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Abstract
Efficient visually guided behavior depends on the ability to form, retain, and compare visual
representations for objects that may be separated in space and time. This ability relies on a short-
term form of memory known as visual working memory. Although a considerable body of
research has begun to shed light on the neurocognitive systems subserving this form of memory,
few theories have addressed these processes in an integrated, neurally plausible framework. We
describe a layered neural architecture that implements encoding and maintenance, and links these
processes to a plausible comparison process. In addition, the model makes the novel prediction
that change detection will be enhanced when metrically similar features are remembered. Results
from experiments probing memory for color and for orientation were consistent with this novel
prediction. These findings place strong constraints on models addressing the nature of visual
working memory and its underlying mechanisms.

Human thought and behavior arise within dynamic and highly complex visual environments.
Behaving efficiently within such environments depends on the ability to form, retain, and
update visual representations as objects and events change over time. Input to the visual
system is not continuous, however; rather, it is frequently interrupted by blinks, eye
movements, and other visual disruptions. As a result, detecting changes in ongoing events
often depends on the ability to compare visual percepts formed at different points in time.
This ability relies on a short-term form of visual memory known as visual working memory
(VWM).1 Although a considerable body of research has shed light on the neurocognitive
systems subserving this form of memory, few theories have addressed how populations of
neurons can form, maintain, and compare visual representations. Here, we present a neurally
grounded model that integrates these cognitive processes, and we report experiments testing
a novel prediction derived from this integration.
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Empirical studies of change detection have relied on variants of the simple task shown in
Figure 1. Observers view a sample display (e.g., an array of simple objects or an image of a
real-world scene), which is followed by a brief disruption of some sort (e.g., an eye
movement, a “mud splash,” or a blank screen) and the appearance of a second, test display.
The test display either is the same as the sample or differs from it in some way—for
instance, the color of one item may have changed (for reviews, see Luck, in press;Rensink,
2002). In the one-shot change-detection task shown in Figure 1, a single test display is
presented, and observers make an unspeeded response, indicating whether the test display is
the same as or different from the sample display (see Luck & Vogel, 1997). In flicker
change-detection tasks, the original and changed displays alternate, separated by brief blank
intervals, until the observer indicates that a change has been detected (see Pashler,
1988;Simons & Rensink, 2005).

Successful change detection in these tasks depends on several factors. First, the information
present in the sample display must be accurately perceived and encoded in VWM (Jolicoeur
& Dell’Acqua, 1998; Vogel, Woodman, & Luck, 2006). Second, the information must be
stably and accurately maintained across the delay. Third, the visual memory of the sample
display must be compared with relevant information in the test display (Mitroff, Simons, &
Levin, 2004), and a decision must be generated. The failure to detect changes when they
occur, or change blindness, can arise when any one of these processes fails.

Contemporary research using the change-detection paradigm has revealed properties of each
of the processes involved in visual comparison. For instance, VWM representations are
established very rapidly (~50 ms/item; see, e.g., Gegenfurtner & Sperling, 1993; Vogel et
al., 2006) and in an all-or-none fashion (Zhang & Luck, 2008). Moreover, only a limited
amount of information (~3–4 objects’ worth) can be maintained at any given time (Cowan,
2001; Luck & Vogel, 1997). When the amount of information present in the sample display
exceeds this capacity, mechanisms of attention play a role in selecting relevant aspects of the
display for encoding and maintenance (Hollingworth, Shrock, & Henderson, 2001; Schmidt,
Vogel, Woodman, & Luck, 2002). Finally, the detection of changes at test has been found to
depend on a process that compares working memory representations with incoming sensory
inputs (Mitroff et al., 2004). This process occurs largely in parallel, with detected changes
producing an active change signal that elicits rapid orienting to the location of the change
(Hyun, Woodman, Vogel, Hollingworth, & Luck, in press).

At another level, research has begun to elucidate the neural systems involved in change
detection. Event-related potential and functional imaging studies have shown that the
separate components of change detection engage a distributed network of neural populations
in the inferior temporal, posterior parietal, and prefrontal cortices (Pessoa, Gutierrez,
Bandettini, & Ungerleider, 2002; Todd & Marois, 2004; Vogel & Machizawa, 2004; Xu &
Chun, 2006). Additionally, the detection of changes at test has been shown to engage many
of the same neural systems implicated in visual selective attention (Beck, Rees, Frith, &
Lavie, 2001; Pessoa & Ungerleider, 2004).

In summary, considerable progress has been made in understanding the component neural
and behavioral processes involved in change detection. Although several formal models
have addressed how visual representations are formed and maintained over time (see, e.g.,
Amit, Bernacchia, & Yakovlev, 2003; Compte, Brunel, Goldman-Rakic, & Wang, 2000),
none have addressed the process of comparing multiple visual memory representations with
incoming sensory inputs. In this article, we describe a layered neural architecture that
implements encoding and maintenance in VWM, and we show how these processes can be
linked to a plausible comparison process. The model also makes novel and counterintuitive
behavioral predictions, which we tested in a series of experiments.
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A DYNAMIC NEURAL FIELD MODEL OF VWM AND CHANGE DETECTION
To account for VWM and change detection in a neural framework, we have developed a
model that builds on the dynamic field theory (DFT) of visuospatial cognition (Simmering,
Schutte, & Spencer, 2008; Spencer, Simmering, Schutte, & Schöner, 2007). The DFT is in a
class of continuous-attractor neural network models originally developed to capture the
dynamics of neural activation in visual cortex (Amari, 1977; see also Wilson & Cowan,
1972). The generic form of models in this class consists of a single layer of feature-selective
excitatory neurons reciprocally coupled to a separate layer of inhibitory interneurons (see
Fig. 2a). Locally excitatory and laterally inhibitory interactions within the network allow the
formation of localized peaks, or “bumps,” of activation representing, for instance, estimates
of specific sensory inputs (e.g., the retinal position or color of a stimulus; see Jancke et al.,
1999); in some cases, these peaks may be sustained in the absence of continuing input.
Simple networks of this type can realize elementary perceptual and memory processes (see
discussion in Grossberg, 1980). However, capturing performance in change-detection tasks
also requires specification of the processes underlying visual comparison.

To this end, we have developed the three-layer architecture depicted in Figure 2b. This
architecture was inspired by the canonical cortical circuit proposed by Douglas and Martin
(1998) on the basis of studies of cortical neurophysiology. The model consists of an
excitatory perceptual field, an excitatory working memory field (VWM), and a shared
inhibitory field. As its name suggests, the perceptual field is the main target of afferent input
to the network. VWM also receives direct stimulus input, but its primary excitatory input
comes from the perceptual field. Both the perceptual field and VWM provide excitatory
input to and receive broad inhibitory feedback from the inhibitory field. Additionally,
nearby neurons within both the perceptual and the working memory fields interact via local
excitatory connections. This pattern of excitatory and inhibitory connectivity gives rise to a
“Mexican hat” form of interaction common in neural models of cortical function
(Durstewitz, Seamans, & Sejnowski, 2000). With the right balance of excitation and
inhibition, multiple peaks of activation can be sustained in the absence of input. (Videos S1
and S2 in the supporting information available on-line show the three-layer model operating,
respectively, in a self-stabilized mode, in which peaks of activation form in response to input
but die out when input is removed, and in a self-sustained mode, in which peaks of
activation are sustained in the absence of input; see p. XXX.) Thus, this form of interaction
represents a plausible neural basis for the sustained activation proposed to underlie working
memory (Compte et al., 2000; Fuster & Alexander, 1971).

Finally, to capture performance in change-detection tasks, we have added a response layer
containing two nodes: a different node, which receives summed excitatory activation from
the perceptual field, and a same node, which receives summed excitatory activation from
VWM (see Fig. 2b). The nodes are equipped with self-excitatory connections and are
mutually inhibitory, competing for control of response output when a “go” signal arrives
(following the presentation of the test display)

SUPPORTING INFORMATION
Additional Supporting Information may be found in the on-line version of this article:
Model Architecture, Equations, and Supplementary Simulations
Table S1
Video S1
Video S2
Video S3
Video S4
Video S5
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the article.
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Visual comparison is made possible in this architecture through excitatory and inhibitory
interactions among the model’s layers. Consider the simulations shown in Figure 3, which
capture performance in the one-shot variant of the change-detection task (Fig. 1).We focus
on this variant of the task because of its relative simplicity, which minimizes the impact of
factors contributing to failures of change detection when real-world scenes are used as
stimuli (see, e.g., Hollingworth, 2003;Hollingworth et al., 2001).

The simulations in Figure 3 demonstrate how “same” and “different” responses arise in the
model. Each column shows the pattern of activation in the excitatory layers of the model at a
given point in time during a trial in the change-detection task. Note that, for simplicity, the
inhibitory layer is not shown. At the beginning of the trial (Fig. 3a), the model is presented
with three inputs: two nearby inputs representing very similar, or “close,” colors and a third
input representing a distinct, or “far,” color. When input is turned on, strong activation is
applied to the perceptual field, and weaker activation is applied to VWM. Once activation in
the perceptual field reaches a given threshold (conventionally set to be 0), locally excitatory
interactions are engaged, and strong activation begins to flow to the inhibitory and VWM
fields. Local excitation and reciprocal interactions between the perceptual and inhibitory
fields allow three peaks of activation to form in the perceptual field. Shortly thereafter, three
peaks of activation also begin to form in VWM. When the input is turned off (Fig. 3b), the
peaks quickly die out in the perceptual field. In contrast, the peaks that have now formed in
the VWM layer are sustained.

At this point, the only activation entering the perceptual field is inhibitory feedback from the
inhibitory layer (not shown in Fig. 3). This input, which is driven by the peaks present in
VWM, suppresses the resting level of neurons tuned to the feature values being maintained
in VWM (for evidence of perceptual suppression in the context of verbal working memory,
see Woodward et al., 2006). When a test item that matches one of the colors in memory is
presented (see Fig. 3c for a close item and Fig. 3e for the far item), activation remains below
threshold (i.e., below 0) in the perceptual field because the neurons coding for that color are
strongly inhibited (see Video S3 in the on-line supporting information). In this case, input to
the response layer comes from VWM, allowing the same node to win the competition. In
contrast, when the close color input is changed at test— to a value 30° away in color space
(Fig. 3d)—input enters the perceptual field at a relatively uninhibited site. Consequently, an
above-threshold (i.e., above 0) peak forms in the perceptual field at test (see Video S4 in the
on-line supporting information), providing input to the different node that is strong enough
to generate a “different” response.

In summary, responding “different” relies on a distinctive response to novel input, whereas
“same” represents the default response of the model (in keeping with the findings of Hyun et
al., in press). This aspect of the model is also consistent with classic studies exploring same/
different perceptual decisions, which have suggested that “same” and “different” judgments
rely on distinct processes (see the review by Farell, 1985). Our model shows how these
distinct processes may emerge from the functioning of a single, integrated dynamic system.

A NOVEL BEHAVIORAL PREDICTION
In addition to providing a plausible neural basis for the processes involved in change
detection, our model makes a novel prediction—that the detection of changes in a visual
array will be enhanced when metrically similar features are maintained in VWM. To see
how this prediction arises, compare the simulation depicted in Figure 3d with that in Figure
3f. Recall that in Figure 3d, we changed one of the close colors by 30° in color space at test,
and the model responded “different.” Figure 3f illustrates what happens if we change the far
color by an identical amount: A peak fails to build in the perceptual field, and the model
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erroneously responds “same” (see Video S5 in the online supporting information). Why does
this occur?

When the peaks in VWM are near one another, they interact in a strongly inhibitory fashion,
so that they are somewhat sharper and of somewhat lower amplitude than peaks that are
farther apart. As a result, they project weaker excitation to the inhibitory field, which, in
turn, projects weaker and narrower inhibition to the perceptual field (see the perceptual field
in Fig. 3b). Weaker inhibition makes it easier to build a peak in the perceptual field when a
close (Fig. 3d), rather than a far (Fig. 3f), color changes at test.

The similarity-based enhancement predicted by the model runs counter to the predictions of
several prominent theories of working memory, which hold that items in working memory
are stored independently and do not interact (O’Reilly, Mozer, Munakata, & Miyake, 1999;
Raffone & Wolters, 2001). Thus, if confirmed, this novel prediction will have important
consequences for neural models of working memory. To explore this prediction further, we
conducted a simulation experiment in which the model was run through a standard change-
detection experiment.

MODEL SIMULATIONS
Method

The model consisted of the architecture shown in Figure 2b (for further details, see Table S1
and Model Architecture, Equations, and Supplementary Simulations in the on-line
supporting information).

Simulations were conducted in Matlab 7.4 (Mathworks, Inc., http://www.mathworks.com).
On each trial, the model was presented with three inputs: two that were near each other (20°,
30°, or 40° apart, where 1 unit in the model = 1° in color space) and one that was at least
150° away from the nearest close input. At test, a single input was applied at either the same
field location as one of the original inputs or a different location 30° away from one of the
original inputs, as in the simulations depicted in Figure 3. Thus, memory for either a close
target or a far target was probed. For each level of close separation, the model completed
400 trials, 100 change and 100 no-change trials for each target type. Thus, the model
completed a total of 1,200 trials.

Results and Discussion
For each trial, we determined which response node was above threshold at test. We then
calculated the signal detection sensitivity measure d′ using the obtained rates of hits and
false alarms, as with human subjects. The simulations demonstrated a clear advantage when
one of the close items, rather than the far item, was probed at test (see Fig. 4d).

EXPERIMENTS 1A AND 1B
To test for similarity-based enhancement in human subjects, we conducted a series of
change-detection experiments probing memory for color. In Experiment 1a, memory items
were presented simultaneously, as in the standard one-shot change-detection task. Given this
presentation format, any observed enhancement might reflect differential perceptual
encoding of close versus far colors, rather than interactions among WM representations (see
the discussion in Lin & Luck, in press). To rule out this possibility, we presented items
sequentially in Experiment 1b.
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Method
Participants—Ten University of Iowa undergraduates (9 women, 1 man) volunteered to
participate in Experiment 1a, and 12 (7 women, 5 men) volunteered to participate in
Experiment 1b. Participants received class credit or monetary compensation for their
participation. They reported normal or corrected-to-normal visual acuity and normal color
vision.

Stimuli—Stimulus presentation and response recording were controlled by a Macintosh G4
computer running Matlab 5.2 using the Psychophysics Toolbox extensions (Brainard, 1997;
Pelli, 1997). Stimuli were presented against a gray background (28.73 cd/m2) at a viewing
distance of 57 cm. They consisted of small colored squares subtending either 1.7° × 1.7°
(Experiment 1a) or 2.0° × 2.0° (Experiment 1b). Individual colors were selected from a set
of 180 colors equally distributed in CIELAB 1976 color space, a perceptually uniform color
space and color-appearance model developed by the Commission Internationale de
l’Éclairage.

The memory displays consisted of three items presented at least 90° apart on the
circumference of an imaginary circle that was centered at fixation and had a radius of either
4.25 cm (Experiment 1a) or 7.5 cm (Experiment 1b). In each case, two of the items were
close in color space (20°, 30°, or 40° apart), whereas the color of the third item was always
at least 150° away from the nearest close color. The test display contained a single item
appearing at one of the spatial locations previously occupied by an item in the memory
display (see Fig. 4a). On change trials, the color of the test input and the memory item
always differed by 30° in color space. Close and far items were tested equally often.

Procedure—In Experiment 1a (see Fig. 4a), each trial began with a fixation cross
presented at the center of the screen for 500 ms. Next, the memory display was presented for
500 ms, followed by a 1,000-ms delay interval and then a test display, which remained
visible until a response was generated. Participants were instructed to make an unspeeded
response when the test display appeared, indicating whether the color of the test item was
the same as or different from the item appearing at that location originally. Participants
completed a practice block of 24 trials and a total of 240 experimental trials: 40 trials with
close targets and 40 trials with far targets at each level of close-color separation (probability
of change = .5).

In Experiment 1b (see Fig. 4b), each trial also began with a 500-ms fixation cross, and then
the memory items were presented sequentially for 200 ms each, separated by 500-ms blank
intervals. Close and far targets appeared with equal likelihood in each probe position (1, 2,
or 3) and were probed an equal number of times at each position. Participants completed 48
trials (24 change and 24 no-change trials) for each combination of target type (close, far),
probe position (1, 2, 3), and close-color separation (20°, 30°, 40°), for a total of 864 trials.

To prevent verbal recoding of the memory-display colors, we instructed participants to
repeat three randomly generated digits (e.g., “6, 4, 9”) out loud at a regular pace throughout
each trial of each experiment.

Results and Discussion
An alpha level of .05 was used as the criterion for statistical significance, and the signal
detection measure d′ was the primary dependent measure.

Experiment 1a—An analysis of variance (ANOVA) with target type (close, far) and
close-color separation (20°, 30°, 40°) as within-subjects factors revealed a significant main
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effect of target type, F(1, 9) = 29.82, p < .001. No other effects reached statistical
significance, all Fs < 1. As predicted, change-detection performance was enhanced when a
close, rather than a far, color was probed (see Fig. 4d).

Experiment 1b—An ANOVA with target type, probe position, and close-color separation
as within-subjects factors revealed a main effect of probe position, F(2, 22) = 14.60, p < .
001; change detection was best for the most recent item (mean d′ = 0.88, 1.0, and 1.47 for
Positions 1, 2, and 3, respectively). There was also a main effect of close-color separation,
F(2, 22) = 17.99, p < .001; change detection was most accurate when the close colors were
separated by 20° (mean d′ = 1.30, 1.12, and 0.92 for separations of 20°, 30°, and 40°,
respectively). Most critically, there was a main effect of target type, F(1, 11) = 24.01, p < .
001. As in Experiment 1a, change-detection performance was enhanced when a close, rather
than a far, color was probed (see Fig. 4d). These results replicate those of Experiment 1a,
confirming that the enhancement effect does not reflect differential perceptual encoding of
close versus far colors.

EXPERIMENT 2
Results from Experiment 1 are consistent with the predictions of the dynamic field model
proposed here. In Experiment 2, we examined whether the enhancement effect is a general
property of the neural mechanisms that underlie VWM by probing whether this effect
generalizes to working memory for orientation.

Method
Participants—Fifteen University of Iowa undergraduates (10 women, 5 men) volunteered
to participate.

Stimuli and Procedure—Stimulus presentation, response recording, and the procedure
were the same as in Experiment 1b. The memory items consisted of three thin, black,
rounded rectangles, each of which spanned the interior of a small, light-gray circle (2.0° in
diameter; see Fig. 4c). On each trial, two of the memory items had similar orientations (20°,
30°, or 40° apart), whereas the orientation of the third item differed by at least 70° from the
nearest close orientation. When a change occurred at test, the orientation of the test item was
rotated by 30°.

Results and Discussion
An ANOVA with target type, probe position, and close-orientation separation as within-
subjects factors revealed a main effect of probe position, F(2, 28) = 30.24, p < .001. Again,
change-detection performance was best for the most recently presented item (mean d′ =
1.01, 1.12, and 2.00 for Positions 1, 2, and 3, respectively). In addition, there was a main
effect of close-orientation separation (20°, 30°, 40°), F(2, 28) = 3.40, p < .05, which was
subsumed by a significant Target Type × Separation interaction, F(2, 28) = 4.06, p < .03.
Tests of simple effects revealed significantly better performance for close than for far targets
when the close-orientation separation was 20° (see Fig. 4d), F(1, 2) = 7.67, p < .02, but not
when this separation was 30° or 40°, all Fs < 1. This finding supports the proposal that
similarity-based enhancement is a general property of working memory for metric feature
dimensions.

GENERAL DISCUSSION
We have described a neurally grounded model that incorporates multi-item encoding and
maintenance in VWM, as well as the processes underlying visual comparison. The model
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achieves sustained activation via locally excitatory and laterally inhibitory interactions
among neurons, and interactions among the model’s layers give rise to an emergent form of
comparison that drives decisions about detected change. Specifically, peaks of activation in
VWM pass activation to an inhibitory field, and the inhibitory field in turn provides
inhibitory feedback to a perceptual field that is responsible for the detection of novel inputs.
When new inputs match the remembered features, a peak fails to build in the perceptual
field, and a “same” response is triggered. In contrast, when a change occurs at test, a new
peak is formed in the perceptual field, and this peak triggers a “different” response. Thus,
detecting difference depends on an active change signal that may serve to direct attention or
the eyes to the location of potentially interesting changes in the environment (Hyun et al., in
press).

The present study also revealed a direct behavioral consequence of the metric-dependent
neural processes supporting maintenance and comparison in the DFT model proposed here:
enhanced change detection when metrically similar features are remembered. Recall that the
transition from a “same” to a “different” response, which arises when sensory inputs are
sufficiently different from memory representations, is mediated via inhibition of the feature
values associated with each memory item. The same inhibitory source also produces lower-
amplitude peaks when two close items, rather than two far items, are held in working
memory simultaneously. This weakening reduces the strength of inhibition passed to the
perceptual field, producing the predicted enhancement effect. Thus, the metric dependence
of change detection is not a side effect or generic property of systems with lateral inhibition,
but is linked to the core mechanism supporting change detection in the model. The interitem
metric interactions proposed to underlie this effect run counter to several prominent theories
according to which items in working memory are represented independently and do not
interact (see, e.g., O’Reilly et al., 1999; Raffone & Wolters, 2001). Thus, our findings place
strong constraints on models of the nature of VWM and its underlying mechanisms.

The model described here suggests a candidate neural mechanism for the explicit
comparison process proposed to underlie change detection (Mitroff et al., 2004).
Additionally, because our model makes a “same” or “different” decision on each trial, it can
offer insights into the origin of failures to detect change, so-called change blindness. For
instance, errors can arise in our model if a change is too small to be detected, or if the
relevant items are not successfully encoded and maintained in working memory (for related
discussion, see Hollingworth, 2003; Mitroff et al., 2004).

One final question concerns how our functional neural model maps onto evidence of neural
localization from neurophysiological and functional imaging studies. The three-layered
architecture we propose is presumed to operate within the laminar layers of a given cortical
area—for instance, within V4 or inferior temporal cortex. It is also possible, however, to
achieve the same functionality using a four-layer architecture in which each excitatory layer
projects to a local inhibitory population in addition to the inhibitory population of the other
excitatory field (see, e.g., Edin, Macoveanu, Olesen, Tegner, & Klingberg, 2007). This four-
layered architecture would be consistent with the proposal that the perceptual field resides in
posterior cortex and the working memory field resides in another area, such as the prefrontal
cortex. Future work will be required to assess which architecture is more appropriate. For
the present, however, the DFT provides a critical bridge between neurophysiological
measures and the details of human performance in change-detection tasks.
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Fig. 1.
Change-detection task used to explore properties of visual working memory for simple
features (adapted from Luck & Vogel, 1997). A sample display is followed by a delay and
then a test display. The task is to indicate whether the sample and test are the same or
different. This illustration shows a task with color stimuli; different fill patterns are used to
represent different solid colors.
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Fig. 2.
Two- and three-layer dynamic neural field models of visual working memory (VWM). The
thin, solid horizontal line in each field marks the activation threshold (conventionally set to
be 0), the point at which interactions among neurons within and between layers become
engaged. The two-layer model (a) consists of a single population of feature-selective
excitatory neurons coupled to a similarly tuned population of inhibitory neurons. This
simulation depicts the formation of a peak of activation following localized input to the
excitatory layer. Input takes the form of a Gaussian distribution that is centered at a
particular field location and has a specified strength and width. Once activation goes above
threshold (i.e., 0) in the excitatory layer, activation is passed to the inhibitory layer, which,
in turn, passes broad inhibition back to the excitatory layer. Locally excitatory interactions
among neurons in the excitatory layer (solid, curved arrow) keep neurons in a highly active
state, whereas inhibitory feedback from the inhibitory layer keeps excitation localized by
preventing the diffusion of activation throughout the field. The three-layer model (b)
contains two populations of excitatory neurons (perceptual and VWM fields) reciprocally
coupled to a single population of inhibitory neurons (inhibitory field). Input is applied to
both excitatory fields, but input to the perceptual field is much stronger than input to the
VWM field. Once activation in the perceptual field goes above 0, strong activation is
propagated to both the inhibitory and the VWM fields. The VWM field also projects
excitatory activation to the inhibitory field, which projects inhibition to both the perceptual
and the VWM fields. The model also contains a response layer consisting of two nodes: one
that receives summed excitatory input from the perceptual field and is responsible for
generating “different” (“Diff”) responses, and a second that receives summed excitatory
input from VWM and is responsible for generating “same” responses. The nodes in the
response layer have self-excitatory connections and are mutually inhibitory. Note that only
above-threshold activation (i.e., activation > 0) in the perceptual field or VWM is
propagated to the response nodes at test.
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Fig. 3.
Simulation showing the generation of “same” and “different” responses in the dynamic
neural field model of visual working memory (VWM) and change detection. For simplicity,
only the two excitatory layers of the model are shown here, although the inhibitory layer
plays a critical role in the formation and maintenance of peaks and in the model’s ability to
detect changes at test. Following the presentation of a sample input representing two similar
colors and one distinctive color (a), three peaks of activation form very quickly in the
perceptual field and more slowly in VWM (because input to the perceptual field is stronger).
Once activation goes above threshold (0) in the perceptual field, strong activation is
transmitted to the inhibitory and VWM layers, and three above-threshold peaks are
established in VWM. When the input is removed during the delay interval (b), the peaks die
out in the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the
perceptual field via the inhibitory layer suppresses the firing of neurons in the perceptual
field that code for the same features being held in VWM. When a close (c) or far (e) item is
probed at test and the input matches one of the remembered features, inhibitory feedback to
the perceptual field prevents a new peak from forming. Thus, input to the response nodes
comes exclusively from the VWM field, and a “same” (S) response is generated. In contrast,
when one of the close items is changed to a new value at test (d), input comes in at a
relatively uninhibited region of the perceptual field, allowing a new peak to be established
and activation to flow to the “different” (D) node, which wins the competition when a
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sufficiently strong peak is present in the perceptual field at test. However, when the far item
is changed by an identical amount at test (f), input again comes in at a relatively uninhibited
region of the perceptual field, but activation is unable to go above threshold, and the model
incorrectly responds “same.” Strong laterally inhibitory interactions between close peaks in
VWM result in the inhibitory projection to the perceptual field being stronger for far than for
close items (compare inhibition in the perceptual field during the delay interval for close vs.
far items). The higher level of inhibition makes it more difficult to detect changes to far
items.
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Fig. 4.
Illustration of the trial sequences in the experiments and results from the experiments and
model simulations. Experiment 1a (a) used a standard one-shot change-detection task. A test
display of three colors was followed by a delay and then a test display of a single color.
Experiment 1b (b) tested change detection when the color stimuli to be remembered were
presented sequentially, rather than simultaneously. In these illustrations, different fill
patterns represent different solid colors. Experiment 2 (c) followed the procedure for
Experiment 1b, but using orientation stimuli. The graph (d) shows performance (d′) for close
and far targets separately for each experiment and the simulations. Note that for the
orientation experiment, results are shown only for trials on which the close-orientation
separation was 20°. Error bars represent 95% confidence intervals.
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