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Abstract
In functional magnetic resonance imaging (fMRI), the process of determining statistically significant
brain activation is commonly performed in terms of voxel time series measurements after image
reconstruction and magnitude-only time series formation. The image reconstruction and statistical
activation processes are treated separately. In this manuscript, a framework is developed so that
statistical analysis is performed in terms of the original, pre-reconstruction, complex-valued k-space
measurements. First, the relationship between complex-valued (Fourier) encoded k-space
measurements and complex-valued image measurements from (Fourier) reconstructed images is
reviewed. Second, the voxel time-series measurements are written in terms of the original spatio-
temporal k-space measurements utilizing this k-space and image relationship. Finally, voxel-wise
fMRI activation can be determined in image space in terms of the original k-space measurements.
Additionally, the spatio-temporal covariance between reconstructed complex-valued voxel time
series can be written in terms of the spatio-temporal covariance between complex-valued k-space
measurements. This allows one to utilize the originally measured data in its more natural, acquired
state rather than in a transformed state. The effects of modeling preprocessing in k-space on voxel
activation and correlation can then be examined.
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1. Introduction
In functional magnetic resonance imaging (fMRI), an array of data for an individual image is
observed in an encoded form. The sampled data are generally Fourier encoded [2,4] and thus
are measured spatial frequencies. These spatial frequency (k-space) observations are then
reconstructed into an individual image array by the process of an inverse Fourier
transformation. A series of these arrays of encoded images are acquired and the reconstruction
process is applied to each array. For each voxel, temporally sequential voxel measurements
are collected into a time series for determination of statistically significant activation. The
originally sampled spatial frequencies are complex-valued and the inverse Fourier
transformation image reconstruction process may yield complex-valued data. Due to
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measurement error and imperfections in the Fourier encoding, voxel time series are generally
complex-valued.

The process of determining statistical activation in each voxel has, for the most part, been from
magnitude-only time series [1,12]. The process of converting a complex-valued time series
into a magnitude-only time series is to take the square root of the sum of the squares of the real
and imaginary parts of the complex-valued time series at each time point [11]. An activation
statistic from the magnitude-only time series for each voxel is determined by computing a
measure of association between the observed voxel time series and a preassigned ideal time
series based on the timing of the experiment and physiological considerations. This association
measure for each voxel is statistically compared to the association measure that would result
from a time series of random noise. A statistical threshold is chosen, a scale of color values for
the activation statistic is assigned, and each voxel above threshold is given the color
corresponding to its activation statistic.

The idea of computing an activation statistic from the complex-valued time series has been
previously discussed [5,8]. This idea of computing fMRI activation from complex-valued data
has recently been expanded upon [9-12]. Work has also been performed on computing fMRI
activation from phase-only time series [13]. However, the processes of image reconstruction
and statistical activation have been treated separately. Thus, activation is determined in terms
of complex-valued voxel measurements after reconstruction and not the original encoded
measurements.

In the current study, the relationship between the original encoded k-space measurements and
reconstructed voxel measurements for each image is summarized. For each image, a vector of
real-imaginary reconstructed voxel measurements is formed and written as a linear
combination of real-imaginary k-space measurements. A larger vector of reconstructed real-
imaginary voxel time series measurements is formed by stacking the individual vectors of real-
imaginary voxel measurements for each image in temporal order. This large vector is written
as a linear combination of a large vector of real-imaginary k-space time series measurements
that is ordered in a similar manor. A permutation matrix is utilized to reorder the voxel
measurements that are real then imaginary per image to be of real then imaginary per voxel.
Statistical functional brain activation can then be determined with the aforementioned recent
complex-valued activation models. A map of these activation statistics can then thresholded
to determine statistically significant activation while adjusting for multiple comparisons [6,
7].

Statistically significant voxel activation and correlation between voxels can thus be determined
in image space in terms of the originally acquired k-space measurements. This will allow the
modeling of the originally acquired measurements in their original state, as they are acquired,
and not in a transformed state. Implications of k-space preprocessing on voxel activation and
correlation can then be evaluated.

2. Background
Previous work has included the development of a real-valued representation of the standard
complex-valued Fourier transform [14]. In this section we review the representation and offer
a graphical example to illustrate the method. Magnetic resonance images are almost exclusively
Fourier encoded. That is, one ideally measures the Fourier transform of an image and
reconstruct the image via an inverse Fourier transform. The Fourier transform and inverse
Fourier transforms are complex-valued procedures that results in complex-valued arrays.

Standard, complex-valued Fourier matrices are defined as follows. If ΩC is a p×p Fourier
matrix, it is a matrix with (j,k)th element [ΩC]jk= κ (ωjk) where κ=1 and ω=exp[-i 2 π (j-1)
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(k-1)/p] for the forward transformation while κ=1/p and ω =exp[+i 2π (j-1)(k-1)/p] for the
inverse transformation, where j,k=1,…,p.

Consider the Fourier transform of an image that has dimensions py×px(py rows and px
columns). Often the image is square, although this is not necessary. More specifically, consider
an 8×8, ideal, noiseless, gray scale image as presented in Fig. 1. Since the Fourier transform
and inverse Fourier transform procedures operate on, and produce complex-valued arrays, the
real-valued image in Fig. 1 can be represented as a complex-valued image RC that has a real
part RR as in Fig. 1 an imaginary part RI that is the zero matrix so that RC=RR+iRI. The encoded
data, or Fourier transform of this image, can be found as in Eq. (1) by pre-multiplying the
py×px dimensional complex-valued matrix RC by a standard complex-valued forward Fourier
matrix Ω̄yC=Ω ̄yR+iΩ̄yI, that is of dimensions py×py, and post-multiplying RC by the transpose

of another standard forward Fourier matrix , where T denotes matrix
transposition, that is of dimensions px×px. The result of the pre- and post-multiplications is a
complex-valued array of spatial frequency (k-space) measurements, SC, with real part SR and
imaginary part SI as also shown in Eq. (1).

(1)

This mathematical procedure is graphically illustrated in Fig. 2 using the aforementioned 8×8
image. In Fig. 2 the 8×8 image, RC, is utilized to mimic an image from a magnetic resonance
echo planar imaging experiment. RC is displayed with real part, RR, in Fig. 2c and imaginary
part, RI, in Fig. 2d. The spatial frequency (k-space) values, SC=(SR+iSI), associated with this
complex-valued image, are found by pre-multiplying the complex-valued image by the
complex-valued forward Fourier matrix Ω̄yC (Fig. 2a and Fig 2b) and then post-multiplying
the result by the transpose of the symmetric forward Fourier matrix (Fig. 2e and Fig. 2f). The
spatial frequency (k-space) values, SC, for the complex-valued image RC are presented as an
image with real part, SR, in Fig. 2g and imaginary part, SI, in Fig. 2h. Note that, as mentioned
earlier, the image does not have to be square.

However, as previously described, in MRI encoded (k-space) measurements, SC, are made and
reconstructed (transformed) into an image. The inverse Fourier procedure is performed. This
reconstruction procedure, or inverse Fourier transform, of the spatial frequency (k-space)
measurements can be found as

(2)

by pre-multiplying the py×px dimensional complex-valued spatial frequency matrix, SC, by a
complex-valued inverse Fourier matrix, Ωy, that is of dimensions py×py, and post-multiplying
SC by the transpose of another Fourier matrix, Ω̄x

T, that is of dimensions px×px, where T
denotes matrix transposition. The result of the pre- and post-multiplications is a complex-
valued array of image measurements RC, with real part RR and imaginary part RI as also shown
in Eq. (2).

The complex-valued image RC can be recovered as seen in Fig. 3. The process of recovering
the original complex-valued image RC is to pre-multiply the complex-valued spatial frequency
(k-space) values SC by the complex-valued inverse Fourier matrix ΩCy, (Fig. 3a and Fig. 3b)
then post-multiply the result by the transpose of the symmetric inverse Fourier matrix ΩCx,
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(Fig. 3e and Fig. 3f). The recovered complex-valued image, RC, is presented with real part,
RR, in Fig. 3g and imaginary part, RI, in Fig. 3h.

This complex-valued inverse Fourier transformation image reconstruction process can be
equivalently described as a linear transformation with a real-valued representation [14]. Such
a transformation is often called an isomorphism in mathematics. Define a real-valued vector,
s, to be a 2pxpy dimensional vector of complex-valued spatial frequencies from an image where
the first pxpy elements are the rows of the real part of the spatial frequency matrix, SR, shown
in Fig. 3c, and the second pxpy elements are the rows of the imaginary part of the spatial
frequency matrix, SI, shown in Fig. 3d. The real-valued vector of spatial frequencies is thus
formed as s=vec(SR

T,SI
T), where (SR

T,SI
T) is a px×2py matrix formed by joining the transpose

of the real and imaginary parts of SC as seen in Fig. 4a, and vec(·) denotes the vectorization
operator that stacks the columns, shown in Fig. 4b, of its matrix argument. This yields us a
real-valued vector representation of the matrix of spatial frequency (k-space) values that is
given in Fig. 5b.

Further define a matrix Ω that is another representation of the complex-valued inverse Fourier
transformation matrices as described in Eq. (3) where the matrix elements of Ω are

and ⊗ denotes the Kronecker product that multiplies every element of its first matrix argument
by its entire second matrix argument. Utilizing the complex-valued Fourier matrix ΩCy, with
real and imaginary parts ΩyR and ΩyI given in Fig. 3a and Fig. 3b, along with the complex-
valued Fourier matrix ΩCx, with real and imaginary parts ΩxR and ΩxI given in Fig. 3e and
Fig. 3f, the resulting Ω matrix is presented in Fig. 5a.

The real-valued vector representation s of the spatial frequency (k-space) values in Fig. 5b is
then pre-multiplied by the (inverse Fourier) reconstruction matrix Ω as in Eq. (3)

(3)

where the real-valued representation, r, of the complex-valued image has a dimension of
2pxpy×1, true mean and no measurement error.

This is pictorially represented in Fig. 5. Fig. 5b is the spatial frequency vector s and Fig. 5a is
the inverse Fourier transformation matrix Ω as described in Eq. (3). This matrix multiplication
produces a vector representation, r, of the image voxel measurements given in Fig. 5c as
described in Eq. (3). The vector of voxel measurements, r, is partitioned into column blocks
of length px. These blocks are then arranged as in Fig. 6a and formed into a single matrix image
as in Fig. 6b where the first (last) eight columns are the transpose of the real (imaginary) part
of the image. As can be seen, the same resultant complex-valued image is reconstructed with
the complex-valued inverse Fourier transformation procedure described in Eq. (2) and
presented in Fig. 3.

In the above described procedure, measurement noise was not considered. Redefine SC to be
the py×px dimensional complex-valued spatial frequency measurement of a slice with noise
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that consists of a py×px dimensional matrix of true underlying noiseless complex-valued spatial
frequencies, S0C, and a py×px dimensional matrix of complex-valued measurement error, EC.
This partitioning of the measured spatial frequencies in terms of true noiseless spatial
frequencies plus measurement error can be represented as

(4)

where i is the imaginary unit while S0R, S0I, ER, and EI are real and imaginary matrix valued
parts of the true spatial frequencies and measurement noise, respectively. Let ΩCx and ΩCy be
px×px and py×py complex-valued Fourier matrices as described above. Then, the py×px
complex-valued inverse Fourier transformation reconstructed image, RC, of SC can be written
as

(5)

where RC has a true mean R0C and measurement error NC. Note that the complex-valued
matrices for reconstruction, Ωx and Ωy in Eq. (5), need not be exactly Fourier matrices but may
be Fourier matrices that include adjustments for independently measured magnetic field
inhomogeneities or reconstruction matrices for other encoding procedures.

The real-valued inverse Fourier transformation method for image reconstruction can also be
directly applied to noisy measurements. We can represent the noisy complex-valued spatial
frequency matrix as s=s0+ε where this 2pxpy dimensional vectors includes the reals of the rows
stacked upon the imaginaries of the rows of the corresponding matrix. This implies that if the
mean and covariance of the spatial frequency measurement vector, s, that is of dimension
2pxpy×1, are s0 and Γ, then the mean and covariance of the reconstructed voxel measurements,
r, are Ωs0 and ΩΓΩT.

3. Theory
The previously described data for a single image is expanded upon to mimic an fMRI
experiment. In fMRI, a series of the previously described image slices are acquired. Denote
the py×px complex-valued spatial frequency matrix, corrupted by random noise, acquired at
time t as SCt=S0Ct+ECt and define , where SRt and SIt are the real and imaginary
parts of SCt for time points t=1,…,n. Define the total number of voxels in the image, which is
the same as the number of complex-valued k-space measurements in fully sampled, Fourier
encoded, Cartesian acquisitions, to be p=pxpy. This sequence of measured spatial frequency
vectors can be collected into a 2p×n matrix S=(s1,…,sn) where the tth column contains the p
real k-space measurements stacked upon the p imaginary k-space measurements for time t.
Having done this, n reconstructed images can be formed by the 2p×n matrix R=ΩS where the
tth column of R contains the p real voxel measurements stacked upon the p imaginary voxel
measurements for time t, t=1,…,n.

The k-space measurements and the image voxel measurements can be stacked as s=vec(S) and
r=vec(R). Note that s and r and have been redefined from their initial definition. If the mean
and covariance of the 2np×1 vector of spatial frequency measurements, s, are s0 and Δ, then
the mean and covariance of the 2np×1 vector of reconstructed voxel measurements, r, are (In
⊗ Ω)s0 and (In ⊗ Ω)Δ(In ⊗ ΩT). For example, if the k-space measurements were taken to be
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temporally independent, then Δ=In ⊗ Γ and cov(r)=In ⊗ (ΩΓΩT), where Γ is the covariance
matrix for one k-space acquisition. Thus, we have described the fMRI voxel measurements as
a linear function of the fMRI k-space measurements.

We can alternatively organize the voxel measurements by stacking the first set of p columns
of RT upon the second set of p columns of RT to form a matrix Y of dimension 2n×p. Having
done this, the jth column of the resulting data matrix Y contains the n real voxel measurements
stacked upon the n imaginary voxel measurements for voxel j, j=1,…,p. The voxel
measurements Y can be described with the complex fMRI model [12] as

(6)

where C1 and S1 are diagonal matrices with cosine and sine terms respectively. Different
activation models are found from Eq. (6) by different choices of the C and S matrices. The
complex constant phase model [11] can be found with Cj=Incosθj and Sj=Insinθj where j indexes
the jth voxel. The unrestricted phase or magnitude only model can be found by selecting the
tth element of Cj and Sj to be Cjt=cosθjt and Sjt=sinθjt, where θjt is unique for each j and t. The
complex model for both magnitude and phase [9] can be found by choosing the phase θjt=
ut

Tγj where ut is the tth row of a phase design matrix U and γj are phase regression coefficients
for voxel j.

Equation 6 can be rearranged and written with y=vec(Y) as

(7)

where  is a vector containing the real and imaginary reconstructed

voxel measurements and  is a vector containing the real and imaginary
errors of the reconstructed voxel measurements. The model can simply be written as y=μ+ε.
For example, with constant phase model, the mean is

The rearrangement of the voxel measurements from r to y is a linear transformation and can
be achieved through multiplication with a permutation matrix P (described in Appendix A and
presented in Fig. 10) as y=Pr. In terms of the original k-space measurements the voxel time
courses are . Having done this linear
transformation, the mean and covariance of y are μ=P(In ⊗ Ω)s0 and Λ=P(In ⊗ Ω)Δ(In ⊗
ΩT)PT. Since the matrices Ω and P that convert k-space measurements, s, to voxel
measurements, y, are known a priori, the expression y=P(In ⊗ Ω)s can be inverted to write s=
(In ⊗ Ω-1)P-1y, and in terms of the parameters as
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(8)

Thus the optimization for the regression coefficients (β) and phases (θ) in Eq. (8) can be
performed in k-space to yield the same parameter estimates as the standard method. Activations
can then be computed from the described complex activation models.

Using ordinary least squares or a normal distributional specification on the errors, the voxel-
wise regression coefficients and phases can be determined to yield the same point estimators
as in Rowe and Logan [11]. The Rowe-Logan unconstrained alternative hypothesis estimators
(with hats) for H1:Cβ≠0 along with the constrained null hypothesis estimators (with tildes) for
H0:Cβ=0 in voxel j are

(9)

where C is an r×(q+1) matrix of full row rank, ψ=Iq+1-(XTX)-1CT[C(XTX)-1CT]-1C, β̂Rj=
(XTX)-1XTyRj, and β̂Ij=(XTX)-1XTyIj, while yRj and yIj are the n×1 vectors of real and
imaginary voxel observations.

We can convert from the vector r, which is presented in Fig. 10c, to the vector y, which is
shown in Fig. 10a, via a permutation matrix P, a portion of which is displayed in Fig. 10b. Now
with the y vector being arranged as real and imaginary observations in each voxel as described
in Eq. (7), we can apply the complex activation models [11]. The regression coefficients β, the
phase angle θ, and the variance σ2 are estimated under both the null and alternative hypotheses
as described in Eq. (9) then activation computed.

Voxel-wise activations are the same as in Rowe and Logan [11]. Then the generalized

likelihood ratio statistic for the complex fMRI activation model is . This
statistic has a large sample χr

2 distribution. Note that when r=1, two-sided testing can be done
using the signed likelihood ratio test given by

(10)

which has a large sample standard normal distribution under the null hypothesis. Alternatively
with r=1, a Wald type statistic can be formed

(11)
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which also has a large sample standard normal distribution under the null hypothesis. A map
of these activation statistics from either Eq. 10 or Eq. 11 is then thresholded while adjusting
for multiple comparisons [6,7]. However, correlations between voxels are characterized in
terms of spatio-temporal correlations between k-space measurements.

The variances and covariances in the spatio-temporal domain in an example with a specification
of uncorrelated temporal k-space measurement vectors (st) are included in the covariance
matrix Λ=P(In ⊗ ΩΓΩT)PT for the voxel measurements. Define the voxel measurement
covariance matrix to be Σ. Having estimated the voxel-wise regression coefficients and phases,
we can estimate the mean of the vector of voxel measurements y by μ̂ (under the alternative
hypothesis) and the mean of the matrix of voxel measurements R by M̂=vec̅(P-1μ ̂). Here vec̅
(·) is the operator that is the inverse operation of the vec(·) operator. The voxel covariance
matrix Σ can now be estimated by Σ̂=(R-M ̂)(R-M ̂)T/n.

With the physically motivated specification of the same voxel covariance, ΣW, within the real-
imaginary channels and voxel covariance, ΣB, between the real-imaginary channels, the
previous the voxel covariance matrix becomes

(12)

We can estimate the covariance matrices in Eq. (12) under the alternative hypothesis by

(13)

and under the null hypothesis similarly find Σ̃W and Σ̃B by replacing hats in Eq. (13) with tildes.
It should be noted that the jth diagonal elements of Σ̂W are equivalent to those given in Rowe
and Logan [11] where the estimate under the alternative hypothesis is

(14)

and under the null hypothesis is similarly, σ̃j2 found by replacing hats in Eq. (14) with tildes.
As described in Eq. (13), we can also estimate covariance between voxels, Σ̂.

4. Methods
As before, this time series procedure can be represented pictorially. The complex-valued image
in Fig. 2c and Fig. 2d was taken as the mean “active” or “on” image and a duplicate of it with
the two white voxels replaced by grey voxels were used as the mean “inactive” or “off” images.
For illustrative purposes, an experiment with eight blocks where each block consists of eight
on images followed by eight off images is initially presented. Subsequently all eight blocks
were examined. Eight column vectors of the spatial frequencies for the true mean “on” image
were joined into a matrix with eight column vectors of the spatial frequencies for the true mean
“off” image as in Fig. 7b. Each column in Fig. 7b is the vector form of the spatial frequencies
for an image similar to that in Fig. 5b.
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The mean “on” images contained voxels with values β0=0 and β1=0 outside a four by four by
four internal region, inactive gray voxels within the four by four region with values
β0=SNR·σ and β1=0, along with two active voxels with value β0=SNR·σ and β1=CNR·σ.
Activation parameter values were SNR=30, CNR=1 and σ=.05. In this parameterization, SNR
denotes the temporal signal-to-noise ratio, CNR denotes the functional contrast-to-noise ratio,
and σ denotes the voxel standard deviation.

Independent noise column vectors εt, as seen in Fig. 7c, were generated from a normal
distribution with zero mean vector and covariance matrix Γ=γ2Γ1 ⊗ Γ2 ⊗ Γ3. This covariance
structure mimics temporal autocorrelation along the echo planar imaging (EPI) trajectory along
with correlation between real and imaginary parts. The covariance matrix was formed with
Γ1, Γ2, and Γ3 taken to be unit variance correlation matrices while γ was taken to be
γ2=pxpyσ2. The py×py correlation matrix Γ1 is taken to be an AR(1) correlation matrix with

(i,j)th element  where ψ1 =0.25, the 2×2 correlation matrix Γ2 is taken to have an off
diagonal correlation of ψ2 =0.5 while the px×px correlation matrix Γ3 is taken to be an AR(1)

correlation matrix with (i,j)th element  where ψ3=0.5.

5. Results
Each matrix image in Fig. 7a, b, and c was pre-multiplied by the (inverse Fourier transform)
image reconstruction matrix Ω, given in Eq. (3) and presented in Fig. 5a. The results of this
pre-multiplication can be seen in Fig. 8a, b, and c. The columns of R= ΩS in Fig. 8a are real
and imaginary parts for each noisy image. The noisy image in Fig. 8a is the sum of the noiseless
image in Fig. 8b and the measurement noise image in Fig. 8c. However, the real and imaginary
parts for each noisy voxel are useful for considering activation. As described in Section 3, one
can vectorize R and S to yield r=vec(R) and s=vec(S) as seen in Fig. 9. The vector s of noisy
spatial frequency (k-space) values, as presented in Fig. 9c, is pre-multiplied by a block diagonal
matrix with Ω along the diagonal, as displayed in Fig. 9b, to produce a vector of noisy image
measurements, r, as shown in Fig. 9a.

In Fig. 11a and Fig. 11c are the unthresholded activation maps for the magnitude-only and
complex-valued activation methods respectively. In Fig. 11b and d are the Bonferroni 5%
thresholded activation maps for the magnitude-only and complex-valued activation techniques
respectively. Note the spurious activation from the magnitude-only method as a result of its
suboptimal parameterization [9].

The sample voxel correlation from Σ̂W described in Eq. (13) is displayed in Fig. 12a with
theoretical values presented in Fig. 12b. The sample correlation from Γ̂=Ω-1 Σ̂(ΩT)-1 is given
in Fig. 12c with theoretical values in Fig. 12d. Note the similarity between the sample values
and the theoretical values in Fig. 11a and Fig. 11c to the theoretical values in Fig. 11b and Fig.
11d even for the small sample size.

6. Discussion
A linear representation of image reconstruction has been presented, and that reconstruction
operation has been included into the complex-valued general linear model for fMRI. This
parameterization of the complex-valued general linear model allows one to compute activations
directly from k-space measurements. This offers some advantages. The previously separate,
tedious processes of image reconstruction and functional analysis can now be considered in
one step. As the reconstruction matrix, permutation matrix, and design matrix (marked
“known” in Equation 8) are all known, their product may be computed once for a given
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experiment. Thus, the determination of image-space regression coefficients can be made with
one matrix multiplication on the acquired k-space data vector.

Of course, some data processing is more naturally performed in image-space. An example of
such processing is motion correction. In that case, a matrix which shifts and/or rotates the
reconstructed image can be used to multiply the reconstruction operator. Thus, the processed
and reconstructed data would be the result of two matrices multiplying the acquired k-space
data in this linear representation.

Furthermore, in light of this parameterization, the spatio-temporal covariances between the
complex-valued voxel measurements, Λ, can now be described in terms of the spatio-temporal
covariances between the complex-valued k-space measurements, Δ. The covariance of the
complex-valued k-space measurements may be due to independent sources, such as spatio-
temporal independent noise ΔI and true physiologic processes ΔP, so that Δ=ΔP+ΔI.
Adjustments to the k-space measurements could modify the correlation structure. These k-
space adjustments can be written as sA=As=A(s0+ε)= As0+Aε and rA=ΩA(s0+ε)=
ΩAs0+ΩAε where the subscript A denotes an adjusted measurement. Then the mean and
variance/covariance matrices are E(sA)=As0 and var(sA)=AΓAT for the spatial frequency
measurements and E(rA)=ΩAs0 and var(rA)=ΩAΓATΩT for the voxel measurements. So unless
Γ=I and AAT=I the voxels are correlated because ΩΩT=I. Through reconstruction and other
processing, one is changing the physiologic and independent correlations. They change
according to

It is possible that incomplete consideration of correlations induces undesirable correlations or
obscures relevant correlations. Proper modeling suggests that one should adjust the covariance
matrices in light of all data processing.

One could apply temporal filtering or pre-whitening to the k-space measurements that are
residuals after fitting a regression model in image space. After fitting the fMRI model to the
voxel image time courses, one can transform the residual images into spatial frequencies (k-
space) and estimate the correlation due to adjustment sources AAT. The spatial frequencies
can then be temporally pre-whitened, transformed back into residual images then the noise
variation ΣW re-estimated.

As mentioned earlier, although only Cartesian Fourier reconstruction is described in this
manuscript, any linear reconstruction method may be used in place of Ω. This includes non-
Cartesian sampling schemes, like spiral. Some new reconstruction operator, ω, may be
considered that is the product of two matrices which grid the data to the Cartesian grid and
Fourier transform the Cartesian data. Sparsely sampled, multi-coil data may be considered with
yet another reconstruction operator, ω’, which generates the omitted data as a linear
combination of the acquired multi-coil data and Fourier transforms the generated, fully sampled
data.

In this work, complex-valued voxel measurements have been written in terms of the original
complex-valued k-space measurements. This allows the computation of statistically significant
fMRI brain activation in image space directly from the original k-space measurements. The
correlation between voxel measurements can also be written in terms of correlation between
k-space measurements. Since the covariance matrix between the k-space measurements, and
hence voxel measurements, can be partitioned into individual sources of covariation, statistical
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associations between individual voxels or regions of interest could be quantified utilizing
unmodeled sources of covariation.

Appendix A
The permutation matrix for rearranging values to be grouped by image to be grouped by voxel
is described. A permutation matrix is a square matrix that can be obtained by permuting
(rearranging) either the columns or rows of an identity matrix [3]. A permutation matrix is of
full rank and therefore nonsingular and also invertible. Also note that a permutation matrix, P,
is an orthogonal matrix so P-1=PT and PPT=I. The elements of the permutation matrix P are
all zero except for a single 1 in each row. The first n rows of the permutation matrix, P, forms
the n real measurements of the first voxel. The tth row, t=1,…,n within the first set of n rows
of the permutation matrix, P, have a 1 in column t=0p+1,2p+1,4p+1,…,2(n-1)p+1. The second
n rows of the permutation matrix, P, forms the imaginary measurements in the first voxel. The
tth row within the second set of n rows of the permutation matrix P have a 1 in column t=p
+1,3p+1,5p+1,…,2(n-1)p+p+1. For the second voxel, the tth row within the third set of n rows
of the permutation matrix P have a 1 in column t=0p+2,2p+2,4p+2,…,2(n-1)p+2. The tth row
within the fourth set of n rows of the permutation matrix P that form the n imaginary
measurements within the second voxel have a 1 in column t=p+2,3p+2,5p+2,…,2(n-1)p+p+2.
This general pattern continues. In general, the jth set of 2n rows for the jth voxel, j=1,…,p have
a 1 in columns 0p+j,2p+j,4p+j,…,2(n-1)p+j of its first n rows for the real voxel measurements
and in columns p+j,3p+j,5p+j,…,2(n-1)p+p+j for the imaginary voxel measurements.
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Fig. 1.
Ideal noiseless image.
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Fig. 2.
Complex-valued 2D forward Fourier transform.

a. Forward matrix Ω̄yR

b. Forward matrix Ω̄yI

c. Image real RR

d. Image imaginary RI

e. Forward matrix Ω̄xR

f. Forward matrix Ω̄xI

g. Spatial frequencies SR

h. Spatial frequencies SI
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Fig. 3.
Complex-valued 2D inverse Fourier transform.

a. Inverse matrix ΩyR

b. Inverse matrix ΩyI

c. Spatial frequencies SR

d. Spatial frequencies SI

e. Inverse matrix ΩxR

f. Inverse matrix ΩxI

g. Image real RR

h. Image imaginary RI
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Fig. 4.
Matrix to vector spatial frequency (k-space) values.

a. Spatial frequencies ST=(SR
T,SI

T)

b. Partitioned spatial frequencies ST
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Fig. 5.
Isomorphism for complex-valued 2D inverse Fourier Transform.

a. Reconstruction matrix Ω

b. Frequency vector s

c. Image vector r
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Fig. 6.
Vector to matrix image values.

a. Partitioned images RT

b. Combined image RT=(RR
T, RI

T)
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Fig. 7.
Noisy spatial frequency (k-space) values.

a. Noisy S

b. True S0

c. Error E
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Fig. 8.
Reconstructed noisy images.

a. Noisy R= ΩS

b. True R0= ΩS0

c. Error N= ΩE
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Fig. 9.
Reconstructed vectorized noisy images.

a. Noisy r

b. Reconstruction matrix (In ⊗ Ω)

c. Noisy s
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Fig. 10.
Reordered reconstructed voxels.

a. Voxel ordered y

b. Permutation matrix P

c. Image orderd r
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Fig. 11.
Activation maps. Bonferroni 5% threshold.

a. Magnitude unthresholded

b. Magnitude thresholded

c. Complex unthresholded

d. Complex thresholded
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Fig. 12.
Correlation matrices.

a. Sample between voxels

b. Theoretical between voxels

c. Sample between frequencies

d. Theoretical between frequencies
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