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Abstract

A triazolinylidine carbene catalyzed intermolecular Stetter reaction of glyoxamide and alkylidene
ketoamides has been developed. 1,4-dicarbonyl products are afforded in good to excellent yields,
enantioselectivities and diastereoselectivities. Further derivatization of the products affords useful
intermediates for organic synthesis.

The Stetter reaction,1 the N-heterocyclic carbene (NHC) catalyzed addition of aldehydes to
Michael acceptors, is a prototypical example of the emerging class of catalyzed umpolung
reactions.2 Following a seminal early report by Enders and Teles,3 we4 and others5 have
extensively investigated the asymmetric intramolecular Stetter reaction. The asymmetric
intermolecular Stetter, on the other hand, has remained a much more significant challenge.6 In
2008, Enders reported an asymmetric intermolecular Stetter reaction of aromatic aldehydes
and chalcones proceeding in good yield and modest modest selectivities.7 Concurrently, we
reported the enantioselective intermolecular Stetter reaction of glyoxamides 1 with alkylidene
malonates 2 (eq 1).8

(1)
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(2)

A shortcoming of the use of alkylidene malonates 2 is the need for the second ester group. We
considered that the use of alkylidene ketoacid derivatives would provide an opportunity to
incorporate synthetically useful substituents on the second carbonyl (eq 2). However, the
reaction would generate mixtures of diastereomers, a situation that could be rectified through
the use of alkylidene ketoamides. We have already demonstrated that the protonation event in
the asymmetric Stetter is highly diastereoselective4d and it has been welldocumented that
tertiary β-ketoamides, bearing a stereocenter between the carbonyls, are configurationally
stable due to strong A1,3 strain in the enolate.9 Interestingly, catalytic asymmetric
transformations that generate ketoamide stereocenters are surprisingly rare.10

A Knoevenagel reaction of various ketoamides and aldehydes generates the requisite substrates
5 as single olefin isomers.11 Adducts were subjected to our previously developed reaction
conditions, Table 1. At ambient temperature, the carbene derived from triazolium salt 3
catalyzes the reaction of glyoxamide 7 with β-ketoamide-derived Michael acceptors in good
to excellent yield and high diastereoselectivities. As shown in Table 1, with a dimethylamide
Michael acceptor, the product 8 is isolated in 68% yield, 82% ee and 6:1 dr (Table 1), entry 1.
When the diethylamide is employed, the product 9 is obtained in similar yield, high dr but
lower ee (Table 1, entry 2). The use of a phenylketone on the Michael acceptor results in a
nearly racemic product 10 (Table 1, entry 3). With longer alkyl ketone substituents, the product
11 is formed in 92% yield, 89% ee and 5:1 dr (Table 1, entry 4). Lastly, we found that optimal
conditions involved conducting the reaction at 0 °C (Table 1, entry 5).

A primary concern at the outset of this study was the configurational stability of the newly
formed stereocenters. A control experiment using 20 mol% precatalyst 3 and one equivalent
Hünig's base was performed in carbon tetrachloride at 0 °C, shown in Table 2. It was found
that the conversion of 11 gradually increases with reaction time with the reaction complete in
12 hours. Fortunately, no epimerization was observed under these basic conditions, consistent
with our hypothesis.

A series of Michael acceptors with different substitution were then synthesized and tested using
the optimized reaction conditions, with the results shown in Table 3. When the alkylidene
substituent is a methyl group, the product 14 is obtained in excellent yield and 89% ee, with
7:1 dr (Table 2, entry 1). Similar results are observed with other alkyl substituents (Table 2,
entry 3-5). The reaction also tolerates a variety of functional groups; substrates with tethered
benzyl ether, olefin, and alkyne give desired products in excellent enantioselectivities and good
diastereoselectivities (Table 2, entry 7, 9, 10). Compounds with tethered halogen or protected
aldehyde are also obtained in good yield and good stereoselectivities (Table 2, entry 8, 11).
Substrates with different ketone R groups were also made and subjected to the optimized
reaction conditions. When R is propyl, the Stetter adduct 34 is generated in 92% yield, 92%
ee and 11:1 dr (Table 2, entry 12). Finally, substrate 37 with a tethered olefin on the ketone
leads to product 38 in 94% yield, 90% ee and 9:1 dr.
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In order to explain the stereochemistry of this transformation, a plausible mechanism is
proposed in Scheme 1. Reaction of glyoxamide 7 with carbene derived from 3 will generate a
nucleophilic olefin intermediate, which may be one of two different isomers (I or II). Conjugate
addition of the favored intermediate I12 to 12 would transiently generate stabilized carbanion
IV, which may not even be a local minimum on the energy surface should the conjugate
addition/protonation event be concerted.13 The Michael acceptor 12 will approach I from the
bottom face to avoid interaction with the benzyl group in the catalyst, as shown in III. The H-
bond between the enol and the amide could also play a directing role. An intramolecular proton
transfer4d will lead to the desired product 11.14

The obtained 1,4-dicarbonyl compounds could be further functionalized to useful building
blocks for synthesis (Scheme 2). Reduction of 11 with Super Hydride at -78 °C affords
hemiacetal 39 in 72% yield as a 1:1 mixture of diastereomers at the acetal carbon. Treatment
of 39 with dry HCl in methanol at 65 °C gives tetra-substituted dihydrofuran 40, which is a
versatile intermediate15 and also is a common substructure found in many natural products.
16 During this transformation, no epimerization is observed. When 39 is treated with TFA in
toluene at 110 °C for 48 hours, chemoselective cleavage of the dimethylamide occurs to provide
lactone 4117 with three contiguous stereocenters in 72 % yield.

In conclusion, a highly enantio- and diastereoselective intermolecular Stetter reaction was
developed. Catalyzed by chiral triazolinylidine carbenes at 0 °C, reactions of glyoxamide and
β-keto-amide derived Michael acceptors afford 1,4-dicarbonyl compounds in good to excellent
yields, enantioselectivities, and diastereoselectivities. A stereochemical model is proposed to
account for the absolute and relative stereochemistry. The obtained product was further
functionalized to useful building blocks for organic synthesis.
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Scheme 1.
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Scheme 2.
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Table 2

Control Experiment to Test for Epimerization

entry time (h) conversion (%)a ee (%)b

1 1 18 92
2 3 38 92
3 5 47 92
4 8 65 92
5 12 90 92

a
Reaction conducted with 1 equiv of 1 and 2 equiv of 12 at 0 °C.

b
See Table 1.
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