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Abstract
Multivariate point processes are increasingly being used to model neuronal response properties in
the cortex. Estimating the conditional intensity functions underlying these processes is important to
characterize and decode the firing patterns of cortical neurons. This paper proposes a new approach
for estimating these intensity functions directly from a compressed representation of the neurons’
extracellular recordings. The approach is based on exploiting a sparse representation of the
extracellular spike waveforms, previously demonstrated to yield near-optimal denoising and
compression properties. We show that by restricting this sparse representation to a subset of
projections that simultaneously preserve features of the spike waveforms in addition to the temporal
characteristics of the underlying intensity functions, we can reasonably approximate the
instantaneous firing rates of the recorded neurons with variable tuning characteristics across a
multitude of time scales. Such feature is highly desirable to detect subtle temporal differences in
neuronal firing characteristics from single-trial data. An added advantage of this approach is that it
eliminates multiple steps from the typical processing path of neural signals that are customarily
performed for instantaneous neural decoding. We demonstrate the decoding performance of the
approach using a stochastic cosine tuning model of motor cortical activity during a natural, nongoal-
directed 2-D arm movement.
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I. Introduction
SPIKE trains are the fundamental neural communication mechanism used by cortical neurons
to relay, process, and store information in the central nervous system. Decoding the information
in these spike trains is a fundamental goal in systems neuroscience in order to better understand
the complex mechanisms underlying brain function. In motor systems, these spike trains were
demonstrated to carry important information about movement intention and execution [1], and
were shown to be useful in the development of neuroprosthetic devices and brain-machine
interface (BMI) technology to assist people suffering from severe disability in improving their
lifestyle [2], [3].

Cortically-controlled BMI systems rely fundamentally on instantaneous decoding of spike
trains from motor cortical neurons recorded during a very limited interval. This interval, often
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referred to as the movement planning period, is estimated to be around 100–200 ms [4]. The
decoding process is typically a cascade of processing steps illustrated in Fig. 1. It features
amplification and filtering, followed by spike detection and sorting to segregate single unit
responses in the form of binary spike trains. The spike trains are then filtered using a variable-
width kernel function (e.g., a Gaussian) to yield a smoothed estimate of the instantaneous firing
rate [5], [6]. These steps have to be performed within the movement preparation period to
enable the subject to experience a natural motor behavior.

The spike sorting step is arguably the most computationally prohibitive in that sequence. This
step requires two modes of analysis: a training mode and a runtime mode. During the training
mode, spikes are detected, aligned, and sorted based on certain discriminating features, such
as principal component analysis (PCA) scores [7]. During runtime, an observed spike’s features
are compared to the stored features to determine which neuronal class it belongs to. Both steps
require significant amount of computations to enable this identification/classification process
to run smoothly. As a result, most of existing systems feature a wired connection to the brain
to permit streaming the high-bandwidth neural data to the outside world where relatively
unlimited computing power can carry out this task with close to real time performance.

In our extensive body of prior work, we have proposed an approach for neural data denoising
and compression [8] as well as spike detection and sorting [9], [10], based on a sparse
representation of the recorded data prior to telemetry transmission. We have further reported
on the suitability of computing this representation within the resource-constrained environment
of a wireless implantable system [11]. In this paper, we show that this same sparse
representation not only overcomes the severe bandwidth limitations of a wireless implantable
system, but also enables adequate estimation of neuronal firing rates without the need to
decompress, reconstruct, and sort the spikes off-chip in the traditional sense. This is illustrated
in the bottom of Fig. 1, where decoding neural discharge patterns can be directly performed
using the compressed data.

The paper is organized as follows. Section II introduces the application of point processes to
model neuronal firing and outlines how the mapping of the data to spike train realizations of
these point processes can be achieved through a sparse representation operator that is further
used to estimate their underlying intensities. Section III describes the details of the methods
used to collect real spike data and simulate neural activity encoding 2-D arm movement. Results
of these experiments are reported and discussed in Sections IV and V, respectively.

II. Theory
A. Single Neuron Point Process Model

In a typical recording experiment, the observations of interest are the times of occurrence of
events from a population of neurons, expressesing the discharge pattern of pattern these
neurons. In an arbitrary neuron p, the firing can be modeled as a realization of an underlying
point process with conditional intensity function—or firing rate—λp(t|F) [14]. This intensity
function is conditioned on some set, F, of intrinsic properties of the neuron itself and the
neurons connected to it, and some extrinsic properties such as the neuron’s tuning
characteristics to external stimuli features during that trial. Because many of these properties
are hard to measure, the number of events in a given interval, Np, is typically random by nature.
The integral of λp over a finite time interval [Ta, Tb] represents the expected value Np within
a single trial [15]

(1)
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Estimating λp from the set of event times {tp} is typically achieved by binning the data into
time bins of equal width, Tw = Tb − Ta, and counting the number of events occurring within
each bin. The resulting spike counts, often referred to as a rate histogram, constitute an
instantaneous firing rate estimate λ ̂p. In traditional signal processing, this is equivalent to
convolving the spike train with a fixed-width rectangular window. This approach assumes that
variations in the rate pattern over the bin width do not carry information that is destroyed if
aliasing occurs, for example, when the bin width is not optimally selected to satisfy the Nyquist
sampling rate of λp.

The binning approach can detect the presence of the type of spike bursts that may exist within
the fixed-length bins. However, bursts come in a variety of lengths within a given trial reflecting
the heterogeneous characteristics of cortical neurons, and can range from very short bursts (3–
4 spikes within 2–3 ms [16]) to much longer bursts that can last for more than 2 s [17]. This
implies that the firing rate of individual neurons is highly nonstationary and that temporal and
spectral variations in λp are believed to occur over a multitude of time scales that reflect the
complex temporal structure of neuronal encoding while subjects carry out similar behavioral
tasks [18], [19], or depending on the demands of distinct behavioral tasks [20]. This
nonstationarity arises in part because of the dependence of the firing rate on multiple factors
such as the degree of tuning (sharp or broad) to behavioral parameters, the behavioral state,
the subject’s level of attention to the task, level of fatigue, prior experience with the task, etc.
While across-trial averaging of rate histograms (peristimulus) helps to reduce this variability,
it destroys any information about the dynamics of interaction between neurons that are widely
believed to affect the receptive fields of cortical neurons, particularly when plastic changes
occur across multiple repeated trials. Typically, a nonparametric kernel smoothing step (e.g.,
a Parzen window [21]) is needed. The temporal support Tw of the kernel function is known to
strongly impact the rate estimator [22]. Moreover, the selection of Tw is arguably important to
determine the type of neural response property sought. For small Tw (<2–3 ms), precise event
times can be obtained. As Tw approaches the trial length, we obtain the overall average firing
rate over that trial. In between these two limits, Tw needs to be adaptively selected to capture
any nonstationarities in λp that may reflect continuously varying degrees of neuronal inhibition
and excitation indicative of variable degree of tuning to behavioral parameters.

B. Sparse Extracellular Spike Recordings
We ultimately seek to estimate λp directly from the recorded raw data. However, two
complications arise. First, the detected events are not directly manifested as binary sequence
of zeros and ones to permit direct convolution with a kernel to take place, but rather by full
action potential (AP) waveforms. Second, these events are typically a combination of multiple
single unit activity in the form of AP waveforms with generally distinct—but occasionally
similar—shapes. This mandates the spike sorting step before the actual firing rate can be
estimated.

Let’s assume that the actual spike waveforms are uniformly sampled over a period Ts. Each
spike from neuron p is a vector of length Ns samples that we will denote by gp. For simplicity
assume the event time is taken as the first sample of the spike waveform (this can be generalized
to any time index, e.g., that of a detection threshold crossing). The discrete time series
corresponding to the entire activity of neuron p over a single trial of length T can be expressed
as

(2)
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where the time index i includes all the refractory and rebound effects of the neuron and takes
values from the set {tp}, while δ( · ) is the Dirac delta function. For compression purposes, it
was shown in [8] and [9] that a carefully-chosen sparse transformation operator, such as a
wavelet transform, can significantly reduce the number of coefficients representing each spike
waveform to some Nc ⪡ Ns. This number is determined based on the degree of sparseness q
as Nc ≈ ε(q−2)/2q where 0 < q < 2 (q = 0 implies no sparsness, while q = 2 implies fully sparse)
and ε denotes some arbitrarily chosen signal reconstruction error [23]. Mathematically, an
observerd spike, g, is represented by the transform coefficients obtained from the inner product
gj = 〈g, wj〉, where wj is an arbitrary wavelet basis at time scale j. When multiple units are
simultaneously recorded, the spike recordings from the entire population can be expressed as

(3)

where  is the number of nonzero transform coefficients at time scale j, and i takes values

from the set of spike times for all neurons in the whole trial, . Note that  and the

total number of coefficients obtained is .

To minimize the number of the most important coefficients/event, ideally to a single feature,
we note that the magnitude of the coefficients gj carry information about the degree of
correlation of the spike waveforms with the basis wj. Therefore, this information can be used
to single out one feature out of “the most significant” coefficients per event from neuron p via
a thresholding process. One way to obtain this single feature, fgj[k] is to locally average the
coefficient before thresholding. We define a neuron-specific sensing threshold at time scale

jj, denoted . This threshold is selected to preserve the ability to discriminate neuron p’s events
from those belonging to other neurons using this single feature. Specifically, in every time
scale j, we cast the problem as a binary hypothesis test in which

(4)

Using a top-down approach,  is selected based on a standard likelihood ratio test (given
predetermined level of false positive). The outcome of this statistical binary test is one time
index per event, k*, for which the alternative hypothesis H1 is in effect. In other words, the
sensing threshold in a given time scale should allow only one feature to be kept per event. Once
this is achieved, fgj [k] at indices where H0 is in effect are automatically set to zero. Note that
this step allows suppressing both noise coefficients as well as those belonging to neurons’ other
than neuron p’s. In such case, the thresholded signal can be expressed as

(5)

The outcome of (5), after proper normalization fgj[k*], is an estimate of the true binary spike
train vector. It can be readily seen that the temporal characteristics of this estimate will exactly
match that of the binary spike train of neuron p and consequently preserves all the critical
information such as spike counts and interspike interval (ISI) statistics allowing rate estimation
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to be readily implemented [24]. The simple example in Fig. 2 illustrates this idea. In each
wavelet decomposition level, the binary hypothesis test (i.e., the thresholding) is equivalent to
a two-class discrimination task whereby one unit at a time is identified at each level. The spike
class separability (defined below) is compared to that in the time domain and a unit is extracted
(i.e., its coefficients removed) from the data set if the unit separability is higher than that of
the time domain. This process is repeated until the separability no longer exceeds that of the
time domain, or the size of the remaining events is smaller than a minimum cluster size
(typically five events), or the maximum number of decomposition levels has been reached
(typically 4–5 levels).

C. Instantaneous Rate Estimation

A fundamental property of the DWT sparse representation suggests that as j increases, 
becomes more representative of the intensity function rather than the temporal details of neuron
p’s spikes, which were eventually captured in finer time scales. This is because the coefficients
that survive the sensing threshold will spread their energy across multiple adjacent time indices,
thereby performing the same role as the kernel smoothing approach, but at a much less
computational overhead as will be shown later. Mathematically, extending the DWT of the

vector  after normalization to higher level requires convolving it with a wavelet basis kernel
with increasing support. This support, denoted tL at level L, is related to the sampling period
Ts by

(6)

where nw is the wavelet filter support. For the symmlet4 basis used in this paper (nw = 8), this
temporal support is equivalent to ~1.2 ms at level 4 (at 25 kHz sampling rate), which roughly
corresponds to one full event duration. Extending the decomposition to level 5 will include
refractory and rebound effects of neurons typically observed in the cerebral cortex [18].
Therefore, temporal characteristics of the firing rate will be best characterized starting at level
6 and beyond where the basis support becomes long enough to include two or more consecutive
spike events.

D. Computational Complexity
Herein, we compare the cost of estimating the firing rate through the standard time domain
spike sorting using PCA scores followed by kernel smoothing to the proposed compressed
sensing approach. Both involve calculating the computational cost in two different modes of
operation, the training mode and the “runtime mode. In the training mode, features are extracted
and the population size is estimated using cluster cutting in the feature space. This should
ideally correspond to the number of distinct spike templates in the data. Using a Bayesian
classifier with equal priors

(7)
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where Cp is the class of neuron p. It is assumed that each class is multivariate Gaussian
distributed, where μp and Σp are the Ns × 1 mean vector and Ns × Ns temporal covariance matrix
for each neuron p = 1, . . . , P. The overall computations for the Bayesian classifier are in the

order of .

First, spikes are aligned by searching for a local extreme followed by cropping the waveform
symmetrically around that location, which requires computations in the order of ~O(2NsNP).
Finding the eigenvalues and eigenvectors, for example, using a cyclic Jacobi method [25],

requires  computations. For projection onto a PCA space, an O(2NsNP operations
are needed to reduce the dimensionality of spike waveforms to a 2-D feature space.

A cluster-cutting algorithm, such as expectation-maximization (EM), is performed on the

obtained 2-D feature space. Optimizing EM clustering requires  computations,
where P here indicates the number of Gaussian models and d is the dimension of the space
(here d = 2). To detect various spike prototypes, the EM clustering is implemented for different
P’s, and the best fit is selected. The overall computations required for EM clustering for a

maximum number of P units is in the order of .
Consequently, the overall computations required for training the PCA-based spike sorter is

. In the runtime mode, detected spikes are aligned and
projected, and then classified to one of the predefined units using the Bayesian classifier,
requiring computations in the order of ~O(4Ns + 4P).

In contrast, a five-level wavelet decomposition requires operations in the order of ~O(23Ns) if
classical convolution is used. However, this number can be significantly reduced by using the
approach we reported in [11]. Local averaging, typically used to remedy the shift variance
property of the DWT and to obtain the single feature, with a node-dependent filter requires
computations in the order of ~O(8Ns), since this filter is only applied to nodes 4, 6, 8, 9, and
10 in which spike features are mostly captured. At each node, one unit is discriminated at a
time using a two-class cluster cutting (binary classification). This requires computations in the

order of . Consequently, the overall computations required for the training mode

using the compressed sensing method is in the order of . In the runtime
mode, every detected event is decomposed, filtered, and classified using a 1-D Bayesian
classifier with computations in the order of ~O(21Ns + P).

For rate estimation, three methods were considered: the rectangular kernel (rate histogram),
the Gaussian kernel, and the extended DWT (EDWT) we propose. In EDWT, the firing rate is
directly obtained by normalizing the thresholded vectors and extending the decomposition to
lower levels (higher frequency resolution). This requires

. In the kernel based methods, a kernel function is
convolved with the spike train and the rate is estimated by sampling the result. Assuming 45
ms bin width, and 2 ms refractory period, the number of computation required is in the order
of ~O(22.5 × nw). A Gaussian kernel width of nw = 100 is typically used to limit the amount
of computations. The computational cost comparison is summarized in Table I and further
plotted in the results section.

III. Methods
Because our purpose was to demonstrate the ability to decode movement trajectory directly
from neural data using the compressed signal representation, and given that the nature of
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cortical encoding of movement remains a subject of current debate in the neuroscience
community [1], [3], [4], [26], investigation of the methods developed in this paper required
generation of neural data with known spike train encoding properties. This section describes
in details the methods we used to model and analyze the data to demonstrate the validity of the
approach.

A. Spike Class Generation and Separability
Spike waveforms were detected and extracted from spontaneous activity recorded in the
primary motor cortex of an anesthetized rat using a 16-channel microelectrode array. All
procedures were approved by the Institutional Animal Care and Use Committee at Michigan
State University following NIH guidelines. Details of the experimental procedures to obtain
these recordings are described elsewhere [8]. These spikes were manually aligned and sorted
using a custom spike sorting algorithm [9]. Out of 24 units recorded, the actual action potential
waveforms are shown in Fig. 3 for five representative units recorded on one electrode.

The separability of spike classes was calculated to determine the sensing thresholds for each
neuron at any given time scale j. Specifically, we used the dimensionless measure

(8)

for a set of clusters, {Ci|i = 1, 2, . . . , P}. The between-cluster separability is defined by [27]

(9)

where |Ci| equals the number of spikes belonging to cluster Ci, x and y are elements from the
set of all spike waveforms and || · || represents the Euclidean distance (l2 norm) between two
elements. The quantity in (9) provides a factor proportional to the overall separation between
clusters. For improved separability, a large SB is desired. On the other hand, the within-
cluster separability is defined as

(10)

and is proportional to the overall spread within each of the individual clusters. For improved
separability, a small SW is desired. Therefore, a large Γ indicates a greater overall separability.

We computed a separability ratio (SR) as the ratio between Γ{2} (i.e., a two-class separability)
in every node of DWT decomposition to that in the time domain. Therefore, an SR ratio of 1
indicates equal degree of separability in both domains, while ratios larger than 1 indicate
superior separability in the sparse representation domain. This later case implies that at least
one unit can be separated in that node’s feature space better than the time domain’s feature
space. This detected unit is subsequently removed from the data by removing its coefficients
and the decomposition process continues until all possible units are detected, or all nodes have
been examined on any given electrode. On the other hand, if the same unit can be discriminated
in more than one node, the “best node” for discrimination of this unit is the node that provides
the largest SR. For a given probability of false positives (typically 0.1), the sensing threshold
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 is determined by maximizing the separability of at least one spike class in each node. Since
the sensing threshold is chosen to discriminate between spike events and not to minimize the
mean squared error (MSE) of the reconstructed spike, this selection rule results in thresholds
that are typically higher than those obtained from the thresholding rule for compression and
near-optimal signal reconstruction [8], [28]. As a result, the number of false positives that may
be caused by classifying noise patterns as unit-generated spikes is automatically reduced.

B. Population Model of 2-D Arm Movement
Since instantaneous decoding of spike trains is the ultimate goal in this application, we used
the decoding performance as a measure of success of this method. To simulate spike trains
from motor cortex neurons during movement planning and execution, we used a probabilistic
population encoding model of a natural, nongoal directed, 2-D arm movement trajectory. The
arm movement data were experimentally collected to ensure realistic kinematics. The discrete
time representation of the conditional intensity governing each neuron firing rate was modeled
as a variant of the cosine tuning model of the neuron’s preferred direction θp (ranging from 0
to 2π) [1]

(11)

where βp denotes the background firing rate, θ(tk) denotes the actual movement direction, 
denotes velocity magnitude (kept constant during the simulation), Xp = [θp,δp,ωp] is a
parameter vector governing the tuning characteristics of neuron p, where it was assumed that
the tuning depth δp was constant (δp and βp where fixed for all neurons and equal to 1 and log
(5), respectively), the preferred direction θp was uniformly distributed, while the tuning width
ωp was varied across experiments. Using this model, event times were obtained using an
inhomogeneous Poisson process with 2 ms refractory period as

(12)

where Δ is a very small bin (~1 ms).

The tuning term in (11) incorporates a neuron-dependent tuning width ωp, an important
parameter that affects the bin width choice for rate estimation prior to decoding. Variability in
this term (ωp ranged from 0.25 to 4 in each experiment) resulted in firing rates that are more
stochastic in nature and served to closely approximate the characteristics of cortical neurons’
firing patterns [18]. We used the mean squared error between the rate functions obtained from
the simulated trajectory data and the estimated rates using the EDWT method as

(13)

While (13) provides a simple and obvious measure of performance, it should be noted that in
practice the true rate function is unknown. Information theoretic measures are useful in such
cases since they assess higher order statistical correlation between the estimators and
measurable quantities such as the observed movement and can be useful to determine the time
scale that best characterize the information in the instantaneous firing rate. We used a node-
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dependent mutual information metric between the encoded movement parameter and the rate
estimator [29] defined as

(14)

This metric is particularly useful when the instantaneous rate function is not Gaussian
distributed.

IV. Results
A. Spike Class Separability

We first report results of the spike sorting component of the algorithm. Fig. 3(c) shows a scatter
plot of the first two principal components of the five representative spike classes in Fig. 3(a).
These units were selected from the recorded pool to have poorly isolated clusters. Results of
manual, extensive, offline sorting using hierarchical clustering of all the features in the data
are displayed in Fig. 3(d). In Fig. 3(e), the clustering result using automated, PCA/EM cluster-
cutting with two principal features is illustrated. Examination of these figures reveals that the
lack of separability in the feature space, particularly for units 1, 2, 3, and 5, results in significant
differences between the manual, extensive, offline sorting result and the automated PCA/EM
result. Alternatively, when a two-class situation is considered where one single cluster is
isolated in a given node while all other spike classes are lumped together, Fig. 4 illustrates that
each spike class is separable in at least one node of the sparse representation. The different
degrees of separability across nodes permit isolating one class at a time, owing to the
compactness property of the transform in nodes that are best representative of that class. For
example, class 1 appears poorly isolated from class 5 in the time-domain feature space, yet it
is well separated from all the other classes in node 6.

It can be seen from Fig. 4 that in most nodes, the SR ratio is larger than 1 (except for nodes 2
and 10). For the 24 units recorded in this data set, the performance of the compressed sensing
strategy was 92.88 ± 6.33% compared to 93.49 ± 6.36% for the PCA-EM. Performance of the
sensing threshold selection process was quantified as a function of the number of coefficients
retained in Fig. 4(b). As we increase the sensing threshold, the number of retained coefficients
logically decreases thereby improving compression. However, the most interesting result is
the improved separability by 2.5 dB compared to time domain separability, when preserving
only the two most significant coefficients. This implies that discarding some of the coefficients
that may be needed for optimal spike reconstruction and sorting in the time domain in a classical
sense does improve the ability to discriminate between spike classes based on their magnitude
only. Maximum separability is reached when we compute a single feature from the two most
significant coefficients/event.

B. Firing Rate Estimation
A sample trajectory, rate functions from neurons with distinct tuning characteristics and their
spike train realizations are shown in Fig. 5. It can be clearly seen in Fig. 5(a) that the tuning
width has a direct influence on the spike train statistics, particularly the ISI. A broadly tuned
neuron exhibits more regular ISI distribution, while a sharply tuned neuron exhibits a more
irregular pattern ISI. Fig. 5(b) illustrates the tuning characteristics of a subpopulation of the
entire population over a limited range (for clarity) to demonstrate the heterogeneous
characteristics of the model we employed. A 3-s raster plot in Fig. 5(c) illustrates the stochastic
patterns obtained for the trajectory illustrated later in Fig. 8.

Aghagolzadeh and Oweiss Page 9

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2009 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In Fig. 6, a 400-ms segment of the movement’s angular direction over time is illustrated
superimposed on the neuronal tuning range of five representative units with distinct tuning
widths. The resulting firing rates and their estimators using the rate histogram, Gaussian kernel,
and extended DWT methods are illustrated for the five units, showing various degrees of
estimation quality. As expected, the rate histogram estimate is noisy owing to the fixed width
of the kernel, while the Gaussian and EDWT methods perform better. In Fig. 6(b), the relation
between the wavelet kernel size and the MSE is quantified. As expected, decomposition levels
with shorter kernel width (i.e., fine time scales) tend to provide the lowest MSE for neurons
that are sharply tuned. In contrast, a global minimum in the MSE is observed for broadly tuned
neurons at coarser time scales, suggesting that these decomposition levels are better suited for
capturing the time varying-characteristics of the firing rates. Interestingly, the MSE for the
EDWT method attains a lower level than both the rectangular and Gaussian kernel methods at
the optimal time scale, clearly demonstrating the superiority of the proposed approach. The
relation between the tuning width and the kernel size for the entire population is illustrated in
Fig. 6(c). As the tuning broadens, larger kernel sizes (i.e., deeper decomposition levels) are
required to attain a minimum MSE and vice versa.

The mutual information between the actual movement trajectory and the rate estimators are
shown in Fig. 7. There is a steady increase in the mutual information versus kernel support
until a maximum is reached at the optimal decomposition level that agrees with the minimum
MSE performance. This maximum coincides with a rate estimator spectral bandwidth matching
that of the underlying movement parameter. Rate estimators beyond the optimal time scale do
not carry any additional information about the movement trajectory.

C. Decoding Performance
A sample trajectory and the decoded trajectory are shown in Fig. 8 for four different cases.
First, when no spike sorting is required. This is the ideal case in which every electrode records
exactly the activity of one unit, but is hard to encounter in practice. Second, when two or more
units are recorded on a single electrode but no spike sorting is performed prior to rate estimation.
Third, when spike sorting is performed for the later case using the PCA/EM/Gaussian kernel
algorithm. And fourth, when combined spike sorting and rate estimation are performed using
the compressed sensing method. We used a linear filter for decoding in all cases [30]. It is clear
that the proposed method has a decoding error variance that is comparable to the PCA/EM/
Gaussian kernel algorithm, suggesting that the performance is as good as, if not superior, to
the standard method.

D. Computational Cost
An important aspect to validate and confirm the superiority of our approach is to compare the
computational complexity of the standard PCA/EM/Gaussian kernel rate estimator to the
compressed sensing method for different event lengths (Ns) and different number of events
(Np) per neuron.

The results illustrated in Fig. 9 show that the proposed method requires significantly less
computations for training. This is mainly attributed to the complexity in computing the
eigenvectors of the spike data every time a new unit is recorded. In contrast, wavelets serve as
universal approximators to a wide variety of transient signals and therefore do not need to be
updated with the occurrence of events from new units. In the runtime mode, the computational
cost for the proposed method becomes higher when the number of samples/event exceeds 128
samples. At a nominal sampling rate of 40 kHz (lower rates are typically used), this corresponds
to a 3.2 ms interval, which is much larger than the typical action potential duration (estimated
to be between 1.2–1.5 ms). We conclude that the proposed method is also superior in the
runtime mode.
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V. Discussion
In this work, we have proposed a new approach to directly estimate a critical neuronal response
property, the instantaneous firing rate, from a compressed representation of the recorded neural
data. The approach has three major benefits. First, the near-optimal denoising and compression
allows to efficiently transmit the activity of large populations of neurons while simultaneously
maintaining features of their individual spike waveforms necessary for spike sorting, if desired.
Second, firing rates are estimated across a multitude of timescales, an essential feature to cope
with the heterogeneous tuning characteristics of motor cortex neurons. These characteristics
are important to consider in long term experiments where plasticity in the ensemble interaction
is likely to affect the optimal time scale for rate estimation. Third, as our extensive body of
prior work has demonstrated [11], [31], the algorithm can be efficiently implemented in low-
power, small size electronics to enable direct decoding of the neural signals to take place
without the need for massive computing power. Taken together, these are highly desirable
features for real-time adaptive decoding in BMI applications.

We have used a particular model for encoding the 2-D hand trajectory for demonstration
purposes only. It should be noted, however, that the method is completely independent of that
model. What is important to consider is the fact that the sparse representation preserves all the
information that needs to be extracted from the recorded neural data to permit faithful decoding
to take place downstream. This includes the features of the spike waveforms as well as the
temporal characteristics of the underlying rate functions.

In the tests performed here we have used the same wavelet basis, the symmlet4, for both spike
sorting and rate estimation. This basis was previously demonstrated to be near-optimal for
denoising, compression, and hardware implementation. However, the possibility exists to use
this basis in the first few levels, and then extend the decomposition from that point on using a
different basis that may better represent other features present in the rate functions that were
not best approximated by the symmlet4. For example, the “bumps” in the sparse rate estimates
in Fig. 6 are not as symmetrical in shape as those in the original rate, or those in the Gaussian
estimator. For this particular example a more symmetric basis may be better suited.

Estimation of the rate using a fixed bin width may be adequate for certain applications that
utilize firing rates as the sole information for decoding cortical responses during instructed
behavioral tasks such as goal-directed arm reach tasks [3]-[4], [32], [33]. These operate over
a limited range of behavioral time scales. However, natural motor behavior is characterized by
more heterogeneous temporal characteristics that reflect highly-nonstationary sensory
feedback mechanisms from the surrounding cortical areas. The firing rates of motor neurons
during naturalistic movements are highly stochastic and require a statistically-driven technique
that can adapt to the expected variability [18]. This is particularly important given the
significant degrees of synchrony typically observed between cortical neurons during
movement preparation [34], and also observed during expected and unexpected transitions
between behavioral goal representations [35].

While it has been argued that precise spike timing does not carry information about motor
encoding [36], one must note that most of the BMI demonstrations to date were carried out in
highly-trained subjects performing highly stereotypical, goal-directed behavioral tasks. Very
few studies, if any, have been carried out to characterize naturally occurring movements in
naïve subjects. Thus, the potential still exists for new studies that may demonstrate the utility
of both neuronal response properties, namely precise spike timing and firing rate, in decoding
cortical activity. For that, the sparse representation is able to simultaneously extract these two
important elements that are widely believed to be the core of the neural code [37]. Therefore,
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our proposed approach will be the first to offer the solution for extracting both properties within
a single computational platform in future generations of BMI systems.

We note that for a fully implantable interface to the cortex to be clinically viable, spike
detection, sorting, and instantaneous rate estimation need to be implemented within
miniaturized electronics that dissipate very low power in the surrounding brain tissue. More
recently, it has been shown that tethering the device to the subject’s skull to maintain a wired
connection to the implant significantly increases brain tissue adverse reaction, which is
believed to negatively affect implant longevity [38]. Therefore, the interface needs to feature
wireless telemetry to minimize any potential risk of infection and discomfort to the patient and
to elongate the implant’s lifespan. We believe that eliminating any of the steps from the signal
processing path while preserving the critical information in the neural data will significantly
reduce the computational overhead to permit small size, low power electronics to be deployed
and accelerate the translation of this promising technology to clinical use.

VI. Conclusion
We have proposed a new approach to directly estimate instantaneous firing rates of cortical
neurons from their compressed extracellular spike recordings. The approach is based on a
sparse representation of the data and eliminates multiple blocks from the signal processing path
in BMI systems. We used the decoding of simulated 2-D arm trajectories to demonstrate the
quality of decoding obtained using this approach. We also demonstrated that regardless of the
type of neural response property estimated, the approach efficiently captures the intrinsic
elements of these responses in a simple, adaptive, and computationally efficient manner. The
approach was compared to other methods classically used to estimate firing rates through a
more complex processing path. We further demonstrated the improved performance attained
with our approach, while maintaining a much lower computational complexity.

Quantitative measures were applied to show that the sparse representation allows for better
unit separation compared to classical PCA techniques, currently employed by many
commercial data acquisition systems. This suggests that full reconstruction of the spike
waveforms for traditional time domain sorting is not necessary, and that more accurate spike
sorting performance could ultimately be achieved when the proposed method is used. This
translates into substantial savings in computational and communication costs for implantable
neural prosthetic systems to further improve their performance and potential use in clinical
applications.
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Fig. 1.
Schematic diagram of a typical data flow in a neuro-motor prosthetic application. Ensemble
neural recordings are first amplified and filtered prior to telemetry transmission to the outside
world. Three data processing paths are considered. (1) Wired systems (top): information is
extracted through the cascade of spike detection and sorting followed by rate estimation with
a massive computational power [2]. (2) Wireless systems (middle): Telemetry bandwidth is
reduced by moving the spike detection block inside the implantable device [12], [13]. (3)
Proposed system (bottom): the spike detection, sorting and rate estimation blocks are replaced
with one “compressed sensing” block that permits adaptive firing rate estimation in real time
for instantaneous decoding to take place.
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Fig. 2.
(a) Sparse representation of sample events from three units, “A,” “B,” and “C” in the noiseless
(middle) and noisy (right) neural trace for five wavelet decomposition levels indicated by the
binary tree (left). First level high-pass coefficients (node 2) are omitted as they contain no
information in the spectral band of spike waveforms. Sensing thresholds are set to allow only
one feature/event to survive in a given node. In this case, it is a local average of 32/2j

coefficients. For example, nodes 4 and 6 can either be used to mark events from unit “B,” while
node 9 can be used to mark events from unit “A.” When noise is present (right), the sensing
threshold also serves as a denoising one. (b) 1-D and 2-D joint distributions of wavelet features
for nodes 9 and 10 for the three units over many spike occurrences from each unit showing
three distinct clusters. These projections can be used when spikes from different units result
in identical sparse representations in a particular node (e.g., node 10). This can be used to
resolve the ambiguity provided that these units were not already discriminated in earlier nodes.

Aghagolzadeh and Oweiss Page 18

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2009 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Five units obtained from spontaneous recordings in an anesthetized rat preparation. Units were
chosen to posses significant correlation among their spike waveforms as seen in the PCA
feature space in (c). (a) Events from each recorded unit, aligned and superimposed on top of
each other for comparison. (b) Corresponding spike templates obtained by averaging all events
from each unit on the left panel. (c) PCA 2-D feature space. Dimensions represent the projection
of spike events onto the two largest principal components. (d) Clustering result of manual,
extensive, offline sorting using hierarchical clustering using all features in the data. (e)
Clustering result using the two largest principal components and EM cluster-cutting based on
Gaussian mixture models. This is an example of a suboptimal sorting method with relatively
unlimited computational power.
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Fig. 4.
(a) Unit isolation quality of the data in Fig. 3. Each cell in the left side shows the separation
(displayed as a 2-D feature space for illustration only) obtained using the compressed sensing
method. The highest magnitude coefficients that survive the sensing threshold in a given node
are considered irregular samples of the underlying unit’s firing rate and are marked with the
“Gold” symbols in the left panel. The feature space of the sorted spikes using the manual,
extensive, offline spike sorting is re-displayed in the right side (illustrated with the same color
code as Fig. 3) for comparison. If a gold cluster from the left panel matches a single colored
cluster from the right panel in any given row, this implies that the corresponding unit is well
isolated in this node using the single feature/event magnitude alone. The unit is then removed
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from the data before subsequent DWT calculation is performed in the next time scale. Using
this approach, three out of five units (pink, red, and green) in the original data were isolated
during the first iteration in nodes 4, 6, and 9, respectively, leaving out two units to be isolated
with one additional iteration on node 9’s remaining coefficients. In the first iteration, node 2
shows weak separation (SR = 0.45) between units. Unit 4 has larger separability in node 4 (SR
= 1.07). Units 1 and 2 are separated in nodes 6 and 9 (SR = 1.15 and 1.51, respectively). Units
3 and 5 are separated in node 9 afterwards (SR = 1.14). (b) Quantitative analysis of spike class
separability versus number of coefficients retained per event (40 coefficients retained implies
0% compression of the spike waveforms, while 1 coefficient retained implies 100%
compression) (i.e., thresholding) for 24 units recorded in the primary motor cortex of
anesthetized rat. A 2.5 dB (> 75%) improvement can be observed when the two most significant
coefficients are averaged compared to time domain separability (Raw data).
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Fig. 5.
(a) Schematic of encoding 2-D, nongoal-directed arm movement: the sample network of
neurons is randomly connected with positive (excitatory), and negative (inhibitory)
connections. Right panel demonstrates a symbolic movement trajectory to indicate the
movement parameter encoded in the neural population model. Sample firing rates and
corresponding spike trains are shown to illustrate the distinct firing patterns that would be
obtained with broad and sharp tuning characteristics. (b) Sample tuning characteristics (over
a partial range) of a subset of the 50 neurons modeled with randomly chosen directions and
widths. (c) Sample 3-s raster plot of spike trains obtained from the population model.
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Fig. 6.
(a) Top-left: 400 ms segment of angular direction from a movement trajectory superimposed
on tuning “bands” of five representative units. Top right, middle, and bottom panels: Firing
rates obtained from the point process model for five units and their extended DWT (EDWT),
Gaussian, and rectangular kernel estimators. As expected, the rectangular kernel estimator is
the noisiest, while the Gaussian and EDWT estimators are closest to the true rates. (b) Mean
square error between the actual (solid black line) and the estimated firing rate for each neuron
with the three methods. Each pair of dotted and dashed lines is the MSE for rectangular and
Gaussian kernel methods, respectively, for the five units in (a). These remain flat as they do
not depend on the DWT kernel window length. For the sharply tuned neurons, on average, ten
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levels of decomposition result in a minimum MSE that is lower than the MSE for rectangular
and Gaussian kernel methods. For broadly tuned neurons, 12 levels of decomposition result in
optimal performance. (c) Tuning width versus optimal kernel size. As the tuning broadens,
larger kernel windows (i.e., coarser time scales) are needed to obtain optimal rate estimators.

Aghagolzadeh and Oweiss Page 24

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2009 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Average mutual information (in bits) between movement direction, θ, and rate estimators
averaged across the two subgroups of neurons in the entire population as a function of
decomposition level (i.e., kernel size). Solid lines indicate the performance of the EDWT
method (dark for the broad tuning group and gray for the sharp tuning group). The two dashed
lines represent the Gaussian kernel method (broad tuning and sharp tuning groups), while the
two dotted lines represent the rectangular kernel method in a similar way. As expected, sharply
tuned neurons require smaller kernel size to estimate their firing rates. Overall, the EDWT
method achieves higher mutual information than either the fixed width Gaussian or rectangular
kernels for broadly tuned neurons, while slightly less for sharply tuned neurons owing to the
relatively more limited response time these neurons have, limiting the amount of data.
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Fig. 8.
Decoding performance of a sample 2-D movement trajectory. The black line is the average
over 20 trials, while the gray shade around the trajectory represents the estimate variance. Top
left: one unit is observed on any given electrode (i.e., neural yield = 1) and therefore no spike
sorting is required. The variance observed is due to the network interaction. Top right: every
electrode records two units on average (neural yield = 2) and no spike sorting is performed.
Bottom left: PCA/EM/Gaussian kernel spike sorting and rate estimation is implemented.
Bottom right: Compressed sensing decoding result.
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Fig. 9.
Computational complexity of PCA/EM/Gaussian kernel and the compressed sensing method.
(a) Computations per event versus number of events and number of samples per event in the
training mode. (b) Computations per event versus number of samples per event and kernel size
in the runtime mode. At a sampling rate of 40 KHz and ~1.2–1.5 ms event duration (48–60
samples), the compressed sensing method requires less computations than the PCA/EM/
Gaussian kernel method. The number of units is assumed fixed in the training mode for both
methods (P = 50).
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TABLE I

Computational Cost for the Training and Runtime Modes
Training mode Runtime mode

PCA/EM
O(4NsNP + Ns

3 + Ns
2NP +

2NP
2(P+1)P) O(4Ns + 4P + 22.5nw)

Compressed
sensing O(21NsNP + 10NP

2) O(43.5Ns + P)
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