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Abstract

Cytochrome P450 2E1, gene symbol CYP2E1, is one of a family of enzymes with a central role in
activating and detoxifying xenobiotics and endogenous compounds. Genetic variation at this gene
has been reported in different human populations, and some association studies have reported
increased risk for cancers and other diseases. To the best of our knowledge, multi-SNP haplotypes
and linkage disequilibrium (LD) have not been systematically studied for CYP2EL in multiple
populations. Haplotypes can greatly increase the power both to identify patterns of genetic variation
relevant for gene expression as well as to detect disease-related susceptibility mutations. We present
frequency and LD data and analyses for 11 polymorphisms and their haplotypes that we have studied
on over 2,600 individuals from 50 human population samples representing the major geographical
regions of the world. The diverse patterns of haplotype variation found in the different populations
we have studied show that ethnicity may be an important variable helping to explain inconsistencies
that have been reported by association studies. More studies clearly are needed of the variants we
have studied, especially those in the 5’ region, such as the VNTR, as well as studies of additional
polymorphisms known for this gene to establish evidence relating any systematic differences in gene
expression that exist to the haplotypes at this gene.
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Introduction

Haplotype diversity is a key to understanding population evolution as well as disease evolution.
Heterogeneity in both Linkage Disequilibrium (LD) and haplotype frequencies across the
genome have been observed among large numbers of diverse ethnic populations in several
studies 174, Earlier studies from our laboratory have shown that haplotype and LD patterns at
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different genes associated with diseases vary widely across different populations of the world
2,57 _studies on different genes associated with disease that included the CEPH diversity
panel have also shown widely varying haplotype patterns 82, These earlier studies demonstrate
the importance of studying the variation patterns in multiple populations representing different
regions of the world for genes that have been associated with disease.

Cytochrome P450 2E1 (CYP2EL) is amember of the cytochrome P450 multifamily of enzymes
that play a central role in activating and detoxifying a wide variety of xenobiotics as well as
endogenous compounds. Several drug effects have been identified. The anti-fungal drug
miconazale has been found1? to inhibit CYP2E1 enzyme activity. Peterson et al.1 have
discussed the complex role CYP2EL1 appears to play in the pharmacologic interaction of
ciprofloxacin and pentoxifylline; genetic variation in CYP2E1 function may thus have complex
secondary consequences. The review by Gonzalez and Yul2 summarizes the evidence for the
important role that genetic variation in the CYP2E1 enzyme plays in the susceptibility of
patients to hepatitis induced by anti-tuberculosis drug therapy. The PharmGKB database has
links to publications showing the relationship to alcohol-related liver diseases and also reports
drug response studies involving CYP2EL1 for acetaminophen, alcohol, ethanol, geldanamycin,
and xenobiotics.

Considerable variation in allelic distributions at CYP2E1 and of CYP2EL enzyme activity is

found among different human populations 13-16, Several polymorphic sites in the 5'-flanking
and intronic region of CYP2E1 have been reported to be associated with increased risk factors
for cancers and other diseases 16720, However, no consistent results were observed in studies
of the effects of these SNPs on the expression of the gene and activity of the enzyme, and on
the susceptibility to diseases 21724,

The promoter region and other regulatory variation in or near the gene will function in cis with
any amino acid variation as one functional unit. Relevant variation can also include any variants
that affect splicing or mRNA conformation. Thus, the haplotype encompassing all relevant
variation is the relevant unit for association studies. LD may allow SNPs with no functional
consequences to serve as surrogates for unknown and/or untyped variants with functional
consequences. However, haplotype frequencies and LD patterns are expected to vary among
populations.

Haplotypes and LD of the CYP2E1 gene region have been poorly studied. The aim of the
present study has been to analyze polymorphisms across most of the CYP2E1 gene, document
global ethnic variation in their allelic frequencies, and study the patterns that exist in haplotypes
and LD. To those ends we present data on 11 polymorphisms, their frequencies and haplotypes
in over 2,600 normal, healthy individuals from 50 population samples representing all major
geographical regions of the world.

A total of 2,657 mostly unrelated individuals (by self-report) were typed and analyzed for each
of these polymorphisms. Allele frequencies and sample sizes for the 11 polymorphisms in all
50 populations can be found in ALFRED (http://alfred.med.yale.edu/) using the UIDs in Tables
land 2. Allele frequency ranges for each polymorphism are given in Figure 1, and the ancestral
allele frequencies for the 10 SNPs and the most common allele frequency for the VNTR are

given in Supplemental Table S1. There were no significant deviations from Hardy-Weinberg
ratios. The average heterozygosities across 50 population samples and F¢; values for 11 markers
are shown in Supplementary Figure S1. For most markers the average heterozygosities are low,
ranging from 0.035 (marker 7) to 0.283 (marker 10). F4; values vary around the mean of 0.14
for a standard set of 369 SNPs 2 but are high at markers 10 and 11, 0.254, 0.231, respectively,
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at the 3’ end of the gene. Only seven of the eleven markers segregate in all populations. The
derived allele frequencies of SNPs at exon 4 (marker 6) and exon 6 (marker 7) are very low
outside of Africa and these derived alleles are completely absent in the populations of East
Asia and the Americas. The derived alleles of the upstream SNPs, except rs6413420 (marker
5), are observed in higher frequencies in Asia and the Americas than in Africa or Europe.

We inferred 16 common haplotypes and estimated their frequencies (Figure 2). Most of the
low frequency variation in the residual class of rare haplotypes is accounted for by a relatively
small number of haplotypes in the 2 to 4% frequency range. The variation in haplotype
frequencies among populations gives rise to a complex pattern of LD, both pairwise and as
segments with high LD, that varies among populations (Supplemental Table S2 and
Supplemental Figure S2).

Haplotype diversity is much higher in Africa (with 6-10 common haplotypes) than outside of
Africa (with about 1-6 common haplotypes). The most common 11-MARKER haplotype,
6GCAGGCATCC (dark greenin Figure 2), is very frequent in all populations outside of Africa
and in Ethiopia, but not in other populations of Africa. Two haplotypes, 6CTAGGCAACC
(lightyellow) and 8SGCGGGCGTGT (light blue), are not seen in African populations and rarely
seen (<5%) in European populations, but are more frequent in most East Asian (0.0 — 0.273
and 0.073 — 0.262) and Native American (0.065 — 0.443 and 0.023 — 0.184) populations.

In order to understand the evolution of the haplotypes we estimated haplotypes with fewer
SNPs across shorter segments of the gene. We identified three core regions that have evolved
common haplotypes solely by accumulation of mutations from the ancestral core haplotype.
These cores involve markers 1 through 5 (core A), markers 6 through 9 (core B), and markers
10 and 11 (core C) (Figure 3). No recurrent mutations are required to explain all of these core
haplotypes. The full 11-marker haplotypes can be explained by combinations of the haplotypes
of the three cores (Figure 4 and Supplemental Table S3). These combinations have arisen by
accumulation of mutations (as depicted in Figure 3) and historical crossovers. It is difficult to
be certain of orders of all events, mutations and crossovers, when the three cores are considered
together, in part because other combinations that could have been intermediate now are either
absent or exist among the rare haplotypes.

In contrast to the global frequency patterns of the whole 11-marker haplotypes, the individual
core haplotypes show different global patterns (Supplemental Figures 3, 4, & 5). Core A
haplotypes show greater frequency similarity between African and European populations than
between European and both East Asian and Native American populations. One core A
haplotype, 6GCAG (#1 in Figure 3A), exists at frequencies of 56% to 95% in the Africans and
Europeans. Another core A haplotype, 6CTAG (#5 in Figure 3A), is not seen in Africans, is
rare in Europeans, but is frequent in East Asian and Native American populations. To the degree
these 5’ markers encompass the major regulatory regions, it is possible that East Asians and
Native Americans may have a common derived variant in regulation that is very uncommon
to absent in the rest of the world.

Discussion

We are unaware of any publications of the CYP2E1 gene that have included all of the
polymorphisms that we present here. Certainly, none of these markers has been studied
previously on such a large and ethnically diverse set of individuals. This study is an explicit
example of the type of global perspective on pharmacogenetic variation within and among
populations discussed in an editorial by Marsh26. Even this dataset does not probe the full
extent of the genetic diversity of this small segment of DNA. Public databases report multiple
additional polymorphisms across the gene (including 5’ and 3' UTRS).

Pharmacogenomics J. Author manuscript; available in PMC 2009 November 25.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Leeetal.

Page 4

We cannot precisely relate the 16 common haplotypes (Figure 2) we have observed to the
standard CYP2E1 allelic designations in the “cypalleles” web site
(http://www.cypalleles.ki.se/cyp2el.htm) because, from a genetic transmission perspective,
each of the haplotypes we report is an allele and the “cypalleles” web site does not give full
haplotype specifications for the allele designations they summarize, precluding a strict
comparison. Moreover, we have not included SNPs with rare or uncommon variants that have
not been studied widely. To distinguish the haplotypes we have identified from those in the
“cypalleles” nomenclature, we have used letter designations rather than numbers in Figures 2
and 4 and Supplemental Table S3. As an example of the difficulty of establishing precise
correspondences, the mutation G—A at marker 6 (corresponding to 179 Val—lle) defines core
B haplotype 4 (Figure 3B) and appears to represent one mutational event. That core B haplotype
exists in two combinations with core A haplotypes and two combinations with core C
haplotypes for a total of three 11-marker haplotypes: g, k, and n (Figures 2 & 4). All three of
these haplotypes correspond to allele CYP2E1*4 in the “cypalleles” nomenclature. We expect
the haplotypes encompassing the gene to become more complex as more SNPs and rare variants
are included in an even more comprehensive study of the gene.

In addition to multiple SNPs across this gene, copy number variation (CNV) encompassing
CYP2E1 has been reported?’—27, Our typing methods are not designed to detect CNVs but we
can exclude any common occurrence in our samples because there is no significant deviation
from HW ratios in any of the populations.

We have studied the allele, haplotype, and LD variation patterns for 11 polymorphisms in 50
populations from different geographical regions of the world across the CYP2E1 gene and
have shown that there are large differences in these patterns worldwide. The haplotypes were
useful in inferring recombination events in the recent evolution of the gene. The current study
focuses attention on the core haplotype lineages that appear to have involved no recombination
and on the combinations that have arisen because of historical recombinations. These cores
and their combinations provide the framework for future expression studies. Depending upon
when in one of the evolutionary lineages a functional variant arose, we would expect it to either
define a new sublineage or be inherited into the descendant haplotypes in Figure 3. Thus, the
evolutionary lineages may explain multiple haplotypes (alleles) having similar functional
properties, even if the causative variant has not yet been identified. Other SNPs within the
molecular extent of the region spanned will likely fall within this framework; some might refine
the locations of the inferred historical crossovers.

Supplementary information is available at the The Pharmacogenomics Journal’s website.

Materials and Methods

Samples studied

DNA was purified from lymphoblastoid cell lines from 2657 healthy adults from 50
populations from around the world (Table 2). Population membership was designated by the
subjects and all blood samples were obtained with individual informed consent following
protocols approved by the Institutional Review Boards at Yale University School of Medicine,
at the University of Karachi, and at multiple other relevant institutions in countries where
samples were collected. The average population sample size is 53 individuals.

Markers studied

We studied ten SNPs and one VNTR across 13.9 kb that encompasses the 5’ region of the
CYP2E1 gene and almost the entire coding region (Figure 5). We typed the VNTR and four
SNPs in the upstream region, three SNPs in the coding regions, and three SNPs in the intronic
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regions of the gene (Table 1). The markers are referred to by their numeric position (1-11) in
Table 1. The SNPs are all diallelic and the VNTR is essentially diallelic, as initially
described?®. Two other very rare VNTR alleles have been seen in some African populations
in the course of this study (data not shown); they were excluded from the haplotype analyses.

Typing methods

The samples were typed by TagMan assays (markers 2, 4-8, 10, and 11), by fragment length
analysis on agarose gels (marker 1) after PCR, and by restriction fragment length after enzyme
digestion of the PCR products for markers 3 (Rsal) and 9 (Dral).

Determining Ancestral Alleles

For each allele, the ancestral state in humans was determined by inference from the allele
present in several other primate species. The ancestral allele of the VNTR (marker 1) could
not be determined but by inference is 6.

Statistical methods

Allele frequencies of the VNTR and SNPs were calculated by gene counting assuming co-
dominant inheritance. All the sites were also tested for Hardy-Weinberg ratios by chi-square
test and/or exact test. Expected heterozygosities were estimated as 1-Zp;2. Haplotype
frequencies were estimated by the EM algorithm using HAPLO 30, Haplotypes with estimated
frequencies of less than 5% in each of the population samples go into the residual class. The
5% threshold is a reasonble boundary for determining what are the common and rare haplotypes
given the sample sizes in this study. While some estimated haplotypes below the 5% threshold
have very clear evidence of occurrence, the standard errors on estimated frequencies increase
along with some erroneous inferences due to the small number of observations available in the
rare zone and the fact that the LD levels between sites vary. Pair-wise LD estimates were done
as r? [refs. 31, 32] with significance levels determined by a permutation test33. Comparative
plots of LD for all the populations were done using HAPLOT 34,

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1

LD linkage disequilibrium

PCR polymerase chain reaction

SNP single nucleotide polymorphism
ulD unique identifier

VNTR variable number of tandem repeats
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Figure 1.
Graphical representation of the average and range of ancestral allele frequencies in 50
population samples for each of 11 markers at CYP2E1 in 50 population samples.
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Figure 2.

Frequencies for the haplotypes based on 11 markers at CYP2E1 for 50 populations. For each
color-coded haplotype the alleles are shown for the sites in chromosome order as numbered in
Table 1. Both the full allelic description and lower-case letter codes for the haplotypes are
given. For each population the proportional length of each color bar represents the frequency
of the respective haplotype. All haplotypes that have frequencies less than 5% in all the
populations studied are grouped into the residual (gray bar) class. The ancestral haplotype,
GCAGGCAAGC, for markers 2 through 11, is not found at common frequencies in any of the
50 populations studied.

Pharmacogenomics J. Author manuscript; available in PMC 2009 November 25.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Leeetal.

516—38

S5G—T

Page 10

2 8GCGG q—'—| (1) 6GCAG |_|_> 3] 6GCAT

3a

@ ACAT

3b

3¢

Figure 3.

e 52.G— C

v
4 6CCAG

S3C—T

5] ecTAG

@ GCAA

S6G— A
@ GCAT

S8 A— G

@ GCGT

S10G—T
OGc—f—b ® cc

511 C—+T

— SOA—T
f S7C—T

Core A

® GTAT

Core B

Core C

The evolutionary relationships among haplotypes of three core segments of CYP2E1. In all
cases the schema starts with the ancestral human haplotype and gives the pattern of mutational
accumulation for that core. A: Core A comprised of markers 1 through 5. B: Core B comprised

of markers 6 through 9. C: Core C comprised of markers 10 and 11.
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Figure 4.

The composition of the 11 full haplotypes in terms of combinations of individual core
haplotypes. The core haplotypes are numbered as in Figure 3 with core A on the left, core B
in the center, and core C on the right. The lower case letters for the full haplotypes correspond
to those in Figure 2. (See also Supplemental Table S3.)
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Figure 5.
Map of CYP2E1 on chromosome 10 and the markers typed. The filled boxes represent the

exons of the gene; the number below each box is the exon number. The vertical lines represent
positions of the markers studied.
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