been shown by multiple studies, it is critical to
evaluate each SNP based on how it is affected by ‘ancestry’
differences in each individual in the sample sets being
studied (16,22,25). Some SNPs show very different allele fre-
quencies in different continental or ethnic groups, whereas
other SNPs do not. The potential for stratification based on
differences in population structure in case and control
groups is different for different SNPs. Thus, the general appli-
cation of genomic control can result in over-correction for
some SNPs and under-correction for other SNPs. Adjustments
for general inflation of the statistical tests should be performed
after addressing the issue of population structure and substruc-
ture.

Generally, there are three approaches that have achieved
some measure of application to large data sets: (i) structured
association tests; (ii) principal components analyses (PCA)
and (iii) multidimensional scaling (MDS).

Structured association depends on applying information
from model-based or distance-based clustering algorithms.
One popular version, (STRAT) (22), uses the output from
the model-based STRUCTURE program (28,29) to perform
tests conditional on the group membership. The group mem-
bership is determined using a Bayesian clustering algorithm
that fits the data to the number of cluster groups (K) that is
specified. The association test is testing the null hypothesis
is that there is no dependence of allele frequencies on pheno-
types within each group. However, this is computational inten-
sive and thus difficult to apply when large numbers of SNPs
and large numbers of subjects are being considered. In addi-
tion, it requires estimation of the number of groups (K) and
this may have some uncertainty. Another popular program,
PLINK (26), uses identical by state distance to do hierarchical
clustering and then performs Cochran–Mantel–Haenszel tests
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of association conditional on clusters. This approach, like PCA
and MDS, can be performed with very large data sets. Some of
critical concepts/methods are defined and illustrated in
Figure 2.

Both PCA and MDS can infer a continuous axis of genetic
variation that does not depend on assignment of individuals to
various subpopulations. When Euclidean distance is used,
classical metric MDS is the same as PCA. In general, both
approaches reduce high-dimensional data (number of SNPs)
to smaller numbers of dimensions that group ‘patterns’
together based on the observed data. The popular program,
EIGENSTRAT (16), calculates ancestry-adjusted genotypes
and phenotypes using the continuous axis of variation from
PCA to compute the association statistic (The adjusted geno-
types are the residuals from the regression of the original gen-
otypes against the continuous axis of variation. The adjusted
phenotypes are similarly determined).

For the most effective application of PCA it is important to
remove small regions of the genome that by themselves cause
specific groupings of subjects. The inclusion of these regions
will result in the grouping of individuals that is not based on
genome-wide population structure or substructure but on the
specific patterns that are unique to these particular chromoso-
mal segments. These are regions that contain large numbers
of markers in high-linkage disequilibrium will provide
multiple contributions to the overall data patterns. Not control-
ling for these regions does not affect false-positives since

these regions do not by themselves define the genome-wide
substructure. With current SNP arrays this requires
exclusion of large genomic inversions (30) and the HLA
region for the initial analysis of population structure.
These regions can be added back when statistical tests are
performed for association. This procedure will then enable
the assessment of association within these intervals and has
been demonstrated for both HLA and a gene(s) within the
chromosome 8 inversion in studies of systemic lupus
erythematosus (3).

We wish to point out some additional caveats for the use of
PCA. First, it is useful to examine the actual distribution of
samples in multiple principal components (PCs). Genotyping
artifacts can be revealed by tight grouping of particular
samples and correlation with particular genotype array chips
or plate grouping of samples. Second, in our experience,
�40 000 random markers can resolve European substructure
in diverse European population sets (30). Third, the number
of PCs that need to be examined will vary from data set to
data set. In general, it is useful to monitor the residual inflation
of the median x2 distribution using the genomic control par-
ameter (lgc) to determine the number of PCs that should be
considered. We suggest that the lgc plateau is a reasonable
guide to number of PCs needed to adjust for population sub-
structure. This lgc plateau also corresponds to the number of
PCs showing population substructure that can be estimated
using a split half test (30). The final x2 statistic should be

Figure 1. Examples of how stratification and ancestry can affect case–control association tests. In the top panel, examples of type 1 errors are shown. Population
substructure can result in false-positive associations when the regional origin/ancestry of cases and controls are not matched. In the example shown, a 10% allele
frequency difference in northern European compared with southern European results in a highly significant P-value (Armitage’s x2 test) when the numbers of
cases and controls derived from these regions are different. The top panel also shows an example of genotyping error that can result from genotyping cases and
controls using different array chips. The bottom panel illustrates how type 2 errors, false-negative results may result from heterogeneous sample sets. In this
example, a true positive result may not reach an appropriate threshold for significance when the signal is diluted by a population in which the causative
SNP is absent.
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divided by the residual lgc before multiple comparison correc-
tions are applied to determine the appropriate P-value.

Other issues that may need to be addressed for individual
data sets include familial relationships among cases and/or
controls. This can result in apparent population substructure
in which these individuals appear to have their own ancestry
group. Thus using PCA or model-based methods, this ‘sub-
structure’ should be defined. However, since in general the
underlying association tests that will be applied depend on
analyzing unrelated individuals, we suggest excluding first-
degree relatives identified by descent methods in quality
filters. In addition, the appropriate threshold for excluding

various subjects as outliers may vary from study to study.
While specific criteria can be specified in the context of a par-
ticular data set, there are no generally accepted rules or estab-
lished reference subjects. Furthermore, it is useful to
emphasize that PCA and MDS results reflect data structure
and not ancestry per se. Therefore, as suggested earlier, inves-
tigators should carefully explore data sets to determine
whether the results correlate with potential artifacts caused
by systematic differences in genotyping. Unusual patterns in
particular PCs may also provide clues to potential problems
caused by an extensive number of SNPs in tight linkage dise-
quilibrium (30).

Figure 2. Definition of statistical terms and tests. (A) Schematic of how identical by state distance is measured. (B) An example of the application of the
Cochran–Mantel–Haenszel (CMH) test. In this example, two strata (North and South) are defined. These strata (K) can be determined using some methodology
(e.g. clustering algorithm). The method assumes that each stratum has the same odds ratio. In this example the A allele has an odds ratio of 1.5. The substantial
gain in power is illustrated by comparing CMH test result with the combined data. (C) The features of PCA; the high dimensional data shown in the genotype
matrix (M � N) is reduced to orthogonal dimensions with the largest variance in PC1 represented by the red line. (D) The features of MDS are shown.
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CONTINENTAL VERSUS SUB-CONTINENTAL

DIFFERENCES IN ALLELIC VARIATION

Studies over the last 6 years have shown substantial differ-
ences in allele frequencies within different continental popu-
lations (31). There is controversy with regard to whether
there are discrete divisions between the continents (32,33).
However, in general the number of SNPs showing large
allele frequency differences between major continental popu-
lations (the fraction of SNPs with Fst’s (34) .0.25 or allele
frequency differences .40%) are an order of magnitude
greater than that seen within continental populations. There-
fore, in theory the largest source of type 1 errors will be
caused by differences in the distribution of ancestry from
major continental populations in case and control sets. In prac-
tice, self-identification of ancestry substantially reduces this
problem. However, we have observed that admixture as well
as sample handing and database errors still necessitate addres-
sing this problem first, even with good demographic matching.
In the context of whole genome studies examining primarily a
single population group (e.g. European ancestry), both PCA
and MDS will distinguish (under typical parameters) individ-
uals with different continental origins and most individuals
with substantial admixture. This can also be readily accom-
plished using small numbers (96 recommended) of ancestry
informative markers (AIMs) (35) with the application of
model-based clustering algorithms such as those used in
STRUCTURE (29) and ADMIXMAP (25).

Allele frequency differences within continental subgroups,
although much smaller than continental differences (e.g.
Italian/Swedish mean Fst ¼ 0.006; Europe/Amerindian mean
Fst ¼ 0.126), can also result in false-positive results (17). As
shown in both modeling studies as well as in multiple
studies of complex diseases, these differences are large
enough to result in false-positive associations. This is true
not only for the largest gradient (north/south) but also for
more subtle differences in Northern European populations
(30). Figure 3 shows the first two PCs and clustering of popu-
lation subgroups for over 3000 subjects of European descent.
These clustering patterns show a strong correlation with
grandparental identity, when known. There are also strong
regional differences depending on the site of collection for
European American participants.

Similar to controlling for differences between continental
populations, both model-dependent and model-independent
statistical methods can be applied to adjust for substructure
within a continental population. For WGA studies, the pre-
viously discussed computational programs, PLINK and
EIGENSTRAT, have been used extensively in association
studies of European ancestry. In our experience, EIGEN-
STRAT that uses PCA has been most effective in ascertaining
subtle differences in substructure that can be present in various
European American sample sets. However, additional studies
will be necessary to compare both the ability to minimize
type 1 errors while maximizing the ability, i.e. statistical
power, to discern true positives. For candidate gene studies,
AIMs can largely provide the substructure information
[(17,30,36–38) and see section Application of ancestry infor-
mative markers].

USE OF COMMON CONTROLS FOR GENOTYPING

STUDIES

The ability to adjust for population stratification raises the
possibility of utilizing large common population control
group(s) for GWA studies. Of course, carefully matched
control data sets do have advantages beyond balancing demo-
graphic differences in ancestry. For example, minimizing
differences in environmental exposure or age at censorship
may increase power for specific analyses. However, it is
unclear whether adjustment for these factors in the study of
complex diseases will have large effects that may alter type
1 or type 2 error. Regardless, the common practical appli-
cation of control matching by geography and age does not
usually enable close matching of the myriad of potential modi-
fiers. Furthermore, the use of geography may also be proble-
matic in our mobile societies. If statistical methods adjusting
for population structure can effectively match ancestry in
diverse population sets, then the major objection to using
common control data sets can be overcome. Other issues,
including differences in genotyping platforms are also of
potential concern; however, we anticipate that large numbers
of ‘common controls’ will be available on the two current plat-
forms (Illumina and Affymetrix) that are currently being

Figure 3. European Population Substructure. The first two principal com-
ponents are shown for a diverse group of .3000 European and European
American subjects. The clustering of different groups within Europe is
shown for each individual designated by a symbol. The subjects from specific
countries of origin or with four grandparental defined European countries of
origin are color coded as shown in the legend with grey symbols indicated
European Americans (EURA) with insufficient country of origin information.
The groups from the following countries or regions are included: Sweden
(SWED), Ireland (IRISH), Italy (ITN), Greece (GRK), Germany (GERM),
Eastern Europe (EEUR), Hungary (HUN), United Kingdom (UK), Scandina-
via (SCAN), and Spain (SPN). Although not included in this figure, additional
studies indicate that the cluster in the right upper quadrant corresponds to an
Ashkenazi Jewish grouping.
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utilized. Theoretically, imputation can also be utilized to allow
the combining of information from different platforms using
different SNP arrays. However, the combination of genotypes
from different platforms is likely to accentuate the problem of
false-positive associations caused by genotyping differences.

The ability to use large sample sizes to increase power
is both attractive and we believe practical. The availability
of iControlDB (http://www.illumina.com/pages.ilmn?ID=231)
and other large datasets (e.g. dbGaP, http://dbgap.ncbi.nlm.
nih.gov/aa/wga.cgi?login=&page=login) can provide large
numbers of genotyped control population groups. We have
applied this general approach in our own studies of rheumatoid
arthritis and other diseases. These studies have successfully
identified allelic variants that have been confirmed in replica-
tion studies (2,3). It should be noted that some care and stat-
istical adjustment may be necessary when using common
population control groups, since multiple studies of the same
disease may contain overlapping control subjects.

USE OF HOMOGENEOUS SUBJECT SETS

It is also potentially valuable to apply population substructure
information to selecting subsets of subjects with very similar
or nearly homogeneous ancestry. Such an approach can limit
ancestral diversity in a subject group and may be analogous
to studying a disease in a single ethnic group. This could be
a major asset in the study of particular traits since genetic het-
erogeneity may limit power in studying complex genetic
disease in much the same fashion as has been discussed for
single-gene diseases. Thus we would suggest that selecting
and matching homogeneous cases and controls may decrease
type 2 error rates. PCA analysis is well-suited to the appli-
cation of robust distance methods that can be applied to mul-
tiple PCs. Adapting this statistical approach, we have used a
diverse European data set to illustrate this type of method.
In this example, we have utilized a Swedish cohort with
Myasthenia Gravis as the case set and have derived controls
from both Swedish subjects and a diverse European American

data set (unpublished data). The case cohort was first selected
by setting parameters to remove multivariate outliers. After
removing case outliers, a second phase repeating the process
was applied to the case–control dataset, where the controls
included both Swedish and European American subjects.
This method dramatically reduced the residual inflation of
the median x2 distribution (Swedish only, lgc ¼ 1.039, com-
bined Swedish and European American, lgc ¼ 2.19, homo-
geneous subject set, lgc ¼ 1.018 genomic inflation) and is
graphically depicted in Figure 4.

APPLICATION OF ANCESTRY INFORMATIVE

MARKERS

We and others have also developed sets of AIMs to facilitate
genetic studies when sample sets have not been typed with
genome-wide arrays of more than hundred thousand SNPs
(17,30,35–37,39,40). Such sets of AIMs are designed to
provide most of the ancestry information using smaller cost-
effective arrays and are valuable in follow-up studies to
confirm associations and in fine-mapping analyses. First, a
small number of AIMs can be used to provide continental
ancestry information (35,39,40). One such set of 128 AIMs
and subsets of these AIMs were recently demonstrated to be
effective in modeling studies. Reference genotypes for these
AIMs and a commercial panel of 96 AIMs are available
(35). Additional panels that can be used for examining sub-
structure within continental populations are under develop-
ment. For European populations, several sets of markers
have been defined for distinguishing the largest gradient
(north/south) (30,36,37) and at least one set of markers for dis-
tinguishing an east/west gradient within northern European
populations (30). Relatively small numbers of SNPs are
necessary for the north/south gradient (e.g. 192 north–south
European substructure AIMs) and will control for many
SNPs including those linked to the lactase gene (LCT) that
follow this pattern. LCT is particularly noteworthy since it
has been used as a beacon for substructure differences

Figure 4. Illustration of the use of PCA to select homogeneous sample sets. In this example, cases derived from a Swedish population and the controls were from
both Sweden and European Americans. (A) The first and second principal component (PC1 and PC2) for the Swedish cases and control subjects. (B) Homo-
geneous subject set selected from Swedish cases and controls and 3447 European American subjects (same set as shown in Fig. 1). Color code indicates the
origin of the subjects. The basic procedure was to remove Multivariate outliers based on Mahalanobis distance. The minimum covariance determinant
(MCD) estimators of location and scatter of PCA scores of the entire dataset were calculated using R. The Mahalanobis distances were then calculated
using the robust estimators, leading to robust distance (RD). For multivariate normally distributed data the RD values are approximately x2 distributed with
p degree-of-freedom (p is the number of dimensions). The procedure was applied in two steps. For the first phase of selection we removed case outliers
using robust distance measurements. The significance level was set at a ¼ 0.001 to remove the case outliers. A second phase repeating the same process
was applied to the case–control dataset. This was based on the case-only robust estimators of location and scatter in order to define a more homogeneous
case–control sample set. The significance level was set at a ¼ 0.05 for this phase of the procedure.
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within European populations; a variant within the LCT is
associated with lactase persistence in many northern European
populations and has been demonstrated to be under strong
positive selection in Europeans (41,42). A large number of
SNPs in linkage disequilibrium with LCT have been used in
modeling studies (16,17) and can be used as one measure of
whether or not substructure has been controlled in studies
using diverse European subjects.

For other differences in European population substructure,
larger numbers of SNPs (e.g. �1200 North European sub-
structure AIMs) are necessary. The potential value and use
of these SNP sets has recently been discussed (38) and
depends in part on the sample sets being examined. We antici-
pate that arrays for European substructure will become avail-
able on a cost–effective platform. Ongoing studies are also
examining other continental populations.

It is also worth noting that panels of AIMs could be used as
an initial screen to determine which samples should be used in
GWA tests. This should enhance efficiency since it will mini-
mize the loss of power that may result from controlling for
substructure by pre-selecting matched cases and controls.
Alternatively, AIMs can be used to appropriately match
control subjects to pre-existing cases. As discussed earlier
(see section Use of homogeneous mapping sets), a modifi-
cation of this approach can also be used to identify more
homogeneous matched cases and controls. This will decrease
genetic heterogeneity as well as residual genomic control
inflation. The feasibility of this approach and the general
application of selected AIMs for genotyping will clearly
depend on the availability of standardized ancestry marker
panels that can be run at reasonable cost.

CONCLUDING REMARKS

In this brief review, we have highlighted the importance and
potential value of examining and applying population
genetic structure and substructure in studies of complex
genetic disease. This applies to both candidate gene studies
as well as GWA studies. We believe that ancestral differences
should also be examined in the context of any clinical epide-
miological study. For genetic studies, in addition to addressing
type 1 errors, we have emphasized the possibility that these
methods may also enable increased power by the ability to
reduce genetic heterogeneity: different ancestry subgroups
may have unique disease modifiers or unique epistatic
effects. Although not discussed here, there is mounting evi-
dence that natural selection has shaped a considerable part
of the differentiation observed between different ethnic
subsets. If this is a major factor in our genomic evolution
then it will be of even more importance to examine a
variety of different ethnic groups in future genetic studies
for many common diseases.

ELECTRONIC DATABASE AND SOFTWARE

INFORMATION

Software

STRUCTURE/STRAT (http://pritch.bsd.uchicago.edu/soft-
ware.html).

EIGENSTRAT/EIGENSOFT (http://genepath.med.harvard.
edu/~reich/Software.htm).

PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/
summary.shtml).

Control genotypes

iControlDB (http://www.illumina.com/pages.ilmn?ID=231).
dbGaP (http://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&-

page=login).
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