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Abstract
Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has
a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and
white matter that mediate critical functions. Currently, Wada testing and functional magnetic
resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical
stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and
positron emission tomography (PET) are used preoperatively, whereas microscopy and histological
sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging
techniques may lack sufficient resolution to define the relationship between the lesion and language
function, and thus not accurately determine which patients will benefit from neurosurgical resection
of the lesion without iatrogenic aphasia.

Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great
promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs,
epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress
towards the validation and justification of using intraoperative optical techniques, especially in
relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent
cortex. We conclude with a short description of potential novel intraoperative optical techniques.
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INTRODUCTION
Normal brain function and neurovascular coupling

The regulation of cerebral blood flow (CBF), metabolic rate of oxygen utilization (CMRO2),
and glucose utilization (CMRglc) during brain activity requires neurons, astrocytes, and
vascular cells to act in precise coordination. Specifically, neuronal activity leads to localized
increased oxygen and glucose metabolism, which in turn generates chemical signals that act
on glia, endothelial cells, pericytes, and smooth muscle cells which transduce these signals into
changes in vascular tone that leads to functional hyperemia (Hawkins and Davis, 2005). Such
cellular changes cause a direct spatial and temporal relationship between chemo-electrical,
CMRO2, CMRglc, and CBF changes, collectively termed “neurovascular coupling” (Figures 1
and 3). In the following section, the physiologic principles of neurovascular coupling that
underlie the technique of optical imaging of intrinsic signals (OIS) will be discussed, as well
as the neurosurgical applications of intraoperative OIS (iOIS).

INTRAOPERATIVE OPTICAL IMAGING OF INTRINSIC SIGNALS
OIS is a brain mapping technique that can visualize brain compartments with micrometer and
millisecond resolution. In its simplest configuration OIS is similar to fMRI, and maps changes
in deoxyhemoglobin (HbR), and hence changes in CMRO2 and CBF can be inferred (Frostig
et al., 1990; Malonek and Grinvald, 1997; Mayhew et al., 2000; Sheth et al., 2004b). OIS
requires an optically visible brain, as such it has been used primarily in animals for
neurovascular research (Frostig et al., 1990; Grinvald et al., 1991; Grinvald et al., 1986; Lieke,
1993; Prakash et al., 1996; Prakash et al., 2000), but also in humans intraoperatively (Cannestra
et al., 1998a; Cannestra et al., 1996; Cannestra et al., 2000; Cannestra et al., 2001; Cannestra
et al., 2004; Cannestra et al., 1998b; Haglund et al., 1992; Nariai et al., 2005; Pouratian et al.,
2000; Pouratian et al., 2002b; Sato et al., 2002; Sato et al., 2005; Schwartz et al., 2004; Shoham
and Grinvald, 2001; Toga et al., 1995). Specifically, iOIS has been demonstrated to be a
potentially useful neurosurgical tool for both functional brain mapping (Cannestra et al.,
2000; Cannestra et al., 2001; Haglund et al., 1992; Lin et al., 2001; Nariai et al., 2005; Schwartz,
2005; Toga et al., 1995) and lesion delineation (Cannestra et al., 2004; Popescu and Toms,
2006; Toms et al., 2005).

OIS exploits a trait that is inherent to vascularized tissues, especially the cerebral cortex—
when illuminated with light, active cortex and its associated vasculature exhibit changes in
light reflectance relative to inactive areas (Grinvald et al., 1986). Such activity-dependent light
reflectance patterns occur without dyes or tracers, have characteristic spatiotemporal features,
called “intrinsic signals.” There are three main sources of intrinsic signals, and each one can
become dominant depending on the spectral composition of recorded light (Frostig et al.,
1990; Malonek and Grinvald, 1996; Mayhew et al., 2000; Sheth et al., 2004a). With green-
yellow light (~500–599 nm), total-hemoglobin (HbT) is the dominant source of the intrinsic
signal (Figure 2). This signal is typically a monophasic response peaking in the capillary bed
3–5 s post stimulation, representing increased HbT from functional hyperemia (Frostig et al.,
1990; Malonek and Grinvald, 1996; Mayhew et al., 2000; Sheth et al., 2004a). With red light
(~600–699 nm), HbR is the dominant source of the intrinsic signal. This signal is typically a
biphasic response in the capillary bed, with an early phase peaking 0.5–1.5 s post stimulation
representing increased HbR (Frostig et al., 1990; Malonek and Grinvald, 1996; Mayhew et al.,
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2000; Sheth et al., 2004a) via increased CMRO2 (Thompson et al., 2003), followed by a late
phase peaking 3–5 s post stimulation from functional hyperemia. Lastly, in the near infrared
spectrum (~700–800 nm), hemoglobin minimally absorbs light, hence changes in cellular
swelling, which causes light-scattering changes, are the dominant source of the intrinsic signal.

OIS is usually described as an “invasive” imaging technique because it requires surgery to
make the cortex visible. However, as iOIS is performed in the operating room by attaching a
charge-coupled device (CCD) camera and optical filter(s) to the operating scope, it is non-
invasive compared to the current “gold” standard intraoperative electrophysiological
techniques, which require placing electrodes directly onto or into the brain. In essence, iOIS
improves the neurosurgeon’s eyesight by extracting the most relevant information from
reflected light arriving in the operating scope to create functional maps and to delineate cortical
lesions. iOIS has been slowly evolving, as technical challenges have had to be overcome, most
notably movement and noise reduction (reviewed in (Haglund and Hochman, 2004; Pouratian
et al., 2003a; Pouratian et al., 2003b)). Additionally, iOIS requires a willing neurosurgeon,
approval from the institutional review board, and consent of the patient. When these conditions
are met, iOIS is performed in a traditional operating room environment following craniotomy,
dural reflection, and positioning the CCD camera over the cortex. As sensory evoked potentials
are robust, even in anesthetized brain, primary sensory cortical functional mapping with iOIS
can be performed in fully anesthetized patients. However, language mapping requires a
conscious patient, hence for patients with lesions near or in eloquent cortex intraoperative brain
mapping (for any technique, including iOIS) requires the patient to be awoken under local
anesthesia in the operating room in order to perform language mapping.

Presently, most iOIS studies have measured intrinsic signals from red light (Cannestra et al.,
1998a; Cannestra et al., 1996; Cannestra et al., 2000; Cannestra et al., 2001; Cannestra et al.,
2004; Cannestra et al., 1998b; Haglund et al., 1992; Nariai et al., 2005; Pouratian et al.,
2000; Pouratian et al., 2002b; Sato et al., 2002; Sato et al., 2005; Schwartz et al., 2004; Shoham
and Grinvald, 2001; Toga et al., 1995)—hence assessing changes in HbR in arterioles,
capillaries, and venules—to map somatosensory evoked activity (Cannestra et al., 1998a;
Cannestra et al., 1996; Cannestra et al., 2001; Cannestra et al., 1998b; Nariai et al., 2005; Sato
et al., 2002; Sato et al., 2005; Schwartz et al., 2004; Shoham and Grinvald, 2001; Toga et al.,
1995), tongue movements (Pouratian et al., 2002b), and language tasks (Cannestra et al.,
2000; Cannestra et al., 2004; Pouratian et al., 2000). iOIS has also been used to delineate AVMs
(Cannestra et al., 2004) and epileptiform after-discharges (Haglund et al., 1992). iOIS maps
have been validated as accurate by comparison with “gold” standards of intraoperative
electrocortical stimulation mapping (ESM), or cortical evoked potentials (EP). Additionally,
a few studies have compared iOIS maps to preoperative fMRI, as well as intraoperative EP or
ESM (Cannestra et al., 2001; Cannestra et al., 2004; Pouratian et al., 2002b).

These studies have demonstrated that iOIS is a useful intraoperative tool, however it still
unproven that performing iOIS improves surgical outcome. From the neurophysiologic
perspective, iOIS has provided insight into the spatiotemporal dynamics of human
neurovascular coupling, which is outlined in the following section.

SPATIOTEMPORAL DYNAMICS ACROSS NEUROVASCULAR
COMPARTMENTS

This section presents a conceptual model of the spatial and temporal evolution of neurovascular
changes as they propagate through the various neurovascular compartments (figures 1 and 3).
The model is based largely on animal OIS and human fMRI data, however, iOIS data has
generally supported the hypotheses suggested from animal OIS studies (Andresen et al.,
2006; Chen-Bee et al., 2007; Girouard and Iadecola, 2006; Zheng et al., 2005). This model has
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a few caveats: The exact temporal onset of some of the events is either not well described or
studies have yielded contradictory results. Additionally, stimulus duration and intensity can
drastically affect the timing and amplitude of different neurovascular events (Polley et al.,
1999b), which may be a major source of contradictory data. To our knowledge, there are no
in vivo studies of astrocyte function in humans (Koehler et al., 2006). Lastly, it is not precisely
known how AVMs, seizure foci, and gliomas alter neurovascular coupling in the various
cellular compartments.

Initial events (neurons, astrocytes, and capillaries)
• Activated neurons release glutamate into the synaptic cleft, which increases glutamate

uptake as well as glycolysis in nearby astrocytes. Glutamate is converted to glutamine,
shuttled back to the neuron, and converted back to glutamate. Glycolysis in astrocytes
results in excess lactate that is transported into the neurons. Neurons convert lactate
into adenosine triphosphate via oxidative phosphorylation (Koehler et al., 2006;
Magistretti, 2000). This leads to metabolic byproducts, such as nitric oxide (NO),
protons, carbon dioxide, and potassium (Girouard and Iadecola, 2006).

• During oxidative metabolism, local CMRO2 increases (Thompson et al., 2003),
leading to transiently increased levels of deoxyhemoglobin (HbR) in the erythrocytes
in local capillary beds (Berwick et al., 2005).

• If the activating stimulus is strong enough, oxygen demand can exceed oxygen
delivery at the basal blood flow rate. The activation leads to even more metabolic
byproducts some of which are directly vasoactive, such as NO and potassium
(Girouard and Iadecola, 2006). Additionally, a behaviorally relevant stimulus can lead
to release of vasoactive neurotransmitters, such as acetylcholine or norepinephrine
(Prakash and Frostig, 2005; Sandor, 1999). All these factors alter nearby endothelial
cells, pericytes, and smooth muscle cells (Allt and Lawrenson, 2001), leading to
localized increased HbT via increased CBF and CBV (functional hyperemia).

• Functional hyperemia occurs just after increases in CMRO2 and leads to an
overwhelming delivery of oxyhemoglobin (HbO). With a sufficiently strong stimulus,
the rise of the HbO increase from functional hyperemia can blunt the initial HbR
increase. This leads to a non-linearity of HbR relation to stimulus intensity

Upstream events (arterioles)
• Endothelial cells, pericytes, and smooth muscle cells act together to change arteriolar

diameter that increases CBF.

• Local increases in blood flow (or AVMs) can “steal” blood from nearby arterioles
(Cannestra et al., 1996), which limits how much CBF can increase over multiple,
simultaneously activated areas, or for large magnitude stimuli. This leads to a loss of
correlation between functional hyperemia and stimulus amplitude.

• HbR increases are also transmitted upstream from capillary beds into arterioles
(Berwick et al., 2005)

Downstream events (venules)
• Increases in CBF in arterioles and capillaries are transmitted into venules, leading to

a slightly delayed, increase in CBV and HbT.

• Increased CMRO2 in capillary beds leads to higher HbR in the venules compared to
arterioles.
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In the following sections, we compare iOIS to other techniques and provide an overview of
challenges for iOIS applied to resection of AVMs, seizure foci, and gliomas in or near eloquent
cortex.

FUNCTIONAL MAPPING AND LESION DELINEATION
Language function mapping

Resection of non-primary sensorimotor and association cortices generally leaves minimal
lasting neurological deficits, hence pre- or intra-operative functional mapping for patients with
lesions within these areas is not essential. Conversely, primary sensorimotor cortices have
predictable locations relative to cortical anatomical topography, and it is usually
straightforward to confirm their locations, both with preoperative functional mapping and with
intraoperative electrophysiological mapping techniques.

Language functions are more variable in their cortical topography, but language functions in
the dominant frontal lobe and perisylvian regions (eloquent cortex) are the most crucial to
preserve if surgery-induced aphasia is to be prevented. The preoperative functional brain
mapping techniques of Wada testing and fMRI are currently approved for clinical use to
determine the location of eloquent cortex (Abou-Khalil, 2007). Wada testing is currently the
most widely used, although it carries some risk due to its invasiveness. It generally provides
sufficient information about language and memory lateralization for a majority of patients.
However a significant number of patients have complex topography of eloquent cortex, in
which preoperative fMRI language mapping is quite useful (Bookheimer, 2007). However,
preoperative language mapping with fMRI in the setting of AVMs, seizure foci, or gliomas
present unique challenges and limitations:

AVMs have high blood flow and reduced vasomotor reactivity (Diehl et al., 1994), which
frequently makes them invisible to conventional fMRI methodologies. Hence preoperative
fMRI for patients with an AVM in or near eloquent cortex may be of limited utility in
determining operability (Bookheimer, 2007; Cannestra et al., 2004).

Medically refractory epilepsy affects about 400,000 Americans. For many of these patients,
their disability potentially may be completely eliminated by surgical intervention (Engel,
1996; Wiebe et al., 2001). As the surgery becomes more widely accepted and as more centers
become capable of offering it there is still a delay of up to many years of patients having the
disorder. Chronic epilepsy can lead to significant, atypical reorganization of the language maps
(Sveller et al., 2006), which necessitates precise preoperative language mapping (Bookheimer,
2007; Woermann et al., 2003). Moreover, pre-ictal (Federico et al., 2005), ictal (Aghakhani et
al., 2004), and inter-ictal (Benar et al., 2002) activity can dramatically increase the fMRI BOLD
response and potentially provide a falsely lateralized or falsely positive preoperative language
map.

Gliomas can have a mass effect that decreases or reduces blood flow, which in turn can create
a false negative preoperative fMRI map. If the patient has aphasia from the tumor, preoperative
mapping may be impossible (Bookheimer, 2007).

Moreover, even the most accurate preoperative map quickly distorts once the cortex is exposed.
Mapping cortical function and dysfunction requires a technique with micrometer spatial
resolution and can accommodate intraoperative tissue distortions.

Lesion delineation
Three surgically resectable lesions—AVMs, seizure foci, and tumors—derive from different
cellular components and hence have different effects on neurovascular coupling. These
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differential effects make each of these lesions unique in respects to our current ability for pre-
and intra-operative delineation.

1. Vascular lesions such as cavernous malformations or AVMs typically are easily
delineated by preoperative imaging techniques, such as MRI or conventional
angiography. Visually identifying the lesions is also typically straightforward
intraoperatively, as they are readily visible with standard operating room optics.
However, AVMs do pose challenges for preoperative functional mapping, as
described above.

2. Seizures can arise from a focus of abnormal cortex that has excessive synchronous
activity that dramatically alters neurovascular coupling during both ictal (Rowe et al.,
1991) and interictal periods (Gaillard et al., 1995). Currently preoperative
electroencephalography (EEG), magnetoencephalography (MEG), single photon
emission computed tomography (SPECT), PET are all used to approximate the
location of seizure foci. All these techniques have only centimeter resolution that may
not enable precise localization. In cases of ambiguous localization, prior to resective
surgery, electrocorticography (ECoG) using cortical strip, surface, or depth electrodes
may further aid in more precisely defining seizure focus (Behrens et al., 1994).
However, this delineation method then, requires a second surgery and associated risks
while the patient has the electrodes in place, or unnecessarily puts the patients under
surgical risk if the lesion is deemed inoperable.

Currently ECoG using grid, strip, or depth electrodes is routinely performed for
intraoperative delineation of seizure foci (Abraham and Roland, 2003; Hidenori et
al., 2007; Miller et al., 2007). While ECoG is considered the “gold” standard, it is
invasive and has a restricted field of view and limited spatial resolution. Novel
electrical techniques under development, such as EEG source imaging, may overcome
these problems (Ding et al., 2007). Alternatively, iOIS techniques potentially could
be used alone or in conjunction with ECoG, as interictal cortex is generally
hypoperfused (Gaillard et al., 1995; Liu et al., 2001; Shariff et al., 2006) and has
increased deoxyhemoglobin levels within the epileptic focus (Shariff et al., 2006; Suh
et al., 2006). iOIS has already been demonstrated to be capable of providing high-
resolution maps that provide localizing information about normal cortical functions
in epileptic patients, as well as ictal and interictal epilepsy foci (Haglund and
Hochman, 2004; Haglund and Hochman, 2005; Haglund et al., 1992; Schwartz,
2005; Suh et al., 2006).

3. Gliomas infiltrate the normal brain parenchyma, alter cellular metabolism, and subtly
affect neurovascular coupling (Ravi and James, 2004). Low-grade gliomas present a
major surgical challenge as most inevitably progress to high-grade tumors. Currently,
gross total resection of a low-grade glioma is the treatment of choice, if possible.
However, the surgical risks and benefits are carefully assessed because the resection
itself can result in permanent neurological deficits. This is especially true for gliomas
in eloquent cortex where the risk of aphasia is high, hence in such cases, there is a
need for precise tumor delineation and functional mapping (Grier and Batchelor,
2006).

5-aminolevulinic acid ((5AL); an optical dye) is metabolized preferentially by tumor
cells and induces intraoperative tumor fluorescence. Using intraoperative fluorescent
optical imaging of 5AL enables more complete resections, leading to improved
progression-free survival in patients with malignant gliomas (Stummer et al., 2006).

Another technique, optical coherence tomography (OCT) (Chen et al., 1999) has also
recently been demonstrated to intraoperatively distinguish white matter and gray
matter and potentially distinguish tumor from normal tissue within glioma resection
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cavities (Giese et al., 2006). Both 5AL imaging and OCT may be compatible with
iOIS to allow essentially simultaneous, functional mapping and tumor delineation.

Functional mapping: BOLD fMRI versus red-light OIS
Blood oxygenation level dependent (BOLD) fMRI is commonly used for preoperative
language mapping (Bookheimer, 2007). However, the exact etiology of the BOLD signal is
still debated (see (Logothetis and Pfeuffer, 2004) for recent review). Similar to red-light OIS,
it is generally assumed that the relative HbR concentration changes due to increased CBF,
cerebral blood volume (CBV), and CMRO2 in active cortex gives rise to the positive BOLD
signal (Hathout et al., 1999; Logothetis and Pfeuffer, 2004; Pouratian et al., 2002b; Seiyama
et al., 2004; Yamamoto and Kato, 2002); although solely changes in CBV can also change the
BOLD signal (Steinbrink et al., 2006). Similarly, the red-light OIS signal is not derived purely
from HbR changes, as it also contains weak signals from HbO and light-scattering changes.
Hence, interpretation of both BOLD fMRI and red-light OIS signals maps can be complex in
depending on various physiologic conditions. However, newly developed variants of OIS, such
as 2-dimesional optical spectroscopy (2DOS) (Berwick et al., 2005; Dunn et al., 2005; Prakash
et al., 2007; Sheth et al., 2005), measure multiple wavelengths in the optical spectrum
simultaneously, and hence eliminate signal contamination issues and allow for quantitative
mapping of HbO, HbR, and HbT.

As outlined above, AVMs, seizures and gliomas all can alter neurovascular coupling and hence
decrease the accuracy of pre-operative fMRI maps. iOIS offers several potential advantages
over preoperative fMRI language mapping. Spatial resolution for iOIS is one to two orders of
magnitude superior to fMRI and hence the lesion and functional cortex may be easily
distinguished by the surgeon on iOIS images (Cannestra et al., 2004). Intraoperative mapping
is inherently more accurate as the lesion and functional maps may change after pre-operative
images are obtained, either due to lesion evolution and cortical plasticity, or also due to tissue
displacement due to operative procedures.

Intraoperative electrical versus optical maps
Animal studies of neurovascular coupling demonstrate that within capillary beds, evoked HbT,
HbR, CBF changes and electrical activity are topographically correlated (Brett-Green et al.,
2001; Hyder et al., 2001; Masino, 2003; Peterson et al., 1998; Polley et al., 1999a; Polley et
al., 2004). In humans, the spatial topography of responses detected by OIS, fMRI, ESM, and
EPs are generally consistent with each other. However, as expected, there are some differences.
For instance, an ESM and OIS language mapping study showed a close overlap and spatial
correlation in Broca’s and Wernicke’s areas. However, red-light OIS maps also contained
regions adjacent to, but just outside the ESM-defined maps (Cannestra et al., 2000). Thus,
either 1) ESM did not map the language areas in their entirety, or 2) red-light OIS maps also
detected cortical regions that were non-essential for language tasks. ESM is a technique that
maps brain by disrupting normal function; hence, the second possibility may be more correct,
as disrupting non-essential areas may not block the ability to perform language tasks.

Controversies in mapping signals
The correlation between the spatial topography and amplitude of different functional brain
maps is still an area of research and debate. Part of the disagreement is methodological:
techniques have different spatiotemporal resolution, signals, and data acquisition and analysis
methods. For example, most OIS and iOIS studies use brief stimuli, whereas most fMRI studies
use a monophasic response model. For these reasons, many fMRI and OIS maps of HbR
changes are not directly comparable (Cannestra et al., 2001; Menon et al., 1995; Pouratian et
al., 2002a; Pouratian et al., 2002b).
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Map topography dependence on mapping signal
In addition to methodological differences, the topography of functional maps is also dependent
on which mapping signal is used. For example, although red-light OIS and EP maps have been
found to be in excellent spatial registration around the central sulcus (Cannestra et al., 2001;
Sato et al., 2002; Shoham and Grinvald, 2001), a study that mapped EP, iOIS and fMRI
responses in a single patient (Cannestra et al., 2001) found the fMRI BOLD map using a
traditional monophasic response model (~CBF/CBV), was strongest within the vein in the
central sulcus. However, when the initial negative BOLD signal (~HbR) was used all three
spatial maps were virtually identical.

Overall, these studies suggested that maps derived from electrical activity and HbR/CMRO2
within the capillary beds are topographically correlated, whereas HbT, CBF, or CBV maps
may be skewed due to maximal changes in downstream venules and veins.

Map intensity dependence on mapping signal
Besides map topography, another important feature for accurate comparison of intraoperative
maps is the correlation of the magnitudes of the mapping signals. Animal OIS studies suggest
that for relatively brief stimuli (as compared to prolonged stimuli, such as from the monophasic
response model (Jones et al., 2002), the magnitude of late-HbR (Devor et al., 2003; Hewson-
Stoate et al., 2005; Sheth et al., 2004b), HbT (Devor et al., 2003; Hewson-Stoate et al., 2005;
Sheth et al., 2004b), CBF (Jones et al., 2004; Ngai et al., 1999; Sheth et al., 2004b), and HbO
changes (Devor et al., 2003; Hewson-Stoate et al., 2005; Sheth et al., 2004b) appear linearly
related to evoked electrical activity over a narrow range, but become non-linear if the stimulus
is very weak or very strong (Devor et al., 2003; Hewson-Stoate et al., 2005; Jones et al.,
2004; Ngai et al., 1999; Polley et al., 1999b; Sheth et al., 2003; Sheth et al., 2004b). With large
evoked electrical activity the relationships are better described by a threshold or power law
(Devor et al., 2003; Hewson-Stoate et al., 2005; Sheth et al., 2004b). However, in contrast to
late-HbR, HbT, CBF, and HbO changes, early-HbR (CMRO2) changes (Buxton, 2001; Chen-
Bee et al., 2007; Fox and Raichle, 1986; Menon et al., 1995; Obrig and Villringer, 2003; Raichle
et al., 1976; Thompson et al., 2003; Valabregue et al., 2003) are more correlated to the
topography of electrical activity but less correlated to the magnitude of tactile (Polley et al.,
1999b) or electrical stimulus (Sheth et al., 2004b).

Similar to OIS studies, some fMRI studies show linear relations between the stimulus intensity
and positive BOLD signal (Boynton et al., 1996), as well as BOLD signal and the amplitude
of somatosensory EPs (Arthurs and Boniface, 2003). However, other studies suggest that there
are also non-linearities between stimulus duration and BOLD signal (Birn et al., 2001),
topographic and temporal differences between the positive and negative BOLD signal (Harel
et al., 2002; Ugurbil et al., 1999), and differences in signal linearity across brain regions
(Soltysik et al., 2004).

Improvements for magnitude mapping
As noted above, the late-HbR (red-light iOIS and positive BOLD fMRI) signal has been the
most commonly used for iOIS. OIS using green-light (figure 2) detects HbT changes; and
perfusion-based fMRI (such as with arterial spin labelling (ASL)) (Silva, 2005) detects CBF
changes. Also noted above, CBF and HbT changes may correlate better with magnitude
changes in neuronal activity compared to early-HbR or late-HbR changes. Indeed, in one of
the few iOIS studies using green-light (Haglund and Hochman, 2005), the spatial extent of
both electrical activity and HbT changes in epileptic cortex was reduced by treatment with
mannitol or furosemide, but the magnitude of electrical activation and HbT changes near the
stimulating electrode was not. Using H2

15O PET and BOLD-fMRI in auditory cortex, it is has
been shown that changes in CBF are more linearly correlated than changes in HbR to word
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presentation rate (Rees et al., 1997). These studies suggest that using perfusion-based
methodologies may provide better magnitude maps of brain function.

Which mapping signal is best?
In summary, functional mapping studies suggest that weak electrical, CMRO2 (Thompson et
al., 2003), and early-HbR changes are topographically correlated, but CMRO2/early-HbR
changes occur 0.5–2.5 s after electrical changes. In contrast, the magnitude of changes in HbT,
CBF, and CBV are more linearly correlated to stronger electrical changes, but are less tightly
related topographically and temporally, as they are transmitted downstream from arterioles and
capillaries to venules and veins in 3–5 s (Cannestra et al., 2001; Woolsey et al., 1996). This
implies that HbR/CMRO2 changes are topographically related to small electrical changes, but
that functional hyperemia is more linearly related to increases in electrical activity (Buxton et
al., 2004). However, a study of humans with neocortical epilepsy confuses the matter in that
HbT was found to be better than HbR at topographically localizing epileptic foci (Haglund and
Hochman, 2004). This further demonstrates the need to understand how different pathologies,
such as epileptic foci, alter the relationships of mapping signals of neurovascular coupling.

Overall, these studies suggest that using both oximetric and perfusion signals for brain mapping
may provide more accurate topographic and magnitude maps than either one alone. However,
the choice of which mapping signal to use is also technique dependent, because OIS using
either red or green light can easily distinguish surface arteries, veins, and capillaries; whereas
fMRI using either BOLD or ASL cannot, and thus are more prone to volume averaging errors.
Hence, iOIS tuned for both HbR and HbT changes should provide maps with the most relevant
magnitude and topography. Moreover, AVMs, epileptic foci, and gliomas all affect the
mapping signals of neurovascular coupling. Accounting for these effects is important when
using iOIS or fMRI for surgical planning.

FUTURE OF INTRAOPERATIVE OPTICAL IMAGING
Beyond OIS: 2DOS

Precise topographic maps of HbR, HbO, and HbT have recently been quantified using novel
2DOS methods in animals (Berwick et al., 2005; Devor et al., 2003; Prakash et al., 2007; Sheth
et al., 2005). 2DOS could also be used in humans to create three intraoperative functional maps
of HbR, HbO and HbT changes. Additionally, although still controversial, light-changes in the
near infrared spectrum (Gratton et al., 1995; Rector et al., 2001; Steinbrink et al., 2005) may
derive from light-scattering changes which are more directly related to chemo-electrical
changes in neurons and astrocytes. Using 2DOS acquisition hardware and software properly
tuned to detect fast optical signals, theoretically, may provide an additional fourth
intraoperative functional map of chemo-electrical changes.

Alternatively, the same four intraoperative functional maps could theoretically be derived by
combining 2DOS with a future, clinically approved voltage sensitive dye. Moreover, both
fluorescence spectroscopy (Koljenovi et al., 2002; Lin et al., 2001; Toms et al., 2005) and
tumor-specific dyes (Jackson et al., 2007; Stummer et al., 2006) show great promise for
sensitive and specific tumor delineation. Combining 2DOS with fluorescence spectroscopy or
tumor-specific dyes may allow simultaneous functional mapping and tumor delineation.

Laser mapping
New laser-based techniques show great promise. For example, laser speckle imaging (LSI) has
excellent spatiotemporal resolution for surface imaging of CBF (Briers, 2001; Dunn et al.,
2001; Liu et al., 2005). OCT (Giese et al., 2006) and optical Doppler tomography (ODT)
(Chen et al., 1999) have exquisite three-dimensional spatial resolution. OCT has recently been

Prakash et al. Page 9

Neuroimage. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



validated for intraoperative detection of residual tumor during resection of human gliomas
(Giese et al., 2006).

Although only currently used in animals, 2-(or multi-)photon microscopy can delineate real-
time changes in hemodynamics with cellular resolution (Shi et al., 1999). 2-photo microscopy
has recently been combined laminar optical tomography (LOT) (Hillman et al., 2007; Hillman
et al., 2006) for depth-resolved functional imaging of the vascular compartment dynamics in
rat brain.

Overall, laser techniques show the greatest promise for ultra-high resolution functional
mapping and tumor delineation.

Glial imaging
Calcium appears to play a crucial role in astrocyte function (Fields and Stevens-Graham,
2002). Current techniques that assess metabolic and chemo-electric changes, cannot spatially
distinguish astrocyte from neuron (Hirase, 2005; Hopwood et al., 2005; Ido et al., 2001;
Vlassenko et al., 2006). Whereas, optical techniques that can distinguish cell types are either
too technically challenging to perform in vivo, or cannot measure metabolic function.

Advances in in vivo calcium imaging and development of glial-specific optical dyes of may
eventually improve our understanding of astrocyte function and dysfunction (Kerr et al.,
2005). Moreover, further development of dyes such as 5AL, will continue to improve the
accuracy of intraoperative glioma delineation.

CONCLUSIONS
iOIS shows great promise for micrometer intraoperative functional brain mapping and lesion
delineation. iOIS dramatically improves a neurosurgeon’s eyesight by creating functional and
lesion maps from images from the surgical microscope. More precise individualized
intraoperative maps may potentially improve surgical outcomes, especially resections of
AVMs, seizure foci, and gliomas that lay in or near eloquent cortex.
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Figure 1. Snapshot of microanatomy of neurovascular coupling
See text. Also, see video: http://www.loni.ucla.edu/SVG/index.php?vid=261.
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Figure 2. Green-light versus red-light OIS
Hemoglobin is the major source of light absorption in the visible spectrum of exposed living
brain. In the green spectrum, HbO and HbR have identical absorption at four different isosbestic
points, hence maps with green-light OIS are largely maps of HbT changes. In the red spectrum,
HbR absorbs light much more than HbO, hence maps with red-light OIS are largely maps of
HbR changes.
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Figure 3. Neurovascular coupling events across cellular compartments
Cellular compartments are depicted on the y-axis, time on the x-axis, and related events or
mapping signals by the grayscale shading. Neurotransmission occurs within tens of
milliseconds. Local metabolism increase and metabolic waste production occur within
hundreds of milliseconds. Functional hyperemia and normalization occurs within seconds.
There is a slight staggering in normalization of CBF and CBV changes. Prolonged stimulation
may alter the timing, onset or offset of any of these events in the various compartments. AVMs
primarily alter functional hyperemia, seizures alter all events but primarily neurotransmission,
and gliomas primarily alter metabolism.
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Figure 4. Comparison of iOIS and i2DOS
iOIS (top) is performed by using a CCD and optical filter attached to a standard neurosurgical
operating microscope. Anesthetized sensory stimulation or awake language mapping (as in this
case) sessions are performed with red-light or green-light filters to generate ~HbR or ~HbT
maps. i2DOS (bottom) is a variant of i2DOS in which a QuadView optical filter replaces the
single optical filter. Four simultaneous images are obtained from up to four different
wavelengths; after registration algorithms are performed, maps of HbR, HbT and HbO are
generated (mouse somatosensory maps are shown derived from (Prakash et al., 2007)). A
hypothetical lesion delineation is shown in purple (this be from the same optical data or
generated from other imaging modalities) and a composite map shown that would help guide
the neurosurgical resection (composite color scale from (Sheth et al., submitted)
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