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Background The United States was the second country to have a

major outbreak of novel influenza A ⁄ H1N1 in what has become a

new pandemic. Appropriate public health responses to this

pandemic depend in part on early estimates of key

epidemiological parameters of the virus in defined populations.

Methods We use a likelihood-based method to estimate the

basic reproductive number (R0) and serial interval using

individual level U.S. data from the Centers for Disease Control

and Prevention (CDC). We adjust for missing dates of illness and

changes in case ascertainment. Using prior estimates for the serial

interval we also estimate the reproductive number only.

Results Using the raw CDC data, we estimate the reproductive

number to be between 2Æ2 and 2Æ3 and the mean of the serial

interval (l) between 2Æ5 and 2Æ6 days. After adjustment for

increased case ascertainment our estimates change to 1Æ7 to 1Æ8 for

R0 and 2Æ2 to 2Æ3 days for l. In a sensitivity analysis making use

of previous estimates of the mean of the serial interval, both for

this epidemic (l = 1Æ91 days) and for seasonal influenza

(l = 3Æ6 days), we estimate the reproductive number at 1Æ5 to 3Æ1.

Conclusions With adjustments for data imperfections we obtain

useful estimates of key epidemiological parameters for the current

influenza H1N1 outbreak in the United States. Estimates that

adjust for suspected increases in reporting suggest that substantial

reductions in the spread of this epidemic may be achievable with

aggressive control measures, while sensitivity analyses suggest the

possibility that even such measures would have limited effect in

reducing total attack rates.

Keywords Basic reproductive number, influenza A ⁄ H1N1

outbreak, serial interval.
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Introduction

In April 2009, the general public became aware of an out-

break of a novel influenza strain, now termed novel influ-

enza A ⁄ H1N1 that had been affecting Mexico. Due to high

travel volumes throughout the world, particularly the Uni-

ted States, the disease has been spreading rapidly world-

wide, leading the WHO to raise the pandemic alert to a

level 5 in May 2009, indicating that a pandemic is likely

imminent and signaling world health organizations and

governments to finalize planning and preparation for

responding to such an event. On June 11, WHO declared a

pandemic had begun.

While most cases have been relatively mild outside of

Mexico,1 a number of uncertainties remain about the severity

of this virus on a per-case basis; moreover, higher-than-

normal attack rates expected from an antigenically novel

virus may lead to substantial population-level severe mor-

bidity and mortality even if the case-fatality ratio remains

low.2 Regardless of the severity now, legitimate concerns

exist over the potential impact that this viral strain might

have in the coming influenza season. Indeed during the

high mortality pandemic of 1918–1919, much of the north-

ern hemisphere saw a mild outbreak in the late spring of

1918 that preceded the much more severe outbreaks of

the fall and winter of 1918–1919.3,4 For these reasons,
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continuing scientific and public health attention to the

spread of this novel virus is essential.

As officials prepare and plan for the growth of this

pandemic, estimates of epidemiological parameters are

needed to mount an effective response. Decisions about the

degree of mitigation that is warranted – and public compli-

ance with efforts to reduce transmission – depend in part

on estimates of individual and population risk, as measured

in part by the frequency of severe and fatal illness. Knowl-

edge of the serial interval and basic reproductive number

are crucial for understanding the dynamics of any infec-

tious disease, and these should be reevaluated as the

pandemic progresses in space and time.5 The basic repro-

ductive number R0 is defined as the average number of sec-

ondary cases per typical case in an otherwise susceptible

population, and is a special case of the more general repro-

ductive number, which may be measured even after some

of the population is immune. R0 quantifies the transmissi-

bility of an infection: the higher the R0, the more difficult

it is to control. The distribution of the serial interval, the

time between infections in consecutive generations, deter-

mines, along with R0, the rate at which an epidemic grows.

Estimates of these quantities characterize the rates of epi-

demic growth and inform recommendations for control

measures; ongoing estimates of the reproductive number as

control measures are introduced can be used to estimate

the impact of control measures. Previous modeling work

has stated that a reproductive number exceeding two for

influenza would make it unlikely that even stringent

control measures could halt the growth of an influenza

pandemic.6

Prior work has placed estimates for the serial interval of

seasonal influenza at 3Æ6 days7 with a SD of 1Æ6 days. Other

work has estimated that the serial interval is between 2Æ8
and 3Æ3 days.8 Analysis of linked cases of novel A ⁄ H1N1 in

Spain yields an estimate of a mean of 3Æ5 days with a range

from 1 to 6 days.9 Fraser et al.10 estimate the mean of the

serial interval to be 1Æ91 days for the completed outbreak

of respiratory infection in La Gloria, Mexico, which may

have resulted from the novel H1N1 strain. There have been

many attempts made to estimate the reproductive number.

Fraser et al.10 estimate the reproductive number to be in

the range of 1Æ4–1Æ6 for La Gloria but acknowledge the pre-

liminary nature of their estimate. For the fall wave of the

1918 pandemic, others have estimated the basic reproduc-

tive number to be approximately 1Æ8 for UK cities,11 2Æ0
for U.S. cities,12 1Æ34–3Æ21 (depending on the setting),8 and

1Æ2–1Æ5.3 Additionally Andreasen et al.3 estimate, in con-

trast, that the reproductive number in the 1918 summer

wave was between 2Æ0 and 5Æ4.

In what follows we employ a likelihood-based method

previously introduced8,13 to simultaneously estimate the

basic reproductive number and the serial interval. We make

use of data from the Centers for Disease Control (CDC)

providing information on all early reported cases in the

United States, including the date of symptom onset and

report. Further, we illustrate the impact of the reporting

fraction and temporal trends in the reporting fraction on

estimates of these parameters.

Methods

Data
We use data from the Centers for Disease Control and Pre-

vention (CDC) line list of reported cases of influenza

A ⁄ H1N1 in the United States beginning on March 28,

2009. Information about 1368 confirmed and probable

cases with a date of report on or before May 8, 2009 was

used. Of the 1368 reported cases, 750 had a date of onset

recorded. We include probable cases in the analysis as

>90% of probable cases subsequently tested have been con-

firmed. After May 13 collection of individual-based data

became much less frequent and eventually halted in favor

of aggregate counts of new cases. The degree of case ascer-

tainment early throughout this time period is unknown.

Statistical analysis
We make use of the likelihood-based method of White and

Pagano.8,13 This method is well suited for estimation of the

basic reproductive number, R0, and the serial interval in

real time with observed aggregated daily counts of new

cases, denoted by N = {N0, N1,…, NT}, where T is the last

day of observation and N0 are the initial number of seed

cases that begin the outbreak. The Ni are assumed to be

composed of a mixture of cases that were generated by the

previous k days, where k is the maximal value of the serial

interval. We denote these as Xji, the number of cases that

appear on day i that were infected by individuals with

onset of symptoms on day j. We assume that the number

of infectees generated by infectors with symptoms on day

j,Xj ¼
Pjþkþ1

i¼jþ1 Xji, follows a Poisson distribution with

parameter R0Nj. Additionally, Xj = {Xj,j + 1, Xj,j + 2,

…, Xj,j + k + 1}, the vector of cases infected by the Nj indi-

viduals, follows a multinomial distribution with parameters

p, k and Xj. Here p is a vector of probabilities that denotes

the serial interval distribution. Using these assumptions, we

obtain the following likelihood, as shown in White and

Pagano13:

LðR0; pjNÞ ¼
YT

t¼1

expð�utÞuNt
t

CðNt þ 1Þ ;

where ut ¼ R0

Pk
j¼1 pjNt�j and C(x) is the gamma func-

tion. Maximizing the likelihood over R0 and p provides

estimators for the reproductive number and serial interval.

This method assumes that there are no imported cases,

there is no missing data and that the population is

White et al.
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uniformly mixing. Assuming that there are imported cases

(for example individuals who became infected in Mexico

after the index case), denoted by Y = {Y1,…YT}, then the

likelihood becomes

LðR0; pjN;YÞ ¼
YT

t¼1

expð�utÞuNt�Yt
t

CðNt � Yt þ 1Þ ;

where /t is defined as before. We further modify this

methodology to account for some of the imperfections of

the current data.

Imputation of missing onset times
First, we handle missing onset times by making use of the

reporting delay distribution. Most cases have a date of

report, but far fewer have a date of onset given. As our

interest is in modeling the date of onset, we impute these

missing dates for those with a date of report. Let rti be the

reporting time, let oti be their time of onset, assuming it is

observed, and let dti = rti ) oti. We fit a linear regression

model with the log(dti) as the outcome and rti as the

explanatory variable as well as an indicator of whether the

case is an imported case or not, bti. For each person with a

reported rti but missing oti, we obtain oti by predicting the

value for the reporting delay from the model, denoted by

d̂tiðrti; btiÞ, and generate a random variable, Xti, as the expo-

nential of a normally distributed random variable with

parameter logðd̂tiðrti; btiÞÞ and variance given by the predic-

tion error obtained from the regression model. Then the

imputed time of onset is: ~oti ¼ rti � ½Xti�; where [Xti] is the

rounded value. The data used in this analysis is
~Nt ¼ Nt þ ~nt ; where Nt is the number of observed onset

times for day t and ~nt are the number of unobserved (and

thus imputed) onset times on day t.

Augmentation of data for underreporting
As observed in Figure 1, the onset times are rapidly declin-

ing as one approaches the final date of report. This is likely

attributable to reporting lag and is addressed by inflating

case counts to account for delayed reporting. Again using

the reporting delay distribution, we can modify the number

of cases with onset on day t, as Mt ¼ ~Nt=
PminðT�t;lÞ

j¼1 qj;

where qj is the probability of a j day reporting delay and l

is the length of the reporting delay distribution. Note that

the Mt are often non-integer values since they are estimates

of the true number of cases. We only consider Mt such that

the augmented data represents no more than 95% of the

imputed reported value.

Adjustment for changes in reporting fraction
Further, we report on the impact of changes in reporting.

Inevitably many cases will go undetected. It is reasonable

to assume that the proportion that go undetected will ini-

tially decrease as an epidemic unfolds and the public

becomes increasingly aware of the outbreak. It is estimated

that during the exponential growth phase of the epidemic,

the proportion of hospitalized persons among cases

reported between April 13 and April 28, declined at a rate

of 10% per day (data not shown). We interpret this as an

increase in the rate of ascertainment, i.e., the average sever-

ity of infections was not decreasing. Rather, the proportion

of cases being ascertained was increasing with more mild

cases being ascertained. Therefore, we estimate that the

ratio of observed cases on consecutive days was 90% of the

ratio of the true number of cases during this time. If st of

the true cases are reported on day t and Nt cases are

observed on that day, then

Nt

Nt�1
¼ 0�9 Nt=st

Nt�1=st�1

� �

This implies that st = (1 ⁄ 0Æ9)st ) 1 will be reported on

day t, representing a 11% increase in reporting with time.

In the analysis, we modify the likelihood by inflating

expected counts by 1 ⁄ s, s = {s1,…,sT} per day, but do not

take account of the binomial variation in reported cases

that is associated with less than perfect reporting. We

assume that st = 0Æ15 for t = 1,…,15 (i.e., March 28 to

April 13) and thereafter st = 1Æ11 st ) 1. We report on sensi-

tivity to these assumptions.

Spectral analysis of the cyclical component of the epidemic
curve
As an independent check of our joint estimation of R0

and the serial interval, we used an alternative method to
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Figure 1. Confirmed and probable cases in the United States plotted

by onset time. First date of onset is March 28, 2009.
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estimate the serial interval from the observed epidemio-

logical curve. The idea is that we decompose the

observed epidemiological curve into a trend component,

which is essentially a moving average over d days, and a

cyclical component, which is the difference between the

observed number of cases and the trend. We expect that

if there are a few cases in excess over the trend at day t,

these cases will result in secondary cases that form an

excess over the trend near day t + l, and tertiary cases

that form an excess over the trend near day t + 2l and

so on. Therefore, we expect to see positive autocorrela-

tion in the cyclical component of the epidemiological

curve with a characteristic period equal to the mean of

the serial interval l. The characteristic period can be

extracted using spectral analysis. Here we used the spec-

trum() command with modified Daniell smoothers as

encoded in the R package. We expect the characteristic

period of l days to show up as a dominant frequency

of (1 ⁄ l) (per day).

Interquartile ranges for the estimates were obtained by

using a parametric bootstrap; 1000 simulated datasets

were generated using the parameter estimates and con-

strained to have a total epidemic size within 2% of the

actual epidemic size. The 0Æ025 and 0Æ975 quantiles

obtained from the simulated data are reported as the

confidence interval. All analyses were performed using R

2.6.1.

Results

The data are shown in Figure 1 by date of onset. There

were 1368 confirmed or probable cases with a recorded

date of report. Of these, there were 750 with a recorded

date of onset. The first date of onset is March 28, 2009.

The last date of onset is May 4, 2009 making 38 days of

data used in the analysis. Over this period of time 117 of

the reported cases had recently traveled to Mexico and are

considered imported cases in our analysis. We report

results for four separate datasets: all data with an onset

date on or before April 25, 26, 27, or 29. Further, by the

end of April knowledge of the epidemic was widespread in

the United States and reporting mechanisms began to

change, such that cases began to be reported in batches

and were less likely to include individual information on

the date of onset.

Estimation of R0 and the serial interval
Reporting delays by day of onset for cases with known date

of onset are shown in Figure 2A. The results from the

regression indicate that a reporting date that is 1 day later

is associated with a 5% increase in the reporting delay

(P < 0Æ001).

We first show the results from imputing and then aug-

menting the data to obtain ~Nt and Mt in Figure 2. Our

initial interest is in determining the optimal value for k
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(the maximum serial interval category) to be used in the

analysis. We allow k to vary between 4 and 7 days and

obtain the estimates for the serial interval using data with

onset times on or before the 27th day of the epidemic

(April 24, 2009). In interpreting the serial interval curves in

Figure 3, it should be noted that the final category repre-

sents the probability of a serial interval of k days or longer.

On the basis of these results, we set k to four since the log

likelihood values for the varying values of k are nearly

indistinguishable and in all cases the major mass (on aver-

age 88% for the original data and 93% for the augmented

data) of the serial interval lies in the first 3 days.

We obtain estimates using the original data (Nt), the

imputed data ( ~Nt) and the augmented data (Mt) shown in

Table 1 and Figure 4. Clearly using all available data will

lead to biased results since significant underreporting is

occurring from April 29 onward when the epidemic curve

begins to plummet. In Figure 4 we show results using data

with onset dates up to and including each day from April

21, 2009 through May 4, 2009. The reliability of the results

using the actual data is questionable since so many issues

in the data have not been accounted for. Augmenting and

imputing the data appears to stabilize the estimates sub-

stantially. We further note in the final pane of Figure 4 the

dependence between the estimates. Using data from simu-

lated outbreaks, we estimate the bivariate density of the

basic reproductive number and the mean of the serial

interval using a bivariate kernel density estimator. Not sur-

prisingly this illustrates the positive correlation between the

basic reproductive number and the mean of the serial

interval.

Using the observed data when the peak number of inci-

dent cases is observed, we obtain the serial interval esti-

mates shown in Figure 5. The estimated mean of the serial

interval tends to be between 2Æ5 and 2Æ6 days for all the

data, with a mode of 3 days. R0 is estimated to be between

2Æ3 and 2Æ5 for data ending between April 25 and April 27.

We observe growth rates, r, between 0Æ34 and 0Æ43, depend-

ing on the data used (Table 1).

Additionally, we observe that when we account for

increases in the reporting fraction, the estimates of the

reproductive number drop substantially (R̂0 ¼ 1 � 7� 1 � 8)

and the estimates of the mean serial interval decrease by

about 10% (2Æ2–2Æ3 days, see Table 1). We note the sensi-

tivity of these estimates to the assumed reporting distribu-

tion and report these sensitivities for estimates obtained on

April 27 using the imputed data where R̂0 ¼ 1 � 75 and

l̂ ¼ 2 � 21. Given a reporting fraction increase of 11% per

day, if the initial reporting fraction varies between

s0 = 0Æ01 and s0 = 0Æ20 then R̂0 will range between 1Æ91

(s0 = 0Æ01) and 1Æ71 (s0 = 0Æ20) and the estimated mean

serial interval will vary between 2Æ19 (s0 = 0Æ01) and 2Æ22

(s0 = 0Æ20). If the daily rate of change in the reporting ratio

varies from 11% to values between 8% and 14% and we

hold s0 = 0Æ15, then R̂0 ranges between 1Æ98 (8%) and 1Æ63

(14%) and l̂ is estimated to be between 2Æ28 (8%) and

2Æ16 (14%).

Finally, we assess the trend component of the epidemi-

ological curve using a moving average over d = 4 days,

and we assess the cyclical component as the deviation

between the observed number of cases and the trend.

We only use data up to April 28, 2009. For the original
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data we find a dominant frequency of 0Æ4, suggesting a

serial interval of 2Æ5 days. Repeating this with the

imputed data suggests a serial interval of 2Æ67 days, and

the augmented data suggests a serial interval of 3Æ2 days.

These results are similar to the findings on the

modal serial interval (3 days) from maximum likelihood

estimation, though slightly higher than the estimated

mean serial interval. This suggests that the estimated

values for serial intervals are based on regularities in

deviations from the trend in the epidemiological curve.

There were no indications of weekly periodicity or a

weekday effect.

Estimation of R0 alone
Estimates for the serial interval in a different setting have

recently been provided by Cowling et al.7 and Fraser

et al.10 The first is for seasonal influenza and obtained

using household transmission data. The authors fit the

observed serial interval estimates to a Weibull distribution

with a mean of 3Æ6 days and standard deviation of

1Æ6 days. This estimate is consistent with that obtained by

the Spanish surveillance group9 for the current influenza

A ⁄ H1N1 outbreak. Fraser et al.10 estimate the mean of the

serial interval to be 1Æ91 days for the present virus in La

Gloria, Mexico. While both serial interval and reproductive

Table 1. Estimates obtained from the

original, imputed, and augmented data
4 ⁄ 25 4 ⁄ 26 4 ⁄ 27 4 ⁄ 28

R̂0 (Range)

Original 2Æ27 (1Æ41, 2Æ48) 1Æ95 (1Æ27, 2Æ14) 1Æ59 (1Æ12, 1Æ66) 1Æ51 (1Æ14, 1Æ60)

1Æ66 (1Æ41, 2Æ14) 1Æ56 (1Æ21, 1Æ82) 1Æ40 (0Æ93, 1Æ39) 1Æ32 (0Æ86, 1Æ30)

Imputed 2Æ25 (1Æ37, 2Æ85) 2Æ19 (1Æ38, 2Æ96) 2Æ36 (1Æ51, 2Æ94) 2Æ31 (1Æ60, 3Æ02)

1Æ66 (1Æ37, 2Æ17) 1Æ68 (1Æ35, 2Æ04) 1Æ75 (1Æ42, 2Æ17) 1Æ68 (1Æ43, 1Æ98)

Augmented 2Æ26 (1Æ32, 2Æ51) 2Æ27 (1Æ38, 2Æ51) 2Æ51 (1Æ51, 2Æ88) 2Æ52 (1Æ70, 2Æ83)

1Æ68 (1Æ37, 2Æ21) 1Æ73 (1Æ39, 2Æ12) 1Æ84 (1Æ48, 2Æ29) 1Æ81 (1Æ53, 2Æ21)

l̂ (Range)

Original 2Æ55 (1Æ87, 3Æ30) 2Æ45 (1Æ65, 3Æ27) 2Æ20 (1Æ53, 3Æ13) 2Æ15 (1Æ59, 3Æ08)

2Æ21 (1Æ88, 3Æ17) 2Æ17 (1Æ61, 3Æ15) 2Æ04 (1Æ43, 3Æ01) 2Æ00 (1Æ39, 2Æ98)

Imputed 2Æ49 (1Æ74, 3Æ33) 2Æ47 (1Æ71, 3Æ31) 2Æ54 (1Æ71, 3Æ30) 2Æ60 (1Æ96, 3Æ24)

2Æ17 (1Æ67, 3Æ15) 2Æ18 (1Æ68, 3Æ17) 2Æ21 (1Æ71, 3Æ17) 2Æ28 (1Æ90, 3Æ18)

Augmented 2Æ48 (1Æ68, 3Æ28) 2Æ48 (1Æ74, 3Æ32) 2Æ55 (1Æ77, 3Æ34) 2Æ61 (2Æ00, 3Æ32)

2Æ16 (1Æ75, 3Æ16) 2Æ18 (1Æ71, 3Æ13) 2Æ21 (1Æ73, 3Æ21) 2Æ30 (1Æ94, 3Æ14)

r̂2 (Range)

Original 0Æ60 (0Æ21, 1Æ25) 0Æ77 (0Æ25, 1Æ48) 0Æ80 (0Æ24, 1Æ59) 0Æ79 (0Æ28, 1Æ59)

0Æ88 (0Æ22, 1Æ15) 0Æ94 (0Æ24, 1Æ49) 0Æ91 (0Æ24, 1Æ59) 0Æ89 (0Æ24, 1Æ59)

Imputed 0Æ64 (0Æ20, 1Æ52) 0Æ67 (0Æ21, 1Æ41) 0Æ67 (0Æ22, 1Æ37) 0Æ57 (0Æ21, 1Æ17)

0Æ88 (0Æ22, 1Æ31) 0Æ94 (0Æ22, 1Æ46) 0Æ91 (0Æ23, 1Æ33) 0Æ89 (0Æ21, 1Æ17)

Augmented 0Æ66 (0Æ21, 1Æ52) 0Æ65 (0Æ21, 1Æ54) 0Æ67 (0Æ20, 1Æ36) 0Æ60 (0Æ20, 1Æ26)

0Æ89 (0Æ23, 1Æ34) 0Æ88 (0Æ23, 1Æ34) 0Æ90 (0Æ23, 1Æ29) 0Æ85 (0Æ23, 1Æ15)

Imported cases

Original 58 72 96 102

10 14 24 6

Imputed 60 80 106 115

11 20 26 9

Augmented 65Æ4 93Æ4 139Æ1 160Æ0
13Æ4 27Æ9 45Æ7 20Æ9

Growth rate, r

Original 0Æ34 0Æ34 0Æ33 0Æ31

Imputed 0Æ34 0Æ37 0Æ40 0Æ37

Augmented 0Æ35 0Æ39 0Æ43 0Æ41

New cases

Original 78 117 137 152

Imputed 85 153 254 251

Augmented 91Æ6 176Æ3 314Æ9 344Æ4
Total cases

Original 275 392 529 681

Imputed 282 435 689 940

Augmented 295Æ0 471Æ3 786Æ3 1130Æ6

Bootstrap confidence intervals are shown. Italicized results reflect results accounting for an 11%

per day increase in reporting fraction starting April 13.
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number are likely to depend on the virus and also on the

population, we consider a sensitivity analysis in which we

assume previously measured serial interval distributions

and estimate the reproductive number alone (Table 2). To

use the Fraser et al. estimate, we assume that the standard

deviation is 1 day and that the serial interval follows a dis-

cretized gamma distribution. We also use a discretized

gamma distribution while preserving the mean and stan-

dard deviation of the Cowling et al. estimate.7 In both

cases we set k to 6.
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Figure 4. Estimates for the reproductive

number, mean, and variance of the serial

interval. The results using the original data

(solid line), imputed data (dashed line), and

augmented data (dotted line) are all shown

using data with onset date no later than the

value in the x-axis. Augmented data estimates

are not shown after April 30, 2009 since less

than 5% of the data is original data. These

results correspond, in part to those shown in

Table 1. The fourth pane shows the contour

plot of the joint density estimate of the mean

of the serial interval and the basic

reproductive number for imputed data up to

and including April 27. The values of the

contours correspond the estimated 25th,

50th, 75th, and 97Æ5th percentiles of the joint

density.
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Figure 5. Serial interval estimate using data

up to and including 4 ⁄ 25 ⁄ 2009 (top figure),

4 ⁄ 26 ⁄ 2009 (second), 4 ⁄ 27 ⁄ 2009 (third), and

4 ⁄ 28 ⁄ 2009 (bottom figure).
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Our results are as expected and indicate that the esti-

mated reproductive number varies dramatically depending

on the estimate of the serial interval used. For the longer

estimate of Cowling et al., the estimates ranged between

3Æ25 and 4Æ67 using the observed data. For the serial inter-

val estimate derived from Fraser et al., the estimates are

much lower, and are between 1Æ92 and 2Æ52.

The italicized entries in Table 2 provides estimates of the

reproductive number under the same circumstances as pre-

viously stated but also taking into account the possibility

that reporting increased by 11Æ1% each day starting April

13. Unsurprisingly, estimates decline under this assump-

tion. For the Fraser et al. serial interval, the estimated

reproductive number falls to between 1Æ5 and 2Æ0, whereas

for the Cowling et al. estimate the value is between 2Æ0 and

3Æ0.

These estimates were similarly sensitive to assumptions

on the initial reporting fraction and its rate of change start-

ing April 13. For values of the initial reporting fraction

from 0Æ01 to 0Æ20 for the imputed data on April 27, the

estimate of R0 will range between 3Æ03 and 2Æ70 for the

Cowling serial interval and 2Æ03 and 1Æ81 for the Fraser

serial interval. Varying the daily rate of change in the

reporting fraction from 8% to 14% rather than being fixed

at 11% means the estimates would range between 3Æ19 and

2Æ54 for the Cowling estimate and 2Æ06 and 1Æ75 for the

Fraser estimate. The larger the initial reporting fraction or

the larger the increase in the reporting ratio, the greater

proportion of cases that are reported throughout the time

of observation. This increase in reporting leads to a

decrease in the estimate of the reproductive number.

Discussion

We obtain estimates of the reproductive number and the

serial interval. These estimates, along with information on

population susceptibility and risk of severe disease, help to

inform public health policy, such as potential utility or suc-

cess of different community mitigation strategies, and help

to characterize the spread of the disease. Our estimates of

the early reproductive number of novel influenza A ⁄ H1N1

in the United States are higher than those obtained in

another published study of data from the Netherlands14

and Mexico.10 Our estimates are slightly smaller than those

obtained from an initial analysis of the outbreak in Japan15

and an alternative analysis of data from Mexico.16 There

are several possible explanations for this. First, the prior

estimates were based on a completed outbreak of a respira-

tory infection in La Gloria, Mexico and on virus genetic

data, whereas our study uses the early phase of the epi-

demic curve from the United States as a whole. Each of

these datasets has various uncertainties associated with it;

we have highlighted and attempted to correct for changes

in reporting, reporting delays, and missing dates of onset,

but these corrections will only be approximate. Indeed, all

datasets for an infection with a spectrum of severity and

changing ascertainment patterns will be imperfect in these

ways. Second, we have used a different approach8,13 from

Table 2 Estimates of the reproductive

number the mean of the serial interval (SI) is

3Æ6 days with SD of 1Æ6 days (7) or mean of

1Æ91 days and SD of 1 days (10)

4 ⁄ 25 ⁄ 09 4 ⁄ 26 ⁄ 09 4 ⁄ 27 ⁄ 09 4 ⁄ 28 ⁄ 09

R̂0 (confidence interval); mean SI = 3Æ6 days

Original data 3Æ48 (2Æ88, 3Æ72) 3Æ29 (2Æ85, 3Æ47) 2Æ87 (2Æ55, 3Æ06) 2Æ59 (2Æ31, 2Æ77)

2Æ57 (2Æ39, 3Æ13) 2Æ48 (2Æ30, 2Æ81) 2Æ25 (2Æ04, 2Æ46) 2Æ05 (1Æ80, 2Æ16)

Imputed data 3Æ56 (2Æ90, 3Æ80) 3Æ65 (3Æ10, 3Æ88) 3Æ83 (3Æ46, 4Æ12) 3Æ53 (3Æ23, 3Æ70)

2Æ61 (2Æ43, 3Æ19) 2Æ68 (2Æ50, 3Æ14) 2Æ78 (2Æ69, 3Æ23) 2Æ61 (2Æ47, 2Æ86)

Augmented data 3Æ62 (2Æ94, 3Æ89) 3Æ79 (3Æ27, 4Æ05) 4Æ11 (3Æ74, 4Æ42) 3Æ94 (3Æ72, 4Æ22)

2Æ66 (2Æ48, 3Æ23) 2Æ79 (2Æ61, 3Æ26) 2Æ97 (2Æ88, 3Æ45) 2Æ88 (2Æ79, 3Æ19)

R̂0 (confidence interval); mean SI = 1Æ91 days

Original data 1Æ99 (1Æ77, 2Æ26) 1Æ86 (1Æ71, 2Æ08) 1Æ72 (1Æ55, 1Æ90) 1Æ63 (1Æ51, 1Æ80)

1Æ76 (1Æ64, 2Æ11) 1Æ66 (1Æ54, 1Æ88) 1Æ54 (1Æ39, 1Æ71) 1Æ45 (1Æ32, 1Æ59)

Imputed data 2Æ03 (1Æ79, 2Æ31) 2Æ05 (1Æ85, 2Æ30) 2Æ22 (2Æ11, 2Æ53) 2Æ04 (1Æ97, 2Æ28)

1Æ80 (1Æ68, 2Æ17) 1Æ78 (1Æ68, 2Æ09) 1Æ87 (1Æ85, 2Æ23) 1Æ74 (1Æ70, 2Æ00)

Augmented data 2Æ05 (1Æ80, 2Æ35) 2Æ11 (1Æ95, 2Æ38) 2Æ34 (2Æ27, 2Æ66) 2Æ20 (2Æ18, 2Æ45)

1Æ82 (1Æ69, 2Æ16) 1Æ84 (1Æ75, 2Æ14) 1Æ97 (1Æ97, 2Æ32) 1Æ87 (1Æ85, 2Æ08)

Num cases

Original data 275 392 529 681

Imputed data 282 435 689 940

Augmented data 295Æ0 471Æ3 786Æ3 1130Æ6

Italicized results reflect results accounting for an 11% per day increase in reporting fraction

starting April 13.
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that used in the Mexico data; results reported here use a

method focused on a period of exponential growth of the

epidemic, while the prior estimates used either viral

sequence coalescence estimates or analysis of a whole epi-

demic curve, including the declining phase, in the case of

La Gloria. Finally, our estimate of the serial interval from

the data is longer than that obtained for La Gloria, though

somewhat shorter than that obtained from contact tracing

in Spain.9 As expected, if we assume a serial interval distri-

bution, rather than estimate it, our estimate of the repro-

ductive number shifts to adjust, as a consequence of the

relationship between these two quantities.17,18

The results presented here should be interpreted with the

following caveats in mind. First the data are not from a

closed system, and clearly there are imported cases, such as

individuals who acquired the illness in Mexico after March

28. Although we account for cases that are known to be

imported, it is likely that the data we have is incomplete

and several other infections could have been imported.

Misclassification of cases that were truly imported will bias

reproductive number estimates upwards. Second, incom-

plete reporting is a feature of nearly all data on the novel

influenza A ⁄ H1N1, and certainly of any datasets large

enough to estimate temporal trends in case numbers. If

underreporting were consistent over time, it would have

only a minor effect on our point estimates (which depend

mainly on the growth rate and on cyclical signals in the

data) but would increase uncertainty around these esti-

mates. More likely, as we have noted, there are trends in

reporting, with increasing reporting as awareness grows,

and declining reporting as public health workers become

unable to obtain and report detailed information on each

case. One might argue for analyzing only a subset of cases

during the time period with optimal reporting or by only

looking at hospitalizations, which might be more accurately

recorded. However, in the first case, we ignore a large

number of initial cases that will undoubtedly lead to gross

errors in the estimates. In this case all secondary cases after

the first day that is analyzed will be attributable to that

day. By only considering hospitalizations, we violate the

assumption of a closed system and assume that all cases

that are hospitalized are attributable to another hospitalized

case. The results from such an analysis would be challeng-

ing to interpret. Instead, we have accounted for these

changes by imputation of onset dates, augmentation of

data to account for reporting delays, and adjustments for

an estimated upward trend in reporting of the early data.

We feel that such adjustments, while still imperfect, are

superior to ignoring information in incomplete data. In all

analyses of such data, the statistical confidence intervals

obtained should not be interpreted as measuring all of the

uncertainty in estimates; additional uncertainty comes from

unmeasured changes in reporting.

We have also noted the impact of the assumed reporting

distribution on the estimates with a sensitivity analysis.

While we have estimated the rate of increase in the report-

ing fraction through time from our data, our estimate of

the initial reporting fraction is not based on data. We have

illustrated the impact of variation in these quantities on

our estimates and note that while our estimates do change

as these quantities vary the changes are not dramatic. In

fact if we assume that the initial reporting fraction is as

low as 1% rather than our assumed 15%, then the estimate

of the reproductive number increases from 1Æ75 to 1Æ90.

The impact that the difference in these two estimates will

have on policy is minimal. We also note that under the

same circumstances, the estimated mean of the serial inter-

val changes very little (from 2Æ21 to 2Æ19), illustrating the

robustness of the mean to variations in this quantity. What

these results mean is that as fewer of the cases are reported,

our estimates of the reproductive number are likely to be

overly conservative if we do not properly adjust for this

underreporting.

We have discussed the impact of the assumed serial

interval on the estimates of the reproductive number. It is

clear that assuming a form of the serial interval directly

impacts the estimates of the reproductive number. External

estimates of the serial interval distribution have the advan-

tage that they are directly observed rather than inferred

from properties of the epidemic curve; on the other hand,

pairs of cases with known infector and infectee are non-

representative of the overall pattern of transmission in a

population. For our baseline results, we estimate the serial

interval non-parametrically rather than imposing a shape

on it. We have also incorporated previous estimates of

serial interval to test the sensitivity of our conclusions.

The difference between our low estimates (when assuming

increased reporting fraction and using Fraser et al.10 serial

interval distribution from La Gloria) and our high estimates

(when ignoring increased reporting and using the serial

interval distribution of Cowling et al. for seasonal influ-

enza7) is the difference between an epidemic that is readily

controlled and one that is virtually uncontrollable according

to existing models of pandemic interventions.6,11,19 It is clear

that more precise estimates of the serial interval in various

contexts for this virus are essential to reduce the uncertainty

of estimates of the reproductive number; similarly, it is

essential to estimate growth rates in a variety of contexts

where reporting fractions can be better understood, possibly

at local levels where a single reporting system is used.

Finally, it should be remembered that neither serial

interval20,21 nor reproductive number is a constant of nat-

ure; each depends on the population, the state of control

measures and behavior, and other factors. Continued mon-

itoring of the growth of the pandemic in various settings

will be required to define the range of reproductive

Early estimates of the H1N1 outbreak in the USA
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numbers achieved by this virus and their possible depen-

dence on geography, population, season, and changes in

the virus.
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