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Abstract
Background—Missense heterozygous mutations in the coding region of angiogenin (ANG) gene,
encoding a 14 kDa angiogenic RNase, were recently found in patients of amyotropic lateral sclerosis
(ALS). Functional analyses have shown that these are loss-of-function mutations, implying that
angiogenin deficiency is associated with ALS pathogenesis and that increasing ANG expression or
angiogenin activity could be a novel approach for ALS therapy.

Objective—Review the evidence showing the involvement of angiogenin in motor neuron
physiology and function, and provide a rationale for targeting angiogenin in ALS therapy.

Methods—Review the current understanding of the mechanism of angiogenin action in connection
with ALS genetics, pathogenesis and therapy.

Conclusion—ANG is the first gene whose loss-of-function mutations are associated with ALS
pathogenesis. Therapeutic modulation of angiogenin level and activity in the spinal cord, either by
systemic delivery of angiogenin protein or through retrograde transport of ANG-encoding viral
particles, may be beneficial for ALS patients.
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1. Introduction
Amyotropic lateral sclerosis (ALS) is a progressive neurodegenerative disease with specific
loss of motor neurons in the brain, brain stem and spinal cord [1]. The average age of onset is
55 years with upper and lower motor neuron signs, including distal muscle weakness and
wasting, increased muscle tone with hyperreflexia and at times diaphragmatic and/or bulbar
weakness. A significant percentage of ALS patients (up to 50%) have evidence of cognitive
impairment, and 5 – 10% of them are demented [2–7]. Death occurs from respiratory failure
at average 4 years after disease onset. It is a devastating disease without cure. At present, the
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only recognized treatment for ALS is riluzole, which extends survival by about 3 months with
no improvement in motor muscular functions [8].

The incidence of ALS is estimated at 0.6 – 2.4/100,000 population [9]. Approximately 90%
of ALS cases are sporadic with no known family history, whereas the remaining 10% are
familial cases inherited in either an autosomal dominant or recessive manner [1,10]. Mutations
in the Cu/Zn superoxide dismutase gene 1 (ALS1; SOD1), have been identified in ~20% of
familial [11–13] and in ~3% of sporadic [14–16] ALS patients.

Angiogenin (ANG) gene, encoding a 14 kDa angiogenic ribonuclease [17], seems to be the
first loss-of-function gene identified in ALS. Since the original discovery of ANG as an ALS
candidate gene [18], a total of 14 missense mutations in the coding region of ANG have been
identified in 35 of the 3170 ALS patients of the Irish, Scottish, Swedish, North American and
Italian populations [18–22]. Among the 14 mutations identified so far, 10 have been
characterized in detail and shown to be loss-of-function mutations [22–24].

Mouse angiogenin is strongly expressed in the CNS during development [25]. Human
angiogenin is strongly expressed in both endothelial cells and motor neurons of normal human
fetal and adult spinal cords [22]. Wild type (WT) angiogenin has been shown to stimulate
neurite outgrowth and pathfinding of motor neurons in culture and to protect hypoxia-induced
motor neuron death, whereas the mutant angiogenin proteins not only lack these activities but
also induce motor neuron degeneration [24]. Therefore, a role of angiogenin in motor neuron
physiology and a therapeutic activity of angiogenin toward ALS can be foreseen.

2. ALS
2.1 ALS genetics

At present, SOD1 is the only known autosomal dominant gene in which mutations have been
functionally associated with ALS, although three other loci (ALS3, ALS6 and ALS7) have
been identified for typical autosomal dominant ALS by linkage analysis [1,26]. Other
dominantly inherited genetic loci, associated with an atypical ALS phenotype, have also been
identified (ALS with dementia/parkinsonism, MAPT; progressive lower motor neuron disease,
DCTN1; and ALS8, VAPB). In autosomal dominant ALS with frontotemporal dementia (FTD),
genetic linkage has been reported to 9q21 – q22 [27]. Mutations in the SETX gene have been
identified in juvenile onset autosomal dominant ALS. Genetic loci identified for juvenile onset
autosomal recessive disease include Alsin (ALS2) and ALS5 [1,26]. It is notable that besides
SOD1, the other genes and loci described above have only been found in very few ALS patients,
and often in atypical ALS with slow progression.

Genetic association studies have also identified several risk factors in ALS, including deletions
or insertions in the neurofilament heavy chain gene [28–30], polymorphisms in VEGF [31],
hemochromatosis gene HFE [32] and paraoxonase-1 (PON1) [33]. A 5 bp deletion in
mitocondrial cytochrome c oxidase subunit I (COX1) [34] and a T4272C mutation in isoleucine
tRNA synthesase (IARS2) [35] have been linked to ALS, although only in a single case. A
common mitochondrial DNA deletion mutation (mt DNA4977) is increased in the brain of
ALS patients [36]. The apolipoprotein E epsilon4 allele has been associated with decreased
survival of ALS patients [37]. Copy number variation in survival motor neuron (SMN) has also
been shown to be a susceptibility factor [38]. More recently, whole genome association studies
have identified genetic variations in dipeptidyl-peptidase 6 (DPP6), [39] and inositol 1,4,5-
triphosphate receptor 2 (ITPR2) [40] genes in ALS patients. Whole genome association has
also identified a minor association of a single nucleotide polymorphism near the FLJ10986
gene to ALS [41]. Most recently, missense mutations in the coding region of TARDBP encoding
the Tar DNA binding protein TDP-43 were found in both familial and sporadic ALS patients
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[42–46] following the discovery that TDP-43 is a major constituent of the neuronal cytoplasmic
inclusions [3,47,48]. Five studies have independently reported TARDBP mutations in ALS
patients [42–46], whereas two studies failed to identify any mutations [49,50]. A total of 15
mutations have been identified in TARDBP among 1637 ALS patients [42–46,49,50], which
places TARDBP as the third most frequently mutated gene so far identified in ALS (after
SOD1 and ANG).

Since 2004, ANG has emerged as an important gene in ALS [18,21]. A total of 14 different
missense mutations in the coding region of ANG have been identified in 35 of 3170 patients
from Irish, Scottish, Swedish, North American and Italian ALS populations [18–22]. Thus,
ANG seems to be the second most frequently mutated gene in ALS (after SOD1). Importantly,
although WT angiogenin induces angiogenesis, stimulates neurite outgrowth of motor neurons
and protects them from hypoxia-induced death, mutant angiogenin proteins lack these activities
[22,24]. Therefore, ANG seems to be the first loss-of-function gene so far identified in ALS
[22]. Table 1 lists the genes and genetic factors whose alterations predispose to ALS.

2.2 ALS pathogenesis
Many theories including oxidative stress, excitotoxicity, mitochondrial dysfunction, defective
axonal transport, abnormal protein aggregation, and loss of tropic and angiogenic factor support
have been proposed as the underlying mechanism of ALS pathogenesis [1,51–53]. Each of
these hypotheses is supported by some experimental evidence but at the same time is
undermined by contradictory data. For example, motor neuron damage as a result of oxidative
stress is a key hypothesis in ALS. It is supported by the findings of elevated oxidative
metabolism in ALS, such as the detection of increased biochemical markers of oxidative injury
in post mortem examinations of ALS patients [54]. It is also supported by the acquired capacity
of some forms of mutant SOD1 to catalyze the production of reactive oxygen species such as
superoxide anions (O2

-) and peroxynitrite (-ONOO) through either copper catalysis or improper
copper and zinc binding [55–57]. However, this hypothesis is undermined by the report that
oxidative markers are detected in SOD1G93A mice but not in SOD1G37A mice, although both
developed ALS symptoms [58]. It is further undermined by the finding that deletion of copper
chaperone for SOD1 diminished the copper load but did not affect the development of ALS
[59], and that copper-binding-site-null SOD1 still causes ALS in transgenic mice [60].

The etiology of ALS is likely to be multi-factorial, involving the interplay of several
mechanisms to initiate disease and propagate the spread of motor neuron death. A generally
accepted hypothesis at present is that several factors, both genetic and environmental, cause
mitochondrial dysfunction and excitotoxicity, lead to abnormal protein precipitation and finally
apoptosis of motor neurons [52]. Non-neuronal neighboring cells may also play a role in ALS
pathogenesis. It has been shown that motor neurons, microglia [61] and astrocytes [62] affect
the onset and progress of illness. Astrocytes and microglia harboring SOD1 mutations secrete
substances that kill motor neurons. Motor neurons with or without SOD1 mutation showed
neuro-degenerative properties when co-cultured with astrocytes that harbor SOD1 mutation,
whereas motor neurons with SOD1 mutations showed less neuronal losses when they are
surrounded by normal astrocytes [63–65].

Identification of ANG mutations in ALS patients [19–22] and demonstration that these
mutations result in loss of angiogenin functions [22–24] provide an alternative viewpoint of
ALS pathogenesis. Angiogenin was not the first angiogenic molecule reported to be associated
with ALS. In 2001, Oosthuyse et al. have already reported that deletion of the hypoxia-response
element in the VEGF promoter caused adult onset motor neuron degeneration similar to ALS
[66]. Although mutations in the coding region of VEGF have not been found in ALS patients,
a genetic variation in the VEGF promoter that lowers VEGF expression has been shown to be
associated with an increased risk of ALS [31]. Reported involvement of both angiogenin and
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VEGF in ALS suggests a link between angiogenesis and ALS pathogenesis. Further supporting
this hypothesis are the findings of null mutations of progranulin (PGRN), another angiogenic
protein, in patients with FTD [67,68]. Genetic variations of PGRN have also been recently
reported in ALS patients [69]. Many patients with ALS develop dementia, and with FTD
develop motor neuron diseases similar to ALS. FTD and ALS share some common
neuropathological features such as the accumulation of ubiquitinated neuronal cytoplasmic
inclusions containing TDP-43 [3]. Thus, a role of angiogenic factors in ALS pathogenesis has
been proposed [53,70,71], and vascular abnormality has been recently demonstrated in
SOD1 transgenic mice [72–74]. The findings that the blood spinal cord barrier (BSCB) of
SOD1 transgenic mice is impaired and that the BSCB leakage occurs before motor neuron
degeneration provide pathological data supporting an active role of blood vessels in ALS
pathology [72–74].

2.3 ALS therapy, clinical trials and preclinical studies
There is presently no effective pharmacologic treatment for ALS to halt neuronal death or even
slow it appreciably. Riluzole, the only drug approved for ALS since 1995, only extends survival
by 2 – 3 months if it is taken for 18 months. Riluzole is thought to act in part by limiting
glutamate release. It preferentially blocks tetrodotoxin-sensitive sodium channels, which are
associated with damaged neurons [75]. This reduces influx of calcium ions and indirectly
prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade,
the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole was
approved for use in ALS after two independent clinical trials showed a marginal increase in
the survival time of ALS patients [8,76]. Unfortunately, patients taking riluzole do not
experience any slowing in disease progression or improvement in muscle function. Therefore,
riluzole does not present a cure, or even an effective treatment, and the search for better
therapeutic agents continues.

Mutant SOD1 transgenic mice have been widely used for ALS drug testing. SOD1 mutations
are the cause of ~20% of the familiar ALS and ~3% of the sporadic ALS, and, therefore, ~4%
of all ALS cases. More than 100 mutations in SOD1, distributed throughout the gene, have
been found in ALS patients [52]. Although it is still unknown why the mutant form of this
abundant and ubiquitously expressed enzyme is specifically toxic to motor neurons and causes
ALS, it is clear that mice overexpressing the mutant SOD1 genes develop symptoms mimicking
that of human ALS patients. Over 70 agents of various categories including tropic factors,
antioxidant, antiviral, anti-inflammatory, immunomodulatory, antiapoptosis,
antiglutamatergic, calcium regulators, proteasome inhibitors, metal ion regulators, structure
proteins as well as energy metabolism-related compounds, have been tested in SOD1G93A mice
[51,52,77]. Many of these agents underwent clinical trials. However, the benefits in the mouse
have not been translated into clinical efficacy except in the case of riluzole. All the others,
including brain-derived neurotrophic factor [78], ciliary neurotrophic factor [79], IGF1 [80,
81], and glial-derived neurotrophic factor (GDNF) [82] have failed.

One of the main reasons for the disappointing clinical trials was that the beneficial effect of
these agents observed in the SOD1G93A mice was not significant and that the SOD1G93A mice
have high noise level in their survival. The ALS Therapy Development Institute (ALSTDI)
has conducted a thorough retesting of > 70 drugs in 18,000 ALS mice across 221 studies and
failed to reproduce the reported efficacy in SOD1G93A mice [83]. ALSTDI has also reanalyzed
the reported data from 5429 mice from 50 published papers and found that the reported
beneficial effect in animal survival was actually the noise of the animals. ALSTDI has
concluded that 24 ALS mice are needed in each group to reduce the noise and get conclusive
results [83]. Moreover, all the SOD1G93A mice in both control and experimental groups should
be matched in age, gender, litter size and copy numbers of the transgene.
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The reason for a relative minimal effect of exogenous tropic factors and other types of
therapeutic proteins could be their failure to cross the blood–brain barrier (BBB) and BSCB.
Gene therapy is, therefore, an alternative approach for ALS therapy. Many strategies are under
investigation, including the delivery of genes encoding neurotrophic factors, antiapoptotic and
antioxidants proteins using viral vectors administered directly into the affected areas of the
CNS, or through retrograde transport to motor neurons from intramuscular injection, or through
ex vivo gene transfer [84]. AAV (adeno-associated virus)-mediated delivery of IGF-1 [85],
GDNF [86] and Bcl-2 [87] gene have been shown to be effective in the SOD1G93A transgenic
mice.

VEGF is a prominent angiogenic factor and a new neurotrophic factor linked to ALS. Since
the demonstration that deletion of the hypoxia-response element in the promoter of VEGF
causes motor neuron degeneration in mice [66] and that polymorphisms in the VEGF promoter
that reduce VEGF expression are associated with ALS in the populations of Sweden, Belgium,
UK [31] and New England [88], various attempts have been made to target VEGF as a
therapeutic approach for ALS. VEGF delivered into SOD1G93A rats intracerebroventricularly
[89] or into SOD1G93A mice with a retrogradely transported lentiviral vector [90] has been
shown to improve motor neuron function marginally and prolong survival significantly.
VEGF overexpression also improves motor muscular function and increases the survival in
SOD1G93A transgenic mice [91]. However, intraperitoneal injection of VEGF in SOD1G93A

mice had only a modest effect in delaying disease onset and in prolonging survival [92].

3. Angiogenin
3.1 Mechanism of action of angiogenin

Angiogenin was originally isolated from the conditioned medium of HT-29 human colon
adenocarcinoma cells based solely on its angiogenic activity in the chicken embryo
chorioallantoic membrane angiogenesis assay [17]. Subsequently, it has been found to have a
wide tissue distribution with the highest expression in the liver [93]. It is a member of the
pancreatic RNase superfamily with a 33% amino-acid identity and an overall homology of
56% to that of RNase A [94]. Angiogenin has a unique ribonucleolytic activity that is several
orders of magnitude lower than that of RNase A but is important for its biological activity
[95]. The amino-acid residues important for catalysis are conserved in all vertebrate angiogenin
from fish to human [96]. Extensive studies on site-directed mutagenesis have shown that
angiogenin variants with reduced enzymatic activity also have reduced angiogenic activity
[95,97–104]. Structural work indicated that one of the reasons for angiogenin to have a reduced
ribonucleolytic activity is that the side chain of Gln 117 occupies part of the enzymatic active
site so that substrate binding is compromised [105,106].

Angiogenin is angiogenic, whereas the prototype family member RNase A is not. Two
important structural differences between angiogenin and RNase A are responsible for this
discrepancy. The first is the segment from amino-acid residues 59 – 68 that forms the receptor
binding site in angiogenin [99,107]. Therefore, angiogenin binds to its target cells (including
endothelial cells, cancer cells and motor neurons) but RNase A does not. Angiogenin binds to
endothelial cells specifically [108] and induces second messenger responses including
diacylglycerol and prostacyclin [109,110], and activates MAPK [111] and AKT [112]. Another
structural difference between angiogenin and RNase A is that angiogenin has a nuclear
localization signal consisting of 29IMRRRGL35, whereas RNase A does not [113]. Therefore,
angiogenin undergoes nuclear translocation in endothelial cells where it accumulates in the
nucleolus [114,115], binds to the promoter region of ribosomal DNA (rDNA) and stimulates
rRNA transcription [116,117], an essential step for ribosome biogenesis, protein translation
and cell proliferation.
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An angiogenin binding protein has been identified from the surface of endothelial cells [107]
and has been characterized to be a type of smooth muscle actin [118,119]. An ~170 kDa
angiogenin receptor has also been identified from the endothelial cell surface to mediate nuclear
translocation of angiogenin and cell proliferation [120]. Expression of the binding protein and
the receptor on endothelial cells seems to be mutually exclusive. The binding protein is
expressed on the surface of confluent cells. Binding of angiogenin to the binding protein
activates tissue plasminogen activator [121] thereby inducing cell invasion and migration
[122]. After the leading cells migrate away, the local cell density decreases, which triggers the
expression of an angiogenin receptor. Binding of angiogenin to the receptor stimulates cell
proliferation so that the gap created by the migrating cells is filled. Therefore, angiogenin is a
multifunctional angiogenic molecule that plays a role in several steps in the angiogenesis
process including cell invasion, proliferation and tube formation. Figure 1 shows the current
understanding of the mechanism of angiogenin-induced angiogenesis.

3.2 Role of angiogenin in rRNA transcription
Angiogenin has been shown to undergo nuclear translocation in endothelial [114,115,123] and
cancer [124,125] cells. Nuclear translocation of angiogenin in endothelial cells is under tight
regulation and is cell density-dependent. It decreases as cell density increases and ceases when
cells are confluent [115,120]. Nuclear translocation of angiogenin occurs through receptor-
mediated endocytosis [114] and is independent of microtubule system and lysosomal
processing [123]. Angiogenin seems to enter the nuclear pore by the classic nuclear pore input
route [113]. Nuclear translocation of exogenous angiogenin is very fast. When exogenous
angiogenin is added to the cell culture, nuclear angiogenin is detectable in 2 min and is saturated
in 30 min [115]. On arriving at the nucleus, angiogenin accumulates in the nucleolus [114]
where ribosome biogenesis takes place. Nuclear angiogenin has been shown to bind to the
promoter region of rDNA [117] and stimulates rRNA transcription [116,126]. Cell growth
requires the production of new ribosomes. Ribosome biogenesis is a process involving rRNA
transcription, processing of the prerRNA precursor and assembly of the mature rRNA with
ribosomal proteins [127–129]. The rate-limiting step in ribosome biogenesis is the synthesis
of rRNA. Therefore, rRNA transcription is an important aspect of growth control. It is also
important for maintaining a normal cell function as proteins are required for essentially all
cellular activities. It may be particularly relevant for motor neurons to have a robust ribosome
biogenesis because of long axonal transport of these cells.

Angiogenin-stimulated rRNA transcription has been demonstrated as a general requirement
for angiogenesis [126]. In other words, angiogenin is a permissive factor for other angiogenic
factors to induce angiogenesis. Experimental evidence for this contention includes: i) nuclear
translocation of endogenous angiogenin in endothelial cells is stimulated by other angiogenic
factors including aFGF, bFGF, VEGF and EGF [126]; ii) knocking down ANG expression in
endothelial cells inhibits bFGF- and VEGF-induced cell proliferation, accompanied with a
decrease in rRNA transcription. Addition of exogenous angiogenin can completely restore the
proliferative activity of these angiogenic factors [126]; and iii) angiogenin-specific inhibitors
have no effect on binding of VEGF and bFGF to their receptors but inhibit their angiogenic
activity [130]. Figure 2 summarizes the function of angiogenin-stimulated rRNA transcription
in cell proliferation.

As an angiogenic molecule, angiogenin may thus play a role in maintaining vasculature
integrity in the spinal cord. Angiogenin insufficiency, caused by heterozygous missense
mutations in the coding region, polymorphisms in the promoter region, or decreased expression
owing to other genetic and environmental factors, may result in vascular abnormality and create
an unhealthy environment for motor neurons. In addition, angiogenin may play a direct role in
motor neuron physiology and its deficiency may accelerate or cause motor neuron
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degeneration. To this end, angiogenin has been shown to be expressed in motor neurons of
both human and mouse spinal cords during development and in adulthood [21,22,24].
Angiogenin deficiency may result in insufficient ribosomal biogenesis and improper mRNA
translation either in the entire or in some parts of the cell. Local protein translation of
asymmetrically localized mRNA within neurons has been shown to play an important role in
neuronal polarity and synaptic plasticity [131]. For example, asymmetrical localization of tau
protein and its abnormal metabolism has been linked in both ALS and FTD [132]. Aberrant
mRNA formation and RNA processing errors of excitatory amino-acid transporter 2 were
found only in neuropathologically affected areas of ALS patients but not in other brain regions
[133]. Motor neurons are the longest cells in the body and asymmetrical protein expression
may thus be crucial not only during development but also during repair and regeneration.
Robust protein translation machinery is essential for motor neuron physiology and a potential
role of angiogenin can be predicted from its function in ribosome biogenesis. It is noteworthy
that angiogenin is a member of the pancreatic RNase family and that the RNase activity is
essential for its biological activity [95]. A link between RNA processing and neurodegeneration
has been established [134]. In fact, spinal muscular atrophy, another motor neuron degenerative
disease, is caused by mutations in SMN gene that encodes SMN, a protein known to play roles
in RNA splicing, ribosome assembly and gene transcription [135].

4. ANG mutations in ALS patients
Recently, linkage analysis in Irish ALS populations identified an association of the G allele of
the single nucleotide polymorphism rs11701 in the coding region of ANG (representing the
amino-acid residue G86 in the mature protein) [18]. In the same study, a novel missense
mutation at position 191 (A to T) in the coding region of ANG, which will result in a substitution
of Lys 40 by Ile (K40I), was also found in 2 of the 169 Irish ALS patients but not in 171 control
subjects [18]. Subsequently, seven heterozygous missense mutations in the coding region of
ANG were identified in 15 patients by sequence screening of 1629 individuals with ALS
[21], an overall frequency of ~1% with an overrepresentation of familial ALS (4/259, 1.5%)
over sporadic ALS (11/1370, 0.8%). From sequencing 298 ALS patients of a Northern
American cohort, four more mutations in ANG gene were identified (1.3% frequency) [22].
More recently, seven more mutations were identified in 9 of the 737 Italian ALS patients [20].
ANG mutations in Italian population also seem to segregate familial ALS (3/132, 2.3%) from
sporadic ALS (6/605, 1%) with an overall frequency of 1.2% [20].

A total of 14 missense mutations (at 13-positions) in the coding region of ANG have been
identified in 35 of the 3170 ALS patients of the Irish, Scottish, Swedish [21], North American
[22] and Italian [20] populations. Among these mutations, 3 occurred in the signal peptide
regions and 11 in the mature protein. In the seven sequencing efforts carried out so far, a total
of 3003 healthy controls were included and two mutations in the ANG gene were found in non-
ALS controls [20,21]. The first is a K17I mutation that was found in an apparent healthy 65-
year-old male of European descent. The second is the I46V mutation that was found in 11 of
the 1568 Italian healthy controls [19,20,136,137]. Therefore, I46V mutation does not seem to
be associated with Italian ALS patients but does seem to be associated with the Scottish ALS
patients in whom 3 of the 398 ALS patients but none of the 299 controls harbor this mutation
[21]. Table 2 lists the frequencies of ANG mutations that occurred in 3170 ALS patients.

5. Properties of mutant angiogenin proteins
Except for the three mutations in the signal peptide region (M-24I, F-13S, P-4S) and the two
most recently reported mutations in the mature protein region (V113I, H114R) [20], all the
mutant angiogenin proteins have been prepared and characterized by ribonuclease [22,23],
nuclear translocation [22] and angiogenesis [22,23] assays. Except for R31K, all of these ALS-
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associated angiogenin mutant proteins have severely impaired ribonucleolytic activity ranging
from < 1% (K40I) to 19% (K17E) of that of the WT angiogenin. R31K has 69% of the
enzymatic activity of WT angiogenin [23]. Some of the mutant angiogenin proteins also have
reduced thermal stability [23]. Among the three mutant angiogenin proteins (K17I, S28N,
P112L) that have been tested in the nuclear translocation assay, S28N and P112L do not
undergo nuclear translocation and K17I has a reduced capacity [22]. Two different
angiogenesis assays have been used to examine the angiogenic activity of the mutant
angiogenin proteins. The endothelial cell tube formation assay on fibrin gel was used to
examine the mutants identified from the Northern American ALS patients and the results
showed that all three mutants (K17I, S28N, P112L) are inactive [22]. The aorta ring assay was
used to test three of the seven mutants identified from the Irish and Scottish ALS populations.
All three mutants (Q12L, C39W, K40I) were inactive in the aorta ring angiogenesis assay
[23]. Taken together, these results demonstrated that ANG mutations identified in ALS patients
are associated with a functional loss of the angiogenic activity of the angiogenin protein.

WT angiogenin has been shown to stimulate neurite outgrowth and pathfinding of motor
neurons derived from P19 embryonal carcinoma cells [25]. WT angiogenin also protects P19-
derived motor neuron from hypoxia-induced cell death but the ALS-associated mutant
angiogenin proteins (Q12L, C39W, K40I) lack this neuroprotective activity [24]. Moreover,
these mutant angiogenin proteins are cytotoxic to the P19-derived motor neurons and induce
their degeneration, suggesting that ANG mutations may even be causative to ALS [24].

6. Expression of angiogenin in the CNS
Mouse angiogenin is strongly expressed in the developing mouse nervous system both in the
brain and in the spinal cord [25]. Immunohistochemistry and immunofluorescence have been
used to show that angiogenin expression is the strongest in the brain and spinal cord at 9.5 days
postcoitum (pc) [25]. At 11.5 days pc, angiogenin expression remains high in the telencephalon,
mesen and mylencephalon as well as in the spinal cord, spinal ganglia and choroids plexus
[25]. Until mid-gestation, angiogenin expression is stronger in the nervous system than in any
other tissues. Co-staining with peripherin and Islet1 showed that angiogenin is expressed in
mouse motor neurons.

Immunohistochemistry was also used to detect expression of human angiogenin in normal
spinal cords obtained from fetal (ranging from 15 to 30 weeks gestation) and adult human
autopsies. Strong angiogenin staining was observed in the ventral horn motor neurons of both
fetal and adult cases [22]. Angiogenin was also detected in the extracellular matrix and
interstitial tissues in all cases, consistent with it being a secreted protein. Angiogenin expression
in the spinal cord seems to be downregulated as development proceeds but is still strongly
expressed in the adulthood. Strong cytoplasmic and nuclear accumulation of angiogenin in
motor neurons of both prenatal and adult spinal cords suggests a physiological role of
angiogenin, both early in development and later in adulthood, and supports the hypothesis that
ANG mutations are relevant to ALS pathology.

Double immunofluorescence with an antiangiogenin mAb 26-2F and antivon Willebrand factor
polyclonal antibody showed that angiogenin is also localized in spinal cord endothelial cells,
suggesting that angiogenin plays a role in maintaining the integrity of spinal cord vasculature
that is important for physiological health of motor neurons [22]. Thus, angiogenin
abnormalities may have a dual role in ALS, directly through motor neuron function and
indirectly through endothelial cells and aberrant angiogenesis in the spinal cord.
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7. Conclusion
Angiogenin is an angiogenic molecule known to play an essential role in angiogenesis by
mediating rRNA transcription in endothelial cells [116,117]. The recent discovery of loss-of-
function ANG mutations in ALS patients [19–22] and the findings that angiogenin is strongly
expressed in the spinal cords both during fetal development and in adulthood [22,25] indicate
an important role of angiogenin in motor neuron physiology and pathology. Angiogenin may
have a dual role in motor neuron function by acting both on endothelial cells and on motor
neurons. Thus, angiogenin may mediate angiogenesis thereby maintaining a normal
vasculature, which is essential for motor neuron development, health and survival under
various environmental and genetic insults. This is supported by previous findings that
angiogenin-stimulated rRNA transcription is required for angiogenesis induced by VEGF
[126] and that VEGF is a prominent angiogenic molecule known to be associated with ALS
[66,88–92]. Involvement of angiogenin and VEGF, two angiogenic proteins that mediate
angiogenesis by different mechanisms, in ALS suggests that angiogenesis insufficiency is
linked to ALS pathogenesis [53]. Novel mutations in PGRN gene that encodes progranulin,
another angiogenic protein, have recently been reported in ALS patients [69]; adding more
evidence that abnormal angiogenesis is associated with ALS.

In addition to a role in angiogenesis, angiogenin may also act on motor neurons directly. This
hypothesis is supported by the finding that angiogenin is strongly expressed in the motor
neurons of fetal and adult spinal cords [22]. It is also supported by the results that angiogenin
undergoes nuclear translocation in motor neurons and stimulates neurite outgrowth and
pathfinding [24,25]. The mode of action of angiogenin in both endothelial cells and motor
neurons could be related to its activity in mediating ribosome biogenesis. Nuclear angiogenin
has been shown to bind to the promoter region of rDNA both in endothelial cells and in cancer
cells thereby stimulating rRNA transcription [124,126]. It is conceivable that the role of
angiogenin in motor neurons would also be related to rRNA transcription and that a defect in
this pathway is likely to result in insufficient synthesis of ribosomes thereby affecting motor
neuron viability. The dual role model suggests an essential role of angiogenin in motor neuron
physiology. It is consistent with the results that all the angiogenin mutations so far found in
ALS patients are heterozygous. Homozygous mutations may be lethal as a complete loss of
angiogenin function would be detrimental. This model also implies that a decrease in
angiogenin expression, as a result of various environmental and genetic insults, would have a
profound effect on motor neuron function. It, at the same time, provides a therapeutic
opportunity for ALS treatment by manipulating angiogenin expression levels and activities.

8. Expert opinion
Since the first report in 2004 that missense mutations in the cording region of ANG gene was
found in ALS patients [18], 3170 ALS patients and 3003 non-ALS controls have been
sequenced in six independent studies [18,19,21,22,136,137] and a total of 14 mutations in 13-
positions have been found in 35 patients. Four functional studies have been carried out in which
WT angiogenin has been shown to play a direct role in motor neuron physiology and the ALS-
associated ANG mutations result in a complete loss of angiogenin activity [22–25]. Although
mutations in ANG gene occurred in only 1.1% (ranging from 0.8 to 1% in sporadic ALS and
1.3 to 2.3% in familial ALS), ANG remains to be the second most frequently mutated gene in
ALS and is the only loss-of-function gene so far identified in ALS patients. There is a sound
rationale for exploring a novel ALS treatment opportunity by manipulating angiogenin levels
and/or activities. For this purpose, the efficacy of angiogenin in improving motor muscular
function and survival of SOD1G93A mice should be tested. First, WT angiogenin protein, with
the ALS-associated mutant angiogenin proteins as controls, could be administered systemically
by i.v., i.p., i.m. or s.c. injection. A beneficial effect could be expected from these routes of
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administration if angiogenin could cross the BBB and BSCB and reaches the CNS. A human
angiogenin-specific mAb is available so that the distribution and stability of systemically
administered angiogenin could be readily detected. It has been reported that ALS patients and
SOD1G93A mice have disrupted BSCB [72–74] so the pharmacokinetic findings of
systemically administered angiogenin from the above experiments should be confirmed with
WT mice. Even if angiogenin dose not cross the BBB and BSCB, these experiments are still
worthy doing because of the possibility that the site of action of angiogenin may be peripheral.
The role of axon in ALS has been recognized [138–140] so the possibility that angiogenin acts
directly on the neuromuscular junctions or on motor axons directly should not be excluded
although there is no direct evidence at present. These experiments are thus both clinically and
scientifically significant as they will tell us whether angiogenin is effective and where the site
of action might be. If the above routes of administration are ineffective, intrathecal or
intracerebroventricular administration of angiogenin protein directly into the CNS may be
considered. Alternatively, retrograde delivery of angiogenin-encoding AAV or lentiviral
particles could also be used to enhance angiogenin expression in the motor neurons.

Another informative experiment would be to generate and characterize ANG:SOD1G93A

double transgenic mice. Both universal and cell-specific promoters should be considered for
generating ANG transgenic mice. Characterization of these mice will reveal whether the effect
of angiogenin is cell autonomous. Furthermore because the ALS-associated mutant angiogenin
proteins are toxic to cultured motor neurons [24], it would be worthwhile to create and
characterize transgenic mice overexpressing the mutant forms of ANG. If these mice develop
ALS-like symptoms, they will be a valuable animal model, in addition to the SOD1 transgenic
mice, to be used for mechanistic study and for screening and testing potential drugs.

Another approach to reveal the role of angiogenin in development in general, and in motor
neuron physiology in particular, would be to create and characterize ANG knockout mice.
Although humans have only a single ANG gene, mice have six [141]. It is not possible to
knockout all of them simultaneously because they are spread out over ~8 million bp. However,
mouse ANG1 is clearly the prominent form and the ortholog of the human gene [141,142].
Therefore, it is likely that knocking out mouse ANG1 will suffice for investigating the function
of human angiogenin. Because of the possibility that the loss of mouse angiogenin-1 function
may be embryonic lethal, it would be advisable to create conditional knockout so that the role
of angiogenin-1 in motor neuron can be studied at the different stages during development. If
ANG1 deletion results in motor neuron degeneration, ANG1 knockout mice may also be useful
for ALS drug screening.
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Figure 1. Conceptual framework of the interaction between angiogenin and its target cells
Angiogenin, shown in yellow, can bind to both the receptor and the binding protein, shown in
white and orange, respectively. Most the angiogenin and its binding protein complex will
dissociate from the cell surface and activates tissue plasminogen activator to produce plasmin,
and induce cell invasion into the extracellular matrix. Binding to the 170 kDa receptor induces
second messengers and triggers signal transduction. On binding, angiogenin is also internalized
and translocated to the nucleus where it accumulates in the nucleolus. All these individual steps
are necessary for angiogenesis.
ANG: Angiogenin.
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Figure 2. Angiogenin-stimulated rRNA transcription is a general requirement for angiogenesis
Angiogenin is a permissive factor for other angiogenic proteins to induce cell proliferation.
Growth factors such as VEGF activate PI3K–AKT–mTOR pathway to enhance ribosomal
protein production. Angiogenin is translocated to the nucleus where it enhances rRNA
transcription so that ribosome biogenesis can occur. Angiogenin inhibitors have been shown
to abolish cell proliferation stimulated by other angiogenic factors including bFGF and VEGF.
ANG: Angiogenin.
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