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Abstract
This paper presents a variational level set approach to joint segmentation and bias correction of
images with intensity inhomogeneity. Our method is based on an observation that intensities in a
relatively small local region are separable, despite of the inseparability of the intensities in the whole
image caused by the intensity inhomogeneity. We first define a weighted K-means clustering
objective function for image intensities in a neighborhood around each point, with the cluster centers
having a multiplicative factor that estimates the bias within the neighborhood. The objective function
is then integrated over the entire domain and incorporated into a variational level set formulation.
The energy minimization is performed via a level set evolution process. Our method is able to estimate
bias of quite general profiles. Moreover, it is robust to initialization, and therefore allows automatic
applications. The proposed method has been used for images of various modalities with promising
results.

1 Introduction
A major problem for automatic segmentation of magnetic resonance (MR) images is the
intensity inhomogeneity due to the bias field, which is caused by limitations in imaging devices
and subject-induced susceptibility effect. The bias can cause serious misclassifications when
intensity-based segmentation algorithms are used. Essentially, the misclassification is due to
an overlap of the intensity range of different tissues introduced by the bias field, so that the
voxels in different tissues are not separable based on their intensities. Intensity inhomogeneities
also often occur in images of other modalities, such as X-ray and computed tomography
images.

Bias correction has been extensively studied in the past two decades [1,2]. Methods of bias
correction can be categorized into two classes: prospective methods and retrospective methods.
Prospective methods aim to avoid intensity inhomogeneities in the image acquisition process.
These methods, while capable of correcting intensity inhomogeneity induced by the imaging
device, are not able to remove subject-induced intensity inhomogeneity. In contrast,
retrospective methods only rely on the information in the acquired images. Therefore, they can
also remove intensity inhomogeneities regardless of their sources. Early retrospective methods
include those based on filtering [3], surface fitting [4,5], and histogram [6]. Segmentation based
methods [1,7,8,9] are more attractive, as they unify segmentation and bias correction within a
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single framework. These methods consist of the interaction between segmentation and bias
correction, which benefit each other to yield final segmentation and bias correction.

The generally accepted assumption on the bias field is that it is slowly varying. It is necessary
and beneficial to preserve the slowly varying property of the computed bias field in
segmentation based methods. In Wells et al.'s method [1], the directly computed bias field is
not smooth, which would lead to poor bias correction and segmentation results. An moving-
average low pass filter is empirically used to force the bias field to be smooth. In [10], Pham
and Prince proposed an energy minimization method for adaptive segmentation and estimation
of the bias field. In their method, the smoothness of the bias field is ensured by adding a
smoothing constraint term in their objective function, which leads to a highly expensive
procedure to solve a space-varying difference equation. Such an expensive smoothing
procedure is avoided in some well-known parametric methods (e.g. [8,7]) by modeling the bias
field as a polynomial, which is smooth by nature. However, due to limited approximation
capability of polynomials, these methods are not able to approximate bias fields of general
profiles, such as those in 7T MR images (see Fig. 5 for example).

In this paper, we propose a variational level set approach to bias correction and segmentation
for images corrupted with intensity inhomogeneities. A unique feature of our method is that
the computed bias field is intrinsically ensured to be smooth by the data term in our variational
formulation, without any additional effort to maintain the smoothness of the bias field, and it
can approximate bias fields of more general profiles, such as those in 7T MR images. Moreover,
our method is not sensitive to initialization, thereby allowing automatic applications.

2 Method
2.1 Model of Images with Intensity Inhomogeneity

Our method is based on the model commonly used to describe images with intensity
inhomogeneity:

(1)

where I is the measured image intensity, J̃ is the true signal to be restored, b̃ is the bias field,
and n is noise. The superscript tilde in J̃ and b̃ is used to distinguish the unknown true signal
J̃ and the bias field b̃ from their estimates, which will be denoted by J and b, respectively. The
generally accepted assumption on the bias field is that it is smooth (or slowly varying). Ideally,
the intensity J̃ in each tissue should take a specific value cĩ of the physical property being
measured (e.g. the proton density for MR images).

In general, we assume that the true image J̃ and the bias field b̃ have the following properties:

(P1) The bias field b̃ is slowly varying in the entire image domain.

(P2) The true image intensities J̃ are approximately a constant within each class of tissue, i.e.

J̃(x) ≈ cĩ for (x) ∈ Ω̃i, with  being a partition of Ω.

2.2 Energy Formulation
Our ultimate goal is to separate the image domain Ω into N disjoint regions Ω̃i, i = 1, ⋯, N,
based on the measured image I. However, due to the intensity inhomogeneity caused by the
bias field b̃, the measured intensities are not separable by using traditional intensity based
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classification methods. In this section, we will propose a new method for joint segmentation
and bias correction. Our method is based on an observation that the intensities in a relatively
small region are separable, which can be verified by the above assumptions (P1) and (P2) as
explained in the following.

We consider a circular neighborhood with a relatively small radius ρ centered at each point x

in the image domain Ω, defined by . The partition  induces a

partition of the neighborhood Ox, i.e., . For a smooth function b̃, the values b̃(y)
for all y in the circular neighborhood Ox can be well approximated by b̃(x), which is at the
center of Ox. Therefore, the intensities b̃(y)J̃(y) in each subregion Ox ∩ Ω̃i are approximately
the constant b(x)cĩ. Thus, we have the following approximation

(2)

The constants b̃(x)cĩ can be considered as the approximations of the cluster centers (or
means) of the clusters {I(y) : y ∈ Ox ∩ Ω̃i} within the neighborhood Ox. Therefore, the
intensities in the neighborhood Ox are around N distinct cluster centers m̃i ≈ b̃(x)cĩ. The
multiplicative components b(x) and cĩ of the cluster centers m̃i ≈ b̃(x)cĩ can be estimated as the
following.

Consider the task of classifying the intensities I(y) in the neighborhood Ox into N classes. In
view of the separability of the intensities within the neighborhood Ox, this task can be
performed by using the standard K-means clustering method. In this paper, we introduce a K-
means clustering method based on the minimization of the following weighted objective
function

(3)

where b(x)ci are the cluster centers to be optimized, and K(x − y) is a non-negative weighting
function such that K(x − y) = 0 for |x − y| > ρ and ∫Ox K(x − y)dy = 1. Although the choice of
the weighting function is flexible, it is preferable to use a weighting function K(x − y) such
that larger weights are assigned to the data I(y) for y closer to the center x of the neighborhood
Ox. In this paper, the weighting function K is chosen as a truncated Gaussian kernel

where a is a constant such that ∫ K(u) = 1. The above objective function εx can be rewritten as

(4)
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due to the fact that K(x − y) = 0 for y ∉ Ox.

As mentioned above, the measured intensities I(y) within the neighborhood Ox are separable,
and therefore could be classified into N clusters by minimizing the objective function εx, which
results in the optimal cluster centers mi and an optimal partition of Ox. However, we still cannot
determine the components b(x) and ci of the computed cluster centers mi. Moreover, our
ultimate goal is to find an optimal set of a partition of the entire image domain Ω, the bias field
b, and the constants ci. The minimization of a single objective function εx, which is defined
for a point x, does not achieve this goal. We need to minimize εx for all the points x. This can
be achieved by minimizing the integral of εx over Ω. Therefore, we define an energy

, i.e.

(5)

Directly minimizing the energy with the partition  as a variable is not convenient. We
will use one or multiple level set functions to represent a partition . The energy
minimization can thus be performed by solving a level set evolution equation.

3 Level Set Formulation
We first consider the case of N = 2. In this case, the image domain is partitioned into two
regions . These two regions can be represented by the regions separated by the zero level
contour of a function φ, i.e.,  and . Using Heaviside function H, the
energy ε in Eq. (5) can be expressed as an energy in terms of φ, b, and c as below

(6)

where M1(φ(x)) = H(φ(x)) and M2(φ(x)) = 1 − H(φ(x)). In practice, we use a smoothed

Heaviside function  to approximate the original Heaviside function
H, with ε = 1 as used in [11].

It is necessary to add a regularization term R(φ) to the above energy in the following energy
functional:

(7)

where . The first term in R serves to regularize the zero
level contour of φ as in typical level set methods [11], while the second term regularizes the
entire level set function φ by penalizing its deviation from signed distance, as in the level set
methods proposed by Li et al. [12,13]. The energy ε(φ, b, c) is the data term in our variational
framework.
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Similarly, we can use multiple level set functions φ1, ⋯, φn to represent regions  with
N = 2n as in [14]. For convenience, we use a vector valued function Φ = (φ1, ⋯, φn) to represent
the functions φ1, ⋯, φn. The energy for general multiphase formulation of our method can be
defined as

(8)

where Mi(Φ) are functions of Φ which are designed such that . The definition
of Mi in the four-phase case are given in [14]. For N = 3 and two level set functions φ1 and
φ2, we can define M1(φ1, φ2) = H(φ1)H(φ2), M2(φ1, φ2) = H(φ1)(1 − H(φ2)), and M3(φ1, φ2) =
1 − H(φ1) to obtain a three-phase formulation.

We only describe the energy minimization for the two-phase case in this paper (the multi-phase
case can be solved with the similar procedure). For fixed c and b, the minimization of F(φ, c,
b) consists in solving the level set evolution equation as the gradient descent equation

(9)

where  is the Gâteaux derivative (the first order functional derivative) of the energy F. In
numerical implementation, at each iteration according to Eq. (9), the variables c and b are
updated according to the following procedure. For fixed φ and c, we find an optimal bias field
b̂ that minimizes F(φ, c, b). It can be shown that the minimizer b̂ is

(10)

where * is the convolution operation, and  and . For fixed
φ and b, we find an optimal ĉ that minimizes F(φ, c, b). By some calculus manipulations, it
can be shown that the minimizer ĉ = (ĉi, ⋯, ĉN) is

(11)

It is worth noting that the expression of b̂ in Eq. (10) with convolutions shows that b̂ is smooth.
The smoothness of b̂ is intrinsically ensured by the data term ε(φ, c, b) in our variational
framework. This is a desirable advantage of our method: there is no need for imposing a
smoothing term to ensure the smoothness of the bias field.
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4 Experimental Results and Validation
We use the parameters σ = 4, μ = 1, and ν = 0.001 × 2552 for all the images in this paper. Our
method is robust to the initialization of the constants c = (c1, ⋯, cN), the bias field b, and the
level set functions. For automatic applications, the constants c1, ⋯, cN can be initialized as N
equally spaced numbers between the minimum and maximum intensities of the original image,
and the bias field b is initialized as b = 1. The level set functions can be automatically generated
or manually initialized by the users. The number of phases N depends on the number of tissue
types in the images, which is usually known in practice.

We first demonstrate our method in the two-phase case (i.e. N = 2). For example, Fig. 1 shows
the result of our method for an X-ray image. Intensity inhomogeneity is obvious in this image.
We use this example to show the desirable capability of our method in joint segmentation and
bias correction. The bias corrected image is given by the quotient I/b̂. It is worth noting that
our method allows for flexible initialization of the level set function. The initial contour can
be inside, outside, or cross the object boundaries. This can be seen from the results in Fig. 1
and those for a computed tomography angiography (CTA) image of vessel and a computed
tomography (CT) image of a tumor in a liver shown in Fig. 2. The initial contours used to
generate the initial level set functions are shown in Fig. 2(a) and 2(c), and the corresponding
segmentation results are shown in Fig. 2(b) and 2(d).

Fig. 3 shows the result for a 3T MR brain image, which has obvious intensity inhomogeneity.
The computed bias field and the segmentation result are simultaneously obtained, shown in
Fig. 3(c) and 3(b), respectively. The bias corrected image is shown in Fig. 3(d). For comparison
with other methods, we use coefficient of variance (CV) as a metric to evaluate the performance
of the algorithms for bias correction and segmentation (c.f. [9,7]). Coefficient of variance is
defined as a quotient between standard deviation and mean value of selected tissue class. A
good algorithm for bias correction and segmentation should give low CV values for the bias
corrected intensities within each segmented region. We tested our method and the methods of
Leemput et al. and Wells et al. with two simulated images obtained from BrainWeb in the link
http://www.bic.mni.mcgill.ca/brainweb/, one corrupted with bias field without noise and the
other corrupted with both bias and noise. The CV values for the two images are listed in Table
1. It can be seen that the CV values of our method are lower than those of Leemput's and Wells's
methods, which indicates that the bias corrected images obtained in our method are more
homogeneous than those of the other two methods. In Fig. 4, we show the bias corrected images
for the noisy image as an example.

Our method has been tested on 7T MR images. At 7T, significant gains in image resolution
can be obtained due to the increase in signal-to-noise ratio. However, susceptibility-induced
gradients scale with main field, while the imaging gradients are currently limited to essentially
the same strengths as used at lower field strengths (i.e., 3T). Such effects are most pronounced
at air/tissue interfaces, as can be seen in Fig. 5(a) at the base of the frontal lobe. This appears
as a localized and stronger bias, which is challenging to traditional methods for bias correction.
This result shows the ability of our method to capture and correct such bias, as shown in Fig.
5(b) and 5(c).

5 Conclusion
We have presented a unified framework of bias correction and segmentation. A unique
advantage of our method is that the smoothness of the computed bias field is intrinsically
ensured by the data term in our variational formulation. Our method is able to capture bias of
quite general profiles, and can be used for images of various modalities. Moreover, it is robust
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to initialization, thereby allowing automatic applications. Comparisons with two well-known
bias correction methods demonstrate the advantages of the proposed method.
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Fig. 1.
Applications of our method to an X-ray image. (a) Original image and initial contour (dashed
black line); (b) Segmentation result (black lines); (c) Computed bias field; (d) Bias corrected
image.
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Fig. 2.
Applications of our method to a CTA image and a CT image. (a) Original CTA image and
initial contour (green dashed line); (b) Segmentation result; (c) Original CT image and initial
contour; (d) Segmentation result.
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Fig. 3.
Applications of our method to a 3T MR image. (a) Original image and initial contours: zero
level contours of initial φ1 (red) and φ2 (blue). (b) Final zero level contours of φ1 (red) and
φ2 (blue); (c) Computed bias field; (d) Bias corrected image.
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Fig. 4.
Comparison with the methods of Wells et al. and Leemput et al. using simulated data obtained
from BrainWeb. (a) Original image; (b) Our method; (c) Leemput et al.; (d) Wells et al..
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Fig. 5.
Application of our method to a 7T MR image. (a) Original image; (b) Bias corrected image;
(c) Computed bias field.
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