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Abstract

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are 

aggressive and respond poorly to standard therapies. Although the identification of specific 

oncogenes has led to the development of clinically effective, molecularly targeted therapies in 

some cases, KRAS has remained refractory to this approach. A complementary strategy for 

targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the 

presence of an oncogenic allele1,2. Here we have used systematic RNA interference (RNAi) to 

detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase, 

TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced 

apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In 

these cells, TBK1 activated NF-κB anti-apoptotic signals involving cREL and BCL-XL that were 

essential for survival, providing mechanistic insights into this synthetic lethal interaction. These 

observations identify TBK1 and NF-κB signaling as essential in KRAS mutant tumors and 

establish a general approach for the rational identification of co-dependent pathways in cancer.

To identify essential genes in human malignant and non-transformed cell lines, we 

performed arrayed format RNAi screens in 19 cell lines using a short hairpin RNA (shRNA) 

library targeting kinases and phosphatases3 (Supplementary Fig. 1 and Table 1). We then 

used two methods to find genes that were selectively required in cells expressing oncogenic 

KRAS. First, we employed a class-discrimination feature selection method (Fig. 1a) in which 

normalized B-scores4 for each cell line were analyzed using a t-test statistic5 to identify the 

top 250 (5%) shRNAs that distinguished the cell lines that harbored mutant or wild-type 

(WT) KRAS. We focused on genes whose suppression by at least 2 shRNAs selectively 

impaired the proliferation/viability of KRAS mutant cells and identified KRAS itself 

(Supplementary Tables 2, 3; Supplementary Figs. 2a, b).

In parallel, we used RNAi Gene Enrichment Ranking (RIGER)6, a statistical approach that 

does not rely on arbitrary thresholds, to rank-order candidate KRAS synthetic lethal genes 

(Fig. 1b). RIGER considers all shRNAs for a gene as a “hairpin set”, similar to “gene sets” 

in gene set enrichment analysis (GSEA)7, and provides a normalized enrichment score 

(NES) for each gene with respect to a specific classification. Using the mutant versus WT 

KRAS class distinction as the classification feature, we ranked candidate KRAS synthetic 
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lethal partners by NES and selected the top 40 genes, which included 12 of the 17 candidates 

identified by the individual shRNA-based analysis (Figs. 1b, c, Supplementary Tables 2, 4).

To validate the 45 candidates identified by these two approaches, we performed a secondary 

screen on an independent panel of mutant or WT KRAS lung adenocarcinoma cell lines 

(Supplementary Figs. 3a, b; 4a, b). Proliferation/viability data for each shRNA was 

normalized to the median value of 20 control shRNAs. Using the t-test statistic to rank 

shRNAs that selectively impaired proliferation/viability in mutant KRAS cells, we identified 

a significantly enriched subset of candidate shRNAs (p≤0.0002) (Supplementary Fig. 5a). 

Three KRAS-specific shRNAs were among the top four shRNAs that distinguished KRAS 

mutant and WT cell lines (Supplementary Figs. 3a, c; 5b). Using RIGER to rank candidate 

genes with respect to KRAS-selective lethality, we identified KRAS and TBK1 as the most 

significant genes (FDR, 0.04 and 0.18, respectively) (Fig. 1d). Although the secondary 

screen identified other potential KRAS synthetic lethal genes, we focused on TBK1 because 

it represented the top candidate after KRAS. Indeed, we found that the two top-scoring 

shRNAs induced TBK1 suppression and substantial cell death in NCI-H23 cells (mutant 

KRAS) (Fig. 2a). To confirm these findings, we introduced KRAS- or TBK1-specific shRNAs 

into a third set of lung cancer cell lines (Fig. 2b) and observed a strong correlation between 

KRAS and TBK1 dependence, even in cell lines in which KRAS mutation status and 

dependence were decoupled. We also used an isogenic experimental model to isolate the 

genetic interaction between oncogenic KRAS and TBK1. Specifically, expression of 

oncogenic KRAS in immortalized human lung epithelial cells (AALE-K cells)8 rendered 

them dependent on both KRAS and TBK1 for survival, as compared to cells expressing a 

control vector (AALE-V cells) (Fig. 2c). When we suppressed TBK1 in A549 or NCI-H2009 

cells (mutant KRAS), tumor formation was inhibited, while suppression of TBK1 had no 

effect on the tumorigenicity of NCI-H1437 or NCI-H1568 cells (WT KRAS) (Fig. 2d). These 

observations confirm that cancer cell lines that depend on oncogenic KRAS require TBK1 

expression.

To determine whether suppression of TBK1 in KRAS-dependent cells induced apoptosis, we 

found that, similar to shRNAs targeting KRAS itself (Supplementary Fig. 4b), TBK-specific 

shRNAs provoked an increase in PARP cleavage (Fig. 2e) and TUNEL-positive nuclei 

(p<0.01) (Figs. 2f, Supplementary Fig. 6a) in NCI-H23 cells (mutant KRAS) but not in NCI-

H1437 cells (WT KRAS). Suppression of Tbk1 in cells derived from a KRAS-driven murine 

model of lung cancer (LKR-13 cells)9 also induced apoptosis (Supplementary Fig. 6b).

KRAS activates several signaling pathways including those regulated by RAF, PI3K, and 

RAL. We found that suppression of CRAF, BRAF or AKT1 failed to kill KRAS-dependent 

lung cancer cell lines selectively (Figs. 2g, Supplementary Fig. 6c). TBK1 suppression also 

failed to alter phospho-ERK or phospho-AKT levels (Supplementary Fig. 6d). In contrast, 

suppression of RALB resulted in significant selective lethality in KRAS-dependent cell lines 

(p<0.01, Fig. 2g). Consistent with prior work linking RALB with TBK1 activation in the 

setting of tumor cell survival10, this observation suggested that RALB-TBK1 signaling was 

required in cells that depend on oncogenic KRAS.
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TBK1 is a non-canonical IκB kinase that regulates innate immunity through the interferon 

and NF-κB pathways11 and is also a component of the exocyst complex10. To examine how 

TBK1 contributes to survival in KRAS-dependent cell lines, we performed transcriptional 

profiling on AALE cells expressing a control vector (AALE-V), oncogenic KRAS (AALE-

K) or WT KRAS (AALE-K WT). Using GSEA to identify gene sets from the Molecular 

Signatures Database (MSigDB-C2 v2)7 that were enriched in AALE-K cells, we identified a 

previously described oncogenic RAS signature12 as well as several NF-κB pathway 

activation signatures13,14 among the most significantly enriched gene sets (p≤4.5 × 10−7, 

hypergeometric test) (Fig. 3a, Supplementary Fig. 7a). In contrast, we failed to detect 

enrichment of oncogenic RAS or NF-κB signatures in AALE-K WT cells (Fig. 3a), 

indicating that expression of oncogenic but not WT KRAS correlated with NF-κB signaling.

To extend these observations to patient-derived tumors, we analyzed expression profiles 

from 128 lung adenocarcinomas15,16 for expression of the oncogenic RAS12, NF-κB13,14, 

and IRF317 signatures as well as a KRAS-specific signature (AALE-K) composed of the 

genes most significantly induced in AALE-K relative to AALE-V cells. We found that the 

majority of mutant KRAS tumors (14/19) showed RAS signature activation and co-

expression of the NF-κB signature (p≤1.3 × 10−15, Spearman correlation test with 

Bonferroni adjustment) or the IKKε-regulated NF-κB gene subset (p≤0.008), but not the 

IRF3-regulated gene set (p≤0.18) (Fig. 3b). These observations confirm that the majority of 

lung cancers that harbor mutant KRAS show evidence of RAS and NF-κB pathway 

activation and suggest that a substantial fraction of KRAS mutant primary lung cancers may 

depend on TBK1 and NF-κB signaling for survival.

Consistent with recent work18, we also identified RAS and NF-κB signature co-activation 

in 30/109 KRAS WT tumors (Fig. 3c). These RAS and NF-κB signatures identified some but 

not all of the KRAS WT cell lines that exhibited KRAS dependence (Supplementary Table 1, 

Fig. 2b), suggesting that a subset of KRAS WT tumors depend on TBK1 and NF-κB 

signaling for survival. Further work will be necessary to determine whether such signatures 

will prove useful in predicting responsiveness to TBK1 inhibition.

Although TBK1 activates the interferon pathway through regulation of IRF3 and IRF710,11, 

we failed to observe increased expression of IRF3 target genes17 (Supplementary Fig. 7b) 

or increased IRF3 nuclear translocation (Supplementary Fig. 8a) in AALE-K cells. In 

addition, suppression of KRAS or TBK1 in KRAS mutant cancer cells down-regulated 

specific genes within the NF-κB subset, including CCND1, BCL2 and IL8, but failed to alter 

the expression of known interferon-responsive genes such as IFN-β1 and RANTES 

(Supplementary Fig. 7c). When we suppressed TBK1 in AALE-K cells, we observed that 

NF-κB signature components and several NF-κB targets, including the anti-apoptotic gene 

BCL-XL, were among the most significantly down-regulated genes (Fig. 3d). These findings 

confirm the importance of the NF-κB pathway in promoting survival in the setting of 

oncogenic RAS19 and suggest that, distinct from its role in innate immunity, TBK1 

preferentially activates NF-κB signaling in tumors dependent on oncogenic KRAS.

TBK1 has been reported to regulate the stability of IκB proteins11. When we examined 

cytoplasmic levels of IκB family members in AALE-K cells, we found reduced levels of 
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IκBα and p105 as compared to AALE-V cells (Fig. 3e, Supplementary Fig. 8a, b). 

Moreover, suppression of TBK1 in AALE-K cells or KRAS mutant NCI-H23 cells (Fig. 3e, 

f) returned levels to that observed in WT KRAS cells. Expression of the IκBα super-

repressor (IKB-SR)20, which inhibits NF-κB activity, in AALE-K, AALE-V, or cancer cell 

lines expressing mutant or WT KRAS induced cell death specifically in cells harboring 

mutant KRAS (Fig. 3g, Supplementary Fig. 9). These findings confirm that TBK1-driven 

NF-κB activity promotes survival of cells that depend on mutant KRAS.

In the primary shRNA screen, we noted that one shRNA targeting the NF-κB family 

member c-REL scored as selectively lethal in KRAS mutant cells, albeit just below our pre-

determined threshold. Suppression of c-REL but not IRF3 selectively induced apoptosis in 

KRAS mutant cells (p≤0.001) (Fig. 4a, Supplementary Fig. 10a). Moreover, we found that 

suppression of TBK1 in KRAS mutant cancer cells reduced total and nuclear c-REL levels 

(Fig. 4b, Supplementary Fig. 10b). Although TBK1 can phosphorylate c-REL when over-

expressed21, we failed to detect an interaction between TBK1 and c-REL but confirmed that 

endogenous c-REL and p105 interact (Supplementary Fig. 10c)22.

Since BCL-XL, a known c-REL target23, was identified as a TBK1-regulated gene in 

AALE-K cells (Fig. 3d), we examined the expression of several anti-apoptotic genes 

following TBK1 suppression in KRAS mutant cancer cells and observed specific down-

regulation of BCL-XL following TBK1 suppression in multiple cell lines (Fig. 4b, 

Supplementary Fig. 10d). Moreover, overexpression of BCL-XL rescued apoptosis induced 

by KRAS or TBK1 suppression in NCI-H23 cells (Fig. 4c, d) but did not significantly affect 

cell death induced by the suppression of survivin (Supplementary Fig. 11), confirming p105, 

c-REL and BCL-XL as mediators of NF-κB survival signaling downstream of TBK1 and 

KRAS.

In summary, we have identified TBK1 as a synthetic lethal partner of oncogenic KRAS. 

These findings link RALB-mediated activation of TBK110 to the generation of specific NF-

κB-regulated survival signals downstream of oncogenic KRAS. Furthermore, although 

studies testing the effects of inhibiting TBK1 or NF-κB signaling in established tumors are 

necessary, TBK1 and more generally NF-κB signaling may represent an alternative method 

of targeting oncogenic KRAS-driven cancers. Recently, STK33 and PLK1 were identified as 

KRAS synthetic lethal partners through the application of RNAi screening in paired KRAS 

mutant and WT cell lines24,25. Both genes were also identified in our computational 

analyses (Supplementary Tables 3, 4), but like cREL, they fell below our initial threshold for 

secondary screening. We anticipate that the development of fully validated shRNA libraries 

coupled with the interrogation of larger numbers of cell lines will permit saturating genetic 

screens to identify synthetic lethal partners of KRAS as well as other oncogenes and tumor 

suppressor genes. More generally, this and other studies6,24–28 indicate that application of 

these functional and analytical approaches will facilitate the comprehensive identification of 

functional co-dependencies in cancer.
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Methods Summary

Large-scale, arrayed format RNAi screens to identify genes essential for proliferation/

viability were performed as described3,14. The effect of introducing each of the 5002 

shRNAs (targeting 957 genes) was determined in 19 cell lines, and normalized using the B-

score metric4. Feature selection of shRNA B-score data was performed using the 

Comparative Marker Application Suite in GenePattern5 and was independently analyzed 

using RIGER analysis6 to compute NES for each gene. Secondary screen viability data was 

normalized using a percent of control statistic, given the biased nature of the candidate 

shRNA plate. Expression profiling was used to generate a signature that correlates with 

KRAS activation and implicated NF-κB signaling in cell lines and tumors dependent on 

KRAS. Regulation of NF-κB by TBK1 was shown using biochemical and cell biological 

approaches. Details of the analytical methods are provided in the Full Methods.

Full Methods

RNAi Screens

Large-scale RNAi arrayed format screening was conducted using a subset of the Broad 

Institute RNAi Consortium (TRC) shRNA library targeting kinases, phosphatases, and other 

cancer-related genes3,14. ShRNA designs and protocols for high throughout lentiviral 

production are available at http://www.broad.mit.edu/rnai/trc/lib. Cells were seeded in 

quadruplicate 384 well plates on day 0, followed by infection with 8 μg/ml polybrene on day 

1. Puromycin selection for duplicate plates (concentration individualized per cell line, most 

cell lines 2 μg/ml) was started on day 2. An ATP-based luminescence assay (Cell-Titer Glo, 

Promega) was used to determine cell number on day 6. Raw luminescence values from 

duplicate plates were averaged, and the ratio of puromycin positive to negative values was 

used to assess infection efficiency. Data was normalized using the B-score metric, a variant 

of the Z-score that uses the median absolute deviation to account for plate-to-plate 

variability, as well as a two-way median polish to minimize row/column effects4. After 

excluding shRNAs with low infection efficiency, B-score values from puromycin positive 

and negative replicates were averaged for each shRNA. shRNA B-score values were aligned 

for the 5002 shRNAs tested in all 19 cell lines. The secondary screen was conducted using a 

percent of control statistic instead of the B-score.

Computational Analyses

Hairpin-Level Analysis—The meta-analysis of RNAi screens was performed using 

complementary computational approaches. The first involved conversion of the shRNA B-

score file into a .res file format for input into the Comparative Marker Selection application 

suite in GenePattern, along with a standard classification file to generate class distinctions5. 

This method uses class discrimination feature selection and ranks shRNA B-score data by 

the t-test statistic or the signal to noise ratio (SNR) to account for the difference in means 

between the two classes as well as the standard deviation across samples. Specifically, the 

difference in mean viability scores induced by each shRNA in the KRAS mutant class versus 

the WT class was normalized to its standard deviation using a t-test, and shRNAs were 

ranked by t-test score to determine for class selective effects. To convert shRNA data to 

Barbie et al. Page 6

Nature. Author manuscript; available in PMC 2010 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.broad.mit.edu/rnai/trc/lib


candidate genes and to reduce the likelihood of off-target effects, the top 250 (5%) of 

distinguishing shRNAs in the mutant KRAS class were filtered to identify multiple shRNAs 

targeting the same gene. Only those genes for which at least one shRNA yielded a mean B 

score <-1 across the KRAS mutant class were considered. In addition, shRNAs with low 

infection efficiency in multiple cell lines were excluded from the analysis.

RIGER (RNAi Gene Enrichment Ranking) Analysis—Similar to “gene sets” for 

Gene Set Enrichment Analysis (GSEA)7, “hairpin sets” were defined as the groups of 

shRNAs representing a given target gene. Because the number of shRNAs in a hairpin set 

are relatively small compared with the number of genes, we used different input data 

normalization, enrichment statistics, and output formats compared with GSEA. RIGER 

analysis consisted of the following steps:

(1) Pre-processing: The input was the same dataset of B-scores analyzed using the 

individual shRNA-based method. The B-score values for each cell line were standardized 

with respect to the median and maximum absolute deviation of the set of control shRNAs 

(directed against GFP, lacZ, RFP, Luciferase) in the same cell line. This centered and 

rescaled the values in a sample-specific manner according to the behavior of the control 

hairpins. After normalization, values below −3 and above 3 were truncated to −3 and 3 

respectively, to reduce the effect of outliers and were called normalized survival scores.

(2) Feature ranking: After preprocessing, each shRNA was assigned a “differential 

survival score,” which represented the difference in means of the normalized survival scores 

in the two phenotypic classes (e.g. KRAS mutant vs. WT). The difference in means was used 

in order to emphasize the absolute magnitude of the survival differences and not only the 

profile “shape.” Specifically, this favored shRNAs with strong differential killing of cells 

over ones that exhibited weak differential killing of cells, but had perfect discrimination 

profiles inside classes. The differential survival scores were computed for all the 5,002 

shRNAs and sorted from high to low scores.

(3) Calculation of enrichment scores: A given gene was assigned an enrichment score 

according to the distribution of differential survival scores of its shRNAs within the rank list 

of all shRNAs using a two-sample weighted “Zhang C” statistic based on the likelihood 

ratio29. The Zhang C likelihood ratio statistic was used due to its greater sensitivity and 

better empirical results in exploratory analyses with other datasets. We adapted this method 

to separate positive and negative enrichment contributions and used a weighting factor based 

on the differential enrichment score, except that weights with absolute values under 0.5 and 

above −0.5 were truncated to 0.5 and −0.5 respectively, to reduce the effects of shRNAs that 

weakly distinguished classes. The enrichment score obtained in this manner was 

representative of both the extremeness of the shRNA differential survival scores for a given 

gene and their consistency.

(4) Normalization of enrichment scores: Since genes with different numbers of shRNAs 

were assigned enrichment scores on different scales, we normalized them prior to sorting the 

genes by using a null distribution generated by 1,000 random permutations of the locations 

of the shRNAs in the entire list. The normalization for negative enrichment scores was a 
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rescaling by the absolute value of the mean of the negative values in the null distribution. 

This represented an effective way to place the enrichment scores on a common scale 

regardless of the number of shRNAs for each gene. The null distribution also provided 

nominal p-values for each gene enrichment score.

(5) Generation of results: The analysis resulted in a list of genes sorted by their normalized 

enrichment scores, and a set of complementary estimates of statistical significance such as 

nominal, family-wise and Bonferroni p-values plus a false discovery rate (FDR). A 

collection of dual-vertical plots was used to demonstrate the shRNA differential survival 

scores for each gene (lines in blue) and corresponding normalized enrichment scores (lines 

in red). Vertical plots were arranged starting with the top gene (strongest negative 

normalized enrichment score) on the left.

Secondary screen—Analysis of secondary screen data followed the same methodology 

except for the normalization of the cell proliferation/viability data. Twenty control shRNAs 

directed against RFP, LacZ, and Luciferase were screened in parallel with candidates. We 

normalized data for each shRNA in each cell line using the percent of control statistic, 

dividing the raw data for each shRNA by the median of control shRNA values, and taking 

the log10 of this number to scale values around zero. Because of the biased nature of the 

candidate shRNA plate, and since the number of control shRNAs was smaller in the 

secondary screen compared with the first, the calculation of the maximum absolute deviation 

was noisy and unreliable. No truncation was applied to the resulting values.

A larger set of 84 control shRNAs directed against GFP, RFP, LacZ, and Luciferase was 

also tested independently in all 8 cell lines chosen for the secondary screen. We normalized 

data for each shRNA in each cell line by dividing the raw data for each control shRNA by 

the plate median and taking the log10 of this number to scale values around zero. We used 

the t-test statistic to examine the KRAS mutant versus WT class distinction for this control 

plate relative to the candidate plate, restricting the analysis to shRNAs with strong effects on 

proliferation/viability (mutant KRAS class mean log POC<−0.2, corresponding to ~37% 

viability impairment) (Supplementary Fig. 4a). We used the t-test statistic threshold that was 

achieved by the set of control shRNAs as the boundary to identify the top 25 shRNAs KRAS 

synthetic lethal shRNAs that scored on the candidate plate (Supplementary Fig. 4b)

Gene Expression Profiling/GSEA—RNA was prepared from AALE cells expressing 

KRAS G12V or a control vector 6 d post infection and analyzed using human U133A HTA 

Arrays (Affymetrix). GSEA was performed using gene sets from the Molecular Signatures 

Database (MSigDB-C2 v2)7. In brief, the method consists of the following steps: genes are 

first ranked in a list, L, by the correlation between their expression and the class distinction 

(e.g. KRAS mutant vs. WT), using a suitable correlation metric. Given a defined set of genes 

S (e.g., genes members of a signaling pathway, located in the same genomic region, sharing 

the same GO category etc.), the goal of GSEA is to determine whether the members of S are 

found at the top or bottom of the list, implying they associate with the phenotypic 

distinction, rather than being distributed uniformly or randomly across the list. Next, to 

evaluate this degree of “enrichment” an Enrichment Score (ES) is calculated to quantify the 

degree to which a set S is over-represented at the top or bottom of the entire ranked list L. 
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After calculation of the scores for a collection of gene sets, an empirical phenotype-based 

permutation test procedure is used to estimate P-values. The permutation of class labels 

preserves gene-gene correlations and provides an assessment of significance that is more 

reflective of the underlying biology. Finally an adjustment was made to the estimated 

significance level to account for multiple hypotheses testing (MHT). GSEA normalizes the 

ES for each gene set to account for the variation in set sizes, yielding a normalized 

enrichment score (NES) and a false discovery rate (FDR). The FDR gives an estimate of the 

probability that a set with a given NES represents a false positive finding; it is computed by 

comparing the tails of the observed and permutation-computed null distributions for the 

NES. The collection of gene sets used in the analysis of Figure 3a consisted of release 2.5 of 

the C2 (curated gene sets) sub-collection of the Molecular Signatures Database (http://

www.broad.mit.edu/gsea/msigdb/). To determine the significance of identifying multiple 

NF-κB upregulated gene sets enriched in AALE-K cells, we used a hypergeometric test.

Gene expression profiling was also performed in triplicate in AALE-K cells (KRAS G13D) 5 

passages following stable integration of the KRAS allele and compared with AALE-V cells 

using human U133A Arrays (Affymetrix). We created a new KRAS-specific gene signature 

using the mean difference in expression between triplicate samples to determine the 300 

most significantly induced genes by oncogenic KRAS. In parallel, expression profiling was 

performed in AALE-K cells 48 hrs following expression of shGFP or shTBK1, to identify 

which of these genes were most significantly downregulated following TBK1 suppression.

Signature Projection Method—The RAS oncogenic signature12, AALE-K signature, 

NF-κB signature13, IKKε-regulated NF-κB gene set14, and IRF3 target gene set17 were 

projected across 38 lung adenocarcinomas derived from the Tumor Sequencing Project 

(TSP)15, 90 lung adenocarcinomas16, a collection of 53 lung cancer cell lines30, and 17 

normal lung tissue specimens31. This was accomplished by a “single sample” extension of 

GSEA7 that allows one to define an enrichment score that represents the degree of absolute 

enrichment of a gene set in each sample within a given dataset. The gene expression values 

for a given sample were rank-normalized, and an enrichment score was produced using the 

Empirical Cumulative Distribution Functions (ECDF) of the genes in the signature and the 

remaining genes. This procedure is similar to GSEA but the list is ranked by absolute 

expression (in one sample). The enrichment score is obtained by an integration of the 

difference between the ECDFs. For a given signature G of size NG and single sample S, of 

the dataset of N genes, the genes are replaced by their ranks according the their absolute 

expression L={r1, r2, …, rN}. The list is then ordered from the highest rank N to the lowest 

1. An enrichment score ES(G, S) is obtained by a sum (integration) of the difference 

between a weighted ECDF of the genes in the signature  and the ECDF of the remaining 

genes PNG:
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This calculation is repeated for each signature and each sample in the dataset. Note that the 

exponent of this quantity (α) is set to ¼, and adds a modest weight to the rank. In the regular 

GSEA a similar enrichment score is used, but the weight is typically set to 1. Also, instead 

of the sum over i, the enrichment score is computed according to the largest difference. This 

quantity is slightly more robust and more sensitive to differences in the tails of the 

distributions than the Kolmogorov-Smirnov statistic. It is particularly well suited to 

represent the activation score of gene sets based on a relatively small subset of the genes 

attaining high expression values. Signature values were normalized using the entire set of 

128 lung adenocarcinomas and 17 normal lung specimens. p-values were calculated for the 

lung adenocarcinoma samples testing the hypotheses that the Spearman correlation between 

the RAS oncogenic signature, NF-κB gene set, and IRF3 target gene set were greater than 

zero.

Cell Culture

293T and A549 cells were grown in DMEM supplemented with 10% FBS, 2mM L-

glutamine, penicillin (1000 U/ml), and streptomycin (1000 μg/ml). NCI-H23, NCI-H28, 

HCC-193, NCI-H522, HCC-1359, NCI-H1437, NCI-H1568, NCI-H1792, NCI-H1944, 

NCI-H1975, NCI-2009, NCI-H2030, NCI-H2110, and NCI-H2887 cells were cultured in 

RPMI supplemented with 10% FBS, 2mM L-glutamine, penicillin, and streptomycin. AALE 

cells8 were cultured in serum free SABM media with SingleQuot supplements/growth 

factors (Lonza). AALE cells expressing KRAS G12V or KRAS G13D alleles were generated 

following transduction using a pBabe retroviral vector or pLenti6.2/V5-Dest lentiviral vector 

(Invitrogen) respectively, as described14. Cell lines expressing the IKBα super-repressor 

were generated using a pBabe retroviral vector expressing the IKBα super-repressor14, and 

NCI-H23 cells expressing BCL-XL or LACZ were generated using pLenti6.2/V5-Dest 

encoding either BCL-XL or LACZ. Cells were seeded in 96-well plates for cell viability 

assays and in 6-well plates to prepare lysates for immunoblotting.

Low Throughput Lentiviral shRNA Production/Infection

Lentiviral vectors encoding shRNAs specific for control GFP sequences as well as KRAS, 

TBK1, CRAF, BRAF, AKT1, RALB, IRF3, c-REL and survivin are part of TRC shRNA 

library. Sequences of validated shRNAs are listed in Supplementary Table 6. Lentiviruses 

were produced by transfection of 293T cells with vectors encoding gene-specific shRNAs (1 

μg) together with the packaging plasmids encoding Δ8.9 and VSV-G using Fugene 6 

(Roche). Culture supernatants containing lentivirus were collected 48 and 72 h post-

transfection. Virus was pooled and stored at −80° C. Cells were infected using a 1:11 

dilution of virus in polybrene-containing media. Following centrifugation at 1000 × g for 15 

min, all NSCLC lines were selected in puromycin (2 μg/ml) starting 24 h post-infection. 

AALE cells were treated with virus/polybrene for 4 h and selected with puromycin (1 μg/

ml). Viability assays were conducted 6 d post-infection using Cell-Titer Glo (Promega) in 

triplicate. Lysates were harvested 72 h following shRNA expression to assess gene 

suppression. To determine differential viability effects in NCI-H23/NCI-H1792 (mutant 

KRAS) vs. NCI-H1437/NCI-H1568 (WT KRAS) cells, mean viability for each shRNA was 

normalized to shGFP control. Results from validated shRNAs were grouped together for 
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each gene in KRAS mutant vs WT cell lines, and an unpaired t-test was used to determine 

statistical significance.

Antibodies

Immunoblotting was performed as described14. Antibodies were obtained from Cell 

Signaling Technology (anti-AKT1 #2967, anti-phosho-AKT Ser 473 #9271, anti-BCLXL 

#2762, anti-BIRC2 #4952, anti-C-RAF #9422, anti-c-REL #4727, anti-GAPDH #2118, anti-

IKBα #4814, anti-Lamin A/C #2032, anti-phospho-MAPK p42/44 #9102, anti-p105/p50 

#3035, anti-PARP cleaved Asp214 #9546, anti-RALB #3523, anti-survivin #2808), Santa 

Cruz Technology (anti-KRAS sc-30, anti-B-RAF F-7, anti-IRF3 FL-425, anti-IKBα c-15), 

and Upstate Biotechnologies/Millipore (anti-TBK1 clone AOW9).

Tumorigenicity Assay

Tumor xenograft experiments were performed as described14. Control GFP or TBK1-

specific shRNAs were expressed in the indicated cells for 72 h, and then 2 × 106 viable cells 

were injected subcutaneously per site into immunodeficient mice. Mean and SEM tumor 

volume was plotted over time. The total number of tumors/implantations were: A549-shGFP 

(10/13); A549-shTBK1 (0/11); NCI-H1437-shGFP (12/12); NCI-H1437-shTBK1 (12/12), 

NCI-1568-shGFP (12/12); NCI-1568-shTBK1 (12/12); NCI-H2009-shGFP (9/12); NCI-

H2009-shTBK1 (3/11). Tumor determination was made at 3 wks except for NCI-H2009, 

which were measured at 5 wks.

TUNEL Assay

NCI-H23 cells and NCI-H1437 cells were infected in 96-well plates with shRNAs specific 

for GFP, TBK1, and KRAS, fixed 5 d post-infection using 10% paraformaldehyde, and 

subjected to TUNEL staining (Roche). Nuclei were co-stained with DAPI, imaged, and 

counted using a Zeiss Axiovert 200 immunofluorescence microscope.

Nuclear/Cytoplasmic Fractionation

Cells were washed twice in ice cold PBS and incubated on ice for 10 min following 

treatment with hypotonic cytoplasmic lysis buffer (20 mM Hepes pH7.6, 10 mM NaCl, 1.5 

mM MgCl2, 0.2 mM EDTA, 1mM DTT, 0.1% NP40, 20% glycerol) + proteinase inhibitors. 

Nuclei were pelleted at 400 × g at 4° C for 4 min. Supernatants were collected, and the 

nuclear pellet was washed twice using cytoplasmic lysis buffer. Nuclear lysis buffer (same 

as cytoplasmic lysis buffer except 500 mM NaCl) was added to the pellet and samples were 

incubated for 30 min on ice. Following centrifugation at 16,000 × g at 4° C for 15 min, the 

supernatant was collected as the nuclear fraction.

Immunoprecipitation

Cells were washed twice with PBS, treated with lysis buffer (50 mM Tris pH 7.4, 150 mM 

NaCl, 0.5% NP-40, 2mM EDTA) and rotated at 4° C for 60 min. Following centrifugation at 

16,000 × g, lysates were quantitated. Anti-c-REL antibody (5 μl) or buffer alone was added 

to lysate (750 μg) in 500 μl of lysis buffer and tubes were rotated overnight at 4° C. 50 μl of 

50% protein G-sepharose beads were added, and samples were incubated for 2 h at 4° C. 
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Following centrifugation at 800 × g for 3 min at 4° C, beads were washed 3 times in lysis 

buffer. Elution was performed using 2× sample buffer, and samples were divided in half and 

loaded onto parallel gels, along with beads only control and 1/10 input.

Real-Time Quantitative RT-PCR

Relative mRNA expression was determined using real-time quantitative PCR and 

normalized to GAPDH expression as an internal amplification control. Total RNA was 

isolated using Trizol reagent (Gibco), and 1 μg of total RNA was reverse transcribed using 

SuperScript First-Strand Synthesis System (Invitrogen), followed by amplification using 

SYBR Green PCR Master Mix (Applied Biosystems).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Meta-analysis of RNAi screens identifying KRAS synthetic lethals. (a) Supervised analysis 

of viability data (B-score) identified 250 shRNAs that distinguished mutant KRAS from 

wild-type (WT) cells, including genes targeted by multiple shRNAs. (b) Hairpin set analysis 

(RIGER). Genes were assigned NES (red lines) based on the KRAS mutant/WT differential 

survival scores (blue lines) for each shRNA. Negative values represent mutant KRAS-

selectivity. (c) Union of 17 genes identified in (a) and 40 genes identified in (b). (d) 

Secondary screening data normalized using percent of control (POC) and analyzed using 

RIGER. FDR for KRAS and TBK1 was 0.04 and 0.18 respectively.
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Fig. 2. 
TBK1 synthetic lethality with oncogenic KRAS. (a) Top-scoring TBK1-specific shRNAs (*) 

induced lethality and TBK1 suppression (immunoblot) in NCI-H23 cells (mutant KRAS). (b) 

Suppression of KRAS or TBK1 in NSCLC cell lines. HCC-1359 and HCC-193 cells 

expressed RAS and NF-κB signatures. (c) KRAS and TBK1 dependence of lung epithelial 

cells expressing oncogenic KRAS (AALE-K) or vector (AALE-V). (d) Tumor formation 

following TBK1 suppression. Mean and SEM of at least 11 replicates shown. (e) 

Immunoblot of cleaved PARP following TBK1 or KRAS suppression. (f) Percentage of 

TUNEL positive nuclei following TBK1 or KRAS suppression. Mean and SD shown. (g) 

Differential cell viability following KRAS, TBK1, CRAF, BRAF, AKT1 or RALB suppression 

in KRAS mutant vs. WT cell lines (t-test for comparisons). SEM of triplicate samples 

normalized to shGFP control vector shown.
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Fig. 3. 
Oncogenic KRAS-induced NF-κB signaling involves TBK1 (a) GSEA of AALE-V (vector), 

AALE-K (KRAS G12V) or AALE-WT-K (KRAS WT) cells (positive NES). A RAS 

oncogenic signature (black) and NF-κB signatures (red) showed significant enrichment 

(FDR<0.25) in AALE-K cells. N.S. = non-significant. (b) RAS signatures in mutant KRAS 

lung adenocarcinomas correlate with NF-κB but not IRF3 signatures (red=activation, 

blue=inactivation). (c) RAS and NF-κB signature expression in WT KRAS lung 

adenocarcinomas and normal lung tissue. (d) AALE-K signature enrichment plot following 

shTBK1 or shGFP expression in triplicate samples. Heatmap shows top KRAS-induced 

genes with negative enrichment in AALE-K-shTBK1 samples. Immunoblot of IKBα, p105, 

TBK1, and KRAS in AALE-K and AALE-V cells (e) or NCI-H23 cells (f) following KRAS 

or TBK1 suppression. (g) Cell viability after expression of control vector (pBP) or IκBα-

super-repressor (pBP-IKB-SR) in mutant or WT KRAS cells. Mean and SEM of triplicate 

samples shown, t-test for comparisons.
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Fig. 4. 
TBK1 regulates c-REL and BCL-XL in KRAS mutant cells. (a) Differential cell viability 

following IRF3 or cREL suppression in KRAS mutant vs. WT cell lines. (b) Immunoblot of 

p105, c-REL, p50, BCL-XL and BIRC2 in KRAS mutant cell lines following TBK1 

suppression. (c) Cell viability following KRAS or TBK1 suppression in NCI-H23 cells 

expressing a control protein (LACZ) or V5-tagged BCL-XL. SEM of triplicate samples 

normalized to shGFP control vector shown. (d) Immunoblot showing over-expression of 

V5-tagged BCL-XL and inhibition of PARP cleavage.
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