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Abstract

Research on human and animal behavior has long emphasized its hierarchical structure — the
divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which
in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring
interest within neuroscience, where it has been widely considered to reflect prefrontal cortical
functions. In this paper, we reexamine behavioral hierarchy and its neural substrates from the point
of view of recent developments in computational reinforcement learning. Specifically, we consider
a set of approaches known collectively as hierarchical reinforcement learning, which extend the
reinforcement learning paradigm by allowing the learning agent to aggregate actions into reusable
subroutines or skills. A close look at the components of hierarchical reinforcement learning suggests
how they might map onto neural structures, in particular regions within the dorsolateral and orbital
prefrontal cortex. It also suggests specific ways in which hierarchical reinforcement learning might
provide a complement to existing psychological models of hierarchically structured behavior. A
particularly important question that hierarchical reinforcement learning brings to the fore is that of
how learning identifies new action routines that are likely to provide useful building blocks in solving
a wide range of future problems. Here and at many other points, hierarchical reinforcement learning

offers an appealing framework for investigating the computational and neural underpinnings of
hierarchically structured behavior.

In recent years, it has become increasingly common within both psychology and neuroscience
to explore the applicability of ideas from machine learning. Indeed, one can now cite numerous
instances where this strategy has been fruitful. Arguably, however, no area of machine learning
has had as profound and sustained an impact on psychology and neuroscience as that of
computational reinforcement learning (RL). The impact of RL was initially felt in research on
classical and instrumental conditioning (Barto & Sutton, 1981; Sutton & Barto, 1990; Wickens,
Kotter, & Houk, 1995). Soon thereafter, its impact extended to research on midbrain
dopaminergic function, where the temporal-difference learning paradigm provided a
framework for interpreting temporal profiles of dopaminergic activity (Barto, 1995; Houk,
Adams, & Barto, 1995; Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague,
1997). Subsequently, actor-critic architectures for RL have inspired new interpretations of
functional divisions of labor within the basal ganglia and cerebral cortex (see Joel, Niv, &
Ruppin, 2002 for a review), and RL-based accounts have been advanced to address issues as
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diverse as motor control (e.g., Miyamoto, Morimoto, Doya, & Kawato, 2004), working
memory (e.g., O'Reilly & Frank, 2006), performance monitoring (e.g. Holroyd & Coles,
2002), and the distinction between habitual and goal-directed behavior (e.g. Daw, Niv, &
Dayan, 2005).

As ideas from RL permeate the fields of psychology and neuroscience, it is interesting to
consider how RL research has continued to evolve within computer science. Here, attention
has turned increasingly to factors that limit the applicability of RL. Perhaps foremost among
these is the scaling problem: Unfortunately, basic RL methods do not cope well with large task
domains, i.e., domains involving a large space of possible world states or a large set of possible
actions. This limitation of RL has been little discussed within psychology and neuroscience,
where RL has typically been applied to highly simplified learning situations. However, the
scaling problem has direct implications for whether RL mechanisms can be plausibly applied
to more complex behavioral contexts. Because such contexts would naturally include most
scenarios animals and human beings face outside the laboratory, the scaling problem is clearly
of relevance to students of behavior and brain function.

A number of computational approaches have been developed to tackle the scaling problem.
One increasingly influential approach involves the use of temporal abstraction (Barto &
Mahadevan, 2003; Dietterich, 2000; Parr & Russell, 1998; Sutton, Precup, & Singh, 1999).
Here, the basic RL framework is expanded to include temporally abstract actions,
representations that group together a set of interrelated actions (for example, grasping a spoon,
using it to scoop up some sugar, moving the spoon into position over a cup, and depositing the
sugar), casting them as a single higher-level action or skill (‘add sugar’). These new
representations are described as temporal abstractions because they abstract over temporally
extended, and potentially variable, sequences of lower-level steps. A number of other terms
have been used as well, including “skills,” “‘operators,” “macro-operators’ and ‘macro-actions.’
In what follows, we will often refer to temporally abstract actions as options, following Sutton
et al. (1999).

In most versions of RL that use temporal abstraction, it is assumed that options can be
assembled into higher-level skills in a hierarchical arrangement. Thus, for example, an option
for adding sugar might form part of other options for making coffee and tea. Given the
importance of such hierarchical structures in work using temporal abstraction, this area of RL
is customarily referred to as hierarchical reinforcement learning (HRL).

The emergence of HRL is an intriguing development from the points of view of psychology
and neuroscience, where the idea of hierarchical structure in behavior is familiar. In
psychology, hierarchy has played a pivotal role in research on organized, goal-directed
behavior, from the pioneering work in this area (e.g., Estes, 1972; Lashley, 1951; Miller,
Galanter, & Pribram, 1960; Newell & Simon, 1963) through to the most recent studies (e.g.,
Anderson, 2004; Botvinick & Plaut, 2004; Schneider & Logan, 2006; Zacks, Speer, Swallow,
Braver, & Reynolds, 2007). Behavioral hierarchy has also been of longstanding interest within
neuroscience, where it has been considered to relate closely to prefrontal cortical function
(Badre, 2008; Botvinick, 2008; Courtney, Roth, & Sala, in press; Fuster, 1997; Koechlin, Ody,
& Kouneiher, 2003; Wood & Grafman, 2003).

Thus, although HRL was not originally developed to address questions about human and animal
behavior, it is potentially of twofold relevance to psychology and neuroscience. First, HRL

addresses a limitation of RL that would also be faced by any biological agent learning through
RL-like mechanisms. The question thus naturally arises whether the brain might deal with this
limitation in an analogous way. Second, the ideas at the heart of HRL resonate strongly with
existing themes in psychology and neuroscience. The formal framework provided by HRL thus
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might provide leverage in thinking about the role of hierarchical structure in human and animal
behavior, and in particular how such structure might relate to behavioral and neuroscientific
issues that have already been treated in terms of RL.

Our objective in the present paper is to consider HRL from these two perspectives. We begin,
in the following section, by examining the scaling problem and considering how the use of
temporal abstraction can help to ameliorate it. We then turn to HRL itself, detailing its
representational and algorithmic assumptions. After establishing these, we discuss the potential
implications of HRL for behavioral research. Here, we emphasize one fundamental
computational issue that HRL brings into focus, which concerns the question of how reusable
sets of skills might develop through learning. Finally, we consider the potential implications
of HRL for interpreting neural function. To this end, we introduce a new actor-critic
implementation of HRL, which makes explicit the computational requirements that HRL would
pose for a neural implementation.

Temporal Abstraction and the Scaling Problem

A key source of the scaling problem is the fact that an RL agent can learn to behave adaptively
only by exploring its environment, trying out different courses of action in different situations
or states of the environment, and sampling their consequences. As a result of this requirement,
the time needed to arrive at a stable behavioral policy increases with both the number of
different states in the environment and the number of available actions. In most contexts, the
relationship between training time and the number of environmental states or actions is a
positively accelerating function. Thus, as problem size increases, standard RL eventually
becomes infeasible.

Numerous approaches have been adopted in machine learning to deal with the scaling problem.
These include reducing the size of the state space by suppressing behaviorally irrelevant
distinctions between states (state abstraction; see, e.g., Li & Walsh, 2006), and methods aimed
at striking an optimal balance between exploration and exploitation of established knowledge
(e.g., Kearns & Singh, 2002). HRL methods target the scaling problem by introducing
temporally abstract actions (Barto & Mahadevan, 2003; Dietterich, 2000; Parr & Russell,
1998; Sutton et al., 1999). The defining characteristic of these abstract actions is that, rather
than specifying a single “primitive’ action to execute, each abstract action instead specifies a
whole policy to be followed, that is, a mapping from states to actions. Once a temporally
abstract action is initiated, execution of its policy continues until any member of a set of
specified termination states is reached.2 Thus, the selection of a temporally abstract action
ultimately results in the execution of a sequence of primitive actions.

Adding temporal abstraction to RL can ease the scaling problem in two ways. The first way is
through its impact on the exploration process. In order to see how this works, it is useful to
picture the agent (i.e., the simulated human or animal) as searching a tree structure (Figure
1A). At the apex is a node representing the state occupied by the agent at the outset of
exploration. Branching out from this node are links representing primitive actions, each leading
to anode representing the state (and, possibly, reward) consequent on that action. Further action
links project from each of these nodes, leading to their consequent states, and so forth. The
agent’s objective is to discover paths through the decision tree that lead to maximal
accumulated rewards. However, the set of possible paths increases with the set of actions
available to the agent, and with the number of reachable states. With increasing numbers of

LAn alternative term for temporal abstraction is thus policy abstraction.
Some versions of HRL allow for options to be interrupted at points where another option or action is associated with a higher expected
value. Seg, e.g., Sutton et al., (1999).
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either it becomes progressively more difficult to discover, through exploration, the specific
traversals of the tree that would maximize reward.

Temporally abstract actions can alleviate this problem by introducing structure into the
exploration process. Specifically, the policies associated with temporally abstract actions can
guide exploration down specific partial paths through the search tree, potentially allowing
earlier discovery of high-value traversals. The principle is illustrated in Figure 1A-B.
Discovering the pathway illustrated in Figure 1A using only primitive, one-step actions, would
require a specific sequence of seven independent choices. This changes if the agent has acquired
— say, through prior experience with related problems — two options corresponding to the
differently colored subsequences in Figure 1B. Equipped with these, the agent would only need
to make two independent decisions to discover the overall trajectory, namely, select the two
options. Here, options reduce the effective size of the search space, making it easier for the
agent to discover an optimal trajectory.

The second, and closely related, way in which temporally abstract actions can ease the scaling
problem is by allowing the agent to learn more efficiently from its experiences. Without
temporal abstraction, learning to follow the trajectory illustrated in Figure 1A would involve
adjusting parameters at seven separate decision-points. With predefined options (Figure 1B),
policy learning is only required at two decision points, the points at which the two options are
to be selected. Thus, temporally abstract actions not only allow the agent to explore more
efficiently, but also to make better use of its experiences.

Along with these advantages, there also comes a new computational burden. For in order to
enjoy the benefits of temporal abstraction, the agent must have some way of acquiring a set of
useful options. As we shall discuss, this requirement raises some of the most interesting issues
in HRL, issues that also apply to human learning.

Hierarchical Reinforcement Learning

Having briefly discussed the motivation for incorporating temporal abstraction into RL, we
now turn to a more direct description of how HRL operates. For simplicity, we focus on one
specific implementation of HRL, the options framework described by Sutton et al. (1999).
However, the points we shall emphasize are consistent with other versions of HRL, as well
(e.g. Dietterich, 2000; Parr & Russell, 1998; for an overview, see Barto & Mahadevan,
2003). Since one of our objectives is to explore potential neuroscientific correlates of HRL,
we have implemented the options framework within an actor-critic architecture (defined
below), allowing direct parallels to be drawn with previous work relating RL to functional
neuroanatomy through the actor-critic framework.3 In what follows, we provide an informal,
tutorial-style overview of this implementation. Full technical details are presented in the online
appendix.

Fundamentals of RL: Temporal Difference Learning in Actor-Critic Models

RL problems comprise four elements: a set of world states; a set of actions available to the
agent in each state; a transition function, which specifies the probability of transitioning from
one state to another when performing each action; and a reward function, which indicates the
amount of reward (or cost) associated with each such transition. Given these elements, the
objective for learning is to discover a policy, that is, a mapping from states to actions, that
maximizes cumulative long-term reward.4

3For other work translating HRL into an actor-critic format, see Bhatnagara and Panigrahi (2006)
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In actor-critic implementations of RL, the learning agent is divided into two parts, an actor and
a critic, as illustrated in Figure 2A (see, e.g., Barto, Sutton, & Anderson, 1983; Houk et al.,
1995; Joel et al., 2002; Suri, Bargas, & Arbib, 2001). The actor selects actions according to a
modifiable policy (=(s) in the figure), which is based on a set of weighted associations from
states to actions, often called action strengths. The critic maintains a value function (V(s)),
associating each state with an estimate of the cumulative, long-term reward that can be expected
subsequent to visiting that state. Importantly, both the action strengths and the value function
must be learned based on experience with the environment. At the outset of learning, the value
function and the actor’s action strengths are initialized, for instance uniformly or randomly,
and the agent is placed in some initial state. The actor then selects an action, following a rule
that favors high-strength actions but also allows for exploration (see online appendix, Eqg. 1).
Once the resulting state is reached and its associated reward is collected, the critic computes a
temporal-difference prediction error (denoted & in the figure; see also Eq. 2). Here, the value
that was attached to the previous state is treated as a prediction of (1) the reward that would
be received in the successor state (R(s)), plus (2) the value attached to that successor state. A
positive prediction error indicates that this prediction was too low, meaning that things turned
out better than expected. Of course, things can also turn out worse than expected, yielding a
negative prediction error.

The prediction error is used to update both the value attached to the previous state and the
strength of the action that was selected in that state (see Egs. 3 and 4). A positive prediction
error leads to an increase in the value of the previous state and the propensity to perform the
chosen action at that state. A negative error leads to a reduction in these. After the appropriate
adjustments, the agent selects a new action, a new state is reached, a new prediction error is
computed, and so forth. As the agent explores its environment and this procedure is repeated,
the critic’s value function becomes progressively more accurate, and the actor’s action
strengths change so as to yield progressive improvements in behavior, in terms of the amount
of reward obtained.

Incorporating Temporally Abstract Actions

The options framework supplements the set of single-step, primitive actions with a set of
temporally abstract actions or options. An option is, in a sense, a ‘mini-policy.” It is defined
by an initiation set, indicating the states in which the option can be selected; a termination
function, which specifies a set of states that will trigger termination of the option;5, and an
option-specific policy, mapping from states to actions (which now include other options).

Like primitive actions, options are associated with strengths, and on any time-step the actor
may select either a primitive action or an option. Once an option is selected, actions are selected
based on that option’s policy until the option terminates. At that point, a prediction error for
the option is computed. This error is defined as the difference between the value of the state
where the option terminated and the value of the state where the option was initiated, plus
whatever rewards were accrued during execution of the option (see Eq. 6). A positive prediction
error indicates that things went better than expected since leaving the initiation state, and a
negative prediction error means that things went worse. As in the case of primitive actions, the
prediction error is used to update the value associated with the initiation state, as well as the
action strength associating the option with that state (see Egs. 8-9; Figure 3).6

41t iis often assumed that the utility attached to rewards decreases with the length of time it takes to obtain them, and in such cases the
objective is to maximize the discounted long-term reward. As reflected in the online appendix, our implementation assumes such
discounting. For simplicity, however, discounting is ignored in the main text.

The termination function may be probabilistic.

As discussed by Sutton et al. (1999), it is possible to update the value function based only on comparisons between states and their
immediate successors. However, the relevant procedures, when combined with those involved in learning option-specific policies (as
described later), require complicated bookkeeping and control operations for which neural correlates seem less plausible.
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Implementing this new functionality requires several extensions to the actor-critic architecture,
as illustrated in Figure 2B. First, the actor must maintain a representation of which option is
currently in control of behavior (o).7 Second, because the agent’s policy now varies depending
on which option is in control, the actor must maintain a separate set of action strengths for each
option (7o(s) inthe figure). Important changes are also required in the critic. Because prediction
errors are computed when options terminate, the critic must receive input from the actor, telling
it when such terminations occur (the arrow from o to §). Finally, to be able to compute the
prediction error at these points, the critic must also keep track of the amount of reward
accumulated during each option’s execution and the identity of the state in which the option
was initiated (see Egs. 6-9).

Learning option policies

The description provided so far explains how the agent learns a top- or root-level policy, which
determines what action or option to select when no option is currently in control of behavior.
We turn now to the question of how option-specific policies are learned.

In versions of the options framework that address such learning, it is often assumed that options
are initially defined in terms of specific subgoal states. (The question of where these subgoals
come from is an important one, which we address later.) It is further assumed that when an
active option reaches its subgoal, the actions leading up to the subgoal are reinforced. To
distinguish this reinforcing effect from the one associated with external rewards, subgoal
attainment is said to yield pseudo-reward (Dietterich, 2000).

In order for subgoals and pseudo-reward to shape option policies, the critic in HRL must
maintain not only its usual value function, but also a set of option-specific value functions
(Vo(s) in Figure 2B). As in ordinary RL, these value functions predict the cumulative long-
term reward that will be received subsequent to occupation of a particular state. However, they
are option-specific in the sense that they take into account the pseudo-reward that is associated
with each option’s subgoal state. A second reason that option-specific value functions are
needed is that the reward (and pseudo-reward) that the agent will receive following any given
state depends on the actions it will select. These depend, by definition, on the agent’s policy,
and under HRL the policy depends on which option is currently in control of behavior. Thus,
only an option-specific value function can accurately predict future rewards.

Despite the additions above, option-specific policies are learned in quite the usual way: On
each step of an option’s execution, a prediction error is computed based on the (option-specific)
values of the states visited and the reward received (including pseudo-reward). This prediction
error is then used to update the option’s action strengths and the values attached to each state
visited during the option (see Egs. 6-9; Figure 3). With repeated cycles through this procedure,
the option’s policy evolves so as to guide behavior, with increasing directness, toward the
option’s subgoals.

lllustrations of performance

To provide an illustration of HRL in action, we applied the preceding learning procedures to
atoy ‘rooms’ problem introduced by Sutton et al. (1999). Here, the agent’s task is to navigate
through a set of rooms interconnected by doorways, in order to reach a goal state (Figure 4A).
In each state, the agent can select any of eight deterministic primitive actions, each of which
moves the agent to one of the adjacent squares (unless a wall prevents this movement).

7If it is assumed that option policies can call other options, then the actor must also keep track of the entire set of active options and their

calling relations.
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Additionally, within each room the agent can also select either of two options, each having one
of the room’s doors as its subgoal.

To illustrate the process of learning option-specific policies, the model was initially trained
with only pseudo-rewards at the option subgoal states, i.e., without external reward. Figure 4B
tracks the number of primitive actions each option required to reach its subgoal, showing that,
through learning, this fell to a minimum over successive executions of the option. Figure 4C
illustrates the policy learned by one of the doorway options, as well its option-specific value
function.

A more fundamental point is illustrated in Figure 4D, which tracks the model’s performance
after external rewards were introduced at the goal state G. The model learns more rapidly to
reach the goal state when both the doorway options and the eight primitive actions are
included® than when only the primitive actions are available. This savings in training time
reflects the impact of temporal abstraction on exploration and learning, as described in the
previous section.

Other versions of HRL

As noted earlier, we based the foregoing overview of HRL on a particular implementation of
HRL, the options framework (Sutton et al., 1999). Although we continue to orient toward this
paradigm throughout the rest of the article, it is important to bear in mind that there exist other
versions of HRL, which differ from the options framework along a number of dimensions (see
Barto & Mahadevan, 2003). The most highly developed among these are the HAM framework
introduced by Parr and Russell (1998) and Dietterich’s (1998; 2000) MAXQ framework. One
aspect that distinguishes these two paradigms from the options framework is that they treat
learning as a process occurring within a pre-established and partially fixed task/subtask
hierarchy.9 This approach has ramifications that further differentiate the HAM and MAXQ
paradigms from the options framework, affecting, for example, the way that value functions
are represented and how prediction errors are computed (see Barto & Mahadevan, 2003 for a
detailed comparison among approaches).

We have chosen to focus on the options framework because the elements that it adds to standard
RL are simpler and fewer in number than those added by other paradigms, and because in our
opinion these new elements lend themselves more immediately to a neuroscientific
interpretation. In the General Discussion, we consider several ways in which other HRL
paradigms might lead to subtly different hypotheses and predictions. Nevertheless, we
endeavor in what follows to concentrate on points that are broadly consistent with the full range
of HRL implementations.

Behavioral Implications

Having introduced the fundamentals of HRL, we turn now to a consideration of what their
implications might be for behavioral and neuroscientific research. We begin with implications
for psychology. As noted earlier, HRL treats a set of issues that have also been of longstanding
interest to students of human and animal behavior. HRL suggests a different way of framing
some of these issues, and also brings to the fore some important questions that have so far
received relatively little attention in behavioral research.

8As detailed in the online appendix, options were pre-trained, simulating transfer of knowledge from earlier experience. In this particular
problem domain — although not necessarily in general — including options without pretraining slows initial learning on the top-level
Broblem, but later confers a benefit, allowing the agent to converge on an optimal policy earlier than it does in the absence of options.

Procedures for inducing the initial hierarchy from experience have been explored in MAXQ (see e.g., Mehta, Ray, Tadepalli, &
Dietterich, 2008), but this form of learning is treated as separate from the learning of policies over the hierarchy.
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Relation to Previous Work in Psychology

Lashley (1951) is typically credited with first asserting that the sequencing of low-level actions
requires higher-level representations of task context. Since this point was introduced, there has
been extensive research into the nature and dynamics of such representations, much of which
resonates with the idea of temporally abstract actions as found in HRL. Indeed, the concept of
‘task representation,” as it arises in much contemporary psychological work (e.g. Cohen,
Dunbar, & McClelland, 1990; Cooper & Shallice, 2000; Monsell, 2003), shares key features
with the option construct. Both postulate a unitary representation that (1) can be selected or
activated; (2) remains active for some period of time following its initial selection; (3) leads
to the imposition of a specific stimulus-response mapping or policy; and (4) can participate in
hierarchical relations with other representations of the same kind.

Despite this parallel, most psychological research on task representation has focused on issues
different from those central to HRL. In recent work, the emphasis has often been on the
dynamics of shifts from one task to another (e.g., Allport & Wylie, 2000; Logan, 2003; Monsell,
2003), or on competition between task sets (e.g., Monsell, Yeung, & Azuma, 2000; Pashler,
1994). Other studies have concentrated on cases where task representations function primarily
to preserve information conveyed by transient cues (e.g., Cohen, Braver, & O'Reilly, 1996;
MacDonald, Cohen, Stenger, & Carter, 2000), a function not usually performed by options.

Among studies focusing on the issue of hierarchy, many have aimed at obtaining empirical
evidence that human behavior and its accompanying mental representations are in fact
organized in a hierarchical fashion (e.g. Newtson, 1976; Zacks & Tversky, 2001). However,
there have also been a series of theoretical proposals concerning the control structures
underlying hierarchically organized behavior (e.g., Arbib, 1985; Botvinick & Plaut, 2004;
Cooper & Shallice, 2000; Dehaene & Changeux, 1997; Dell, Berger, & Svec, 1997; Estes,
1972; Grossherg, 1986; MacKay, 1987; Miller et al., 1960; Rumelhart & Norman, 1982). The
resemblance between these proposals and HRL mechanisms is variable. In most cases, for
example, high-level task representations have been understood to send top-down activation
directly to action representations, rather than to favor specific links from stimuli to responses,
as in HRL (however, see Botvinick & Plaut, 2004; Ruh, 2007). Furthermore, in the vast
majority of cases the focus has been on aspects of steady-state performance, such as reaction
times and error patterns, rather than on the role of temporal abstraction in learning, the focus
in HRL.

Having made this latter generalization, it is also important to note several cases in which the
role of task representations and hierarchical structure during learning have been directly
considered. On the empirical side, there have been a number of studies examining the
development of hierarchical structure in the behavior of children (e.g. Bruner, 1973; Fischer,
1980; Greenfield, Nelson, & Saltzman, 1972; Greenfield & Schneider, 1977). The general
conclusion of such studies is that, over the course of childhood, behavior shows a hierarchical
development, according to which simple operations are gradually incorporated into larger
wholes. The fit between this observation and the basic premises of HRL is, of course, clear.

The strongest parallels to HRL within psychology, however, are found in production-system
based theories of cognition, in particular Soar (Lehman, Laird, & Rosenbloom, 1996) and ACT-
R (Anderson, 2004). A key idea in both of these frameworks is that planning or problem solving
can leverage chunks, “if-then’ rules that can trigger the execution of extended action sequences
(Laird, Rosenbloom, & Newell, 1986; Lee & Taatgen, 2003; see also Hayes-Roth & Hayes-
Roth, 1979; Ward & Allport, 1987). Like temporally abstract actions in HRL, chunks can
facilitate problem solving, increasing the speed and efficiency with which solutions are found.
This function allows chunking to provide a natural account for the behavioral phenomenon of
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positive transfer, where improvements in problem-solving efficiency are observed on target
problems when these are presented after prior exposure to structurally similar problems.

One factor that differentiates HRL from the Soar and ACT-R frameworks is its organization
around the single objective of reward maximization. This aspect of HRL allows it to specify
precisely what it means for hierarchically structured behavior to be optimal, and this optimality
criterion gives coherence to the learning and performance algorithms involved in HRL (even
in cases — encountered regularly, in practice — where HRL does not yield perfect reward-
maximizing performance). In contrast, neither ACT-R nor Soar take reward maximization as
a central organizing principle. ACT-R does include ‘production utilities,” which represent the
probability that a given production will lead to achievement of the currently held goal
(Anderson, 2004), a feature that resonates with the impact of pseudo-reward in HRL. And there
have been recent efforts to integrate RL methods into the Soar framework (Nason & Laird,
2005). Notwithstanding these caveats, the centrality of reward maximization in HRL remains
distinctive. A countervailing strength of Soar, ACT-R and related models is that they address
a wide range of psychological issues — in particular, limitations in processing capacity — that
are not addressed in existing formulations of HRL. The strengths of the two approaches thus
appear to be complementary, and it is exciting to consider ways in which they might be
integrated (see Nason & Laird, 2005, for some preliminary discussion along these lines).

Negative Transfer

The previous section touched on the phenomenon of positive transfer, where established
procedural knowledge facilitates the discovery of solutions to new problems. This phenomenon
provides a direct point of contact between human behavior and HRL, where, as demonstrated
earlier, options arising from earlier experience can have the same facilitatory effect. However,
the literature on transfer effects also highlights a contrary point that pertains equally to HRL,
which is that in some circumstances pre-existing knowledge can hinder problem solving. Such
negative transfer was most famously demonstrated by Luchins (1942), who found that human
subjects were less successful at solving word problems when the subjects were first exposed
to problems demanding a different solution strategy (see also Landrum, 2005; Rayman,
1982).

A direct analogue to negative transfer occurs in HRL when the temporally abstract actions
available to the agent are not well suited to the learning problem. For illustration, consider the
four-rooms problem described above (see Figure 4A). However, instead of the doorway options
included in the earlier simulation, assume that the agent has a set of options whose subgoals
are the states adjacent to the ‘windows’ marked in Figure 5A. Those options, which are not
helpful in solving the problem of reaching the goal state G, cause the agent to spend time
exploring suboptimal trajectories, with the effect that learning is slowed overall (Figure 5B).
A subtler but equally informative case is illustrated in Figure 5C. Here, the original doorway
options are used, but now a new passageway has been opened up, providing a shortcut between
the upper right and lower left rooms. When trained with primitive actions only, the agent learns
to use this passage, finding the shortest path to the reward on 75% of training runs. However,
when the original doorway options are also included, the agent learns to reach the goal only
by way of the main doorways, eventually ignoring the passageway completely.10

10Mean solution times over the last 10 episodes from a total of 500 episodes, averaged over 100 simulation runs, was 11.79 with the
doorway options (passageway state visited on 0% of episodes), compared with 9.73 with primitive actions only (passageway visited on
79% of episodes). Note that, given a certain set of assumptions, convergence on the optimal, shortest path, policy can be guaranteed in
RL algorithms, including those involved in HRL. However, this is only strictly true under boundary conditions that involve extremely
slow learning, due to an very slow transition from exploration to exploitation. Away from these extreme conditions, there is a marked
tendency for HRL systems to “satisfice,” as illustrated in the passageway simulation.
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These illustrations show that the impact of temporally abstract actions on learning and planning
depends critically on which specific actions the agent has in its repertoire. This raises a pivotal
question, which motivates a significant portion of current HRL research: By what means can
a learning agent acquire temporally abstract actions that are likely to be useful in solving future
problems, and avoid acquiring unhelpful ones? The existence of both positive and negative
transfer in human performance indicates the relevance of this question to psychological theory,
as well. With this in mind, it is of interest to consider the range of answers that have been
proposed in machine learning, and their potential relations to findings from behavioral science.

The Option Discovery Problem

One approach to the problem of discovering useful options has been to think of options as
genetically specified, being shaped across generations by natural selection (Elfwing, Uchibe,
& Christensen, 2007). Along these same lines, in empirical research, motor behavior has often
been characterized as building upon simple, innately specified components (e.g., Bruner,
1973). In some cases extended action sequences, such as grooming sequences in rodents, have
been considered to be genetically specified (Aldridge & Berridge, 1998), functioning
essentially as innate options.

While evolution seems likely to play an important role in providing the building blocks for
animal and human behavior, it is also clear that both animals and humans discover useful
behavioral subroutines through learning (Conway & Christiansen, 2001; Fischer, 1980;
Greenfieldetal., 1972). One proposal from HRL for how this might be accomplished is through
analysis of externally rewarded action sequences. Here, as the agent explores a particular
problem, or a series of interrelated problems, it keeps a record of states or subsequences that
occur relatively frequently in trajectories that culminate in reward (McGovern, 2002; Pickett
& Barto, 2002; Thrun & Scwhartz, 1995) (see also Minton, Hayes, & Fain, 1985; Yamada &
Tsuji, 1989). These states and sequences pinpoint important ‘bottlenecks’ in the problem space
— such as the doors in the rooms scenario discussed above — which are good candidates to
become option subgoals. On the empirical side, this proposal appears consonant with work
showing that humans, even very young children, can be extremely sensitive to the structure
underlying repeating and systematically varying event sequences (Saffran, Aslin, & Newport,
1996), a point that extends to hierarchical structure (Saffran & Wilson, 2003).

Another HRL approach to the option discovery problem involves analyzing not trajectories
through the problem space, but the problem space itself. Here, a graph is constructed to
represent the relevant set of world states and the transitions that can be made among them
through action. Graph partitioning methods are then used to identify states that constitute
bottlenecks or access points within the graph, which are then designated as option subgoals
(Mannor, Menache, Hoze, & Klein, 2004; Menache, Mannor, & Shimkin, 2002; Simsek,
Wolfe, & Barto, 2005; see also Hengst, 2002; Jonsson & Barto, 2005). This set of approaches
resonates with behavioral data showing that humans (including children) spontaneously
generate causal representations from interactions with the world, and link these representations
together into large-scale causal models (Gopnik et al., 2004; Gopnik & Schulz, 2004;
Sommerville & Woodward, 2005a; Sommerville & Woodward, 2005b). Whether such causal
models are then applied toward the identification of useful subgoal states is an interesting
question for empirical investigation.

Another approach within HRL takes the perspective that options can be formed during an
analog of a developmental period, without the need for any externally-imposed tasks. Instead
of learning from extrinsically provided rewards, the agent learns from intrinsic rewards
generated by built-in mechanisms that identify subgoals — states or situations that have the
property that skills capable of achieving them are likely to be useful in many different future
tasks (Barto, Singh, & Chentanez, 2004; Singh, Barto, & Chentanez, 2005). One example of
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this approach assumes that certain action outcomes are unusually salient, and that the
unexpected occurrence of these outcomes during exploratory behavior triggers efforts to make
them reoccur (and thus learning of options that treat these events as subgoals). More
specifically, unexpected salient events are assumed to be intrinsically motivating. Singh et al.
(2005) demonstrated how this mechanism can lead to the stepwise development of hierarchies
of skills. The behavior of the agent in their simulations bears an intriguing similarity to
children’s “circular reactions,” behavior aimed at reproducing initially inadvertent action
outcomes such as turning a light on and off (Fischer & Connell, 2003; Piaget, 1936/1952).
Singh et al. (2005) pointed out the unexpected occurrence of a salient events is but one way to
trigger intrinsic reward, with other possibilities suggested by the psychological literature (e.g.,
Berlyne, 1960; White, 1959) as well as earlier studies of internal rewards in the RL literature
(e.g., Kaplan & Oudeyer, 2004; Schmidhuber, 1991). Oudeyer, Kaplan, and Hafner (2007)
provide an overview of much of this work.11

The intrinsic motivation approach to subgoal discovery in HRL dovetails with psychological
theories suggesting that human behavior is motivated by a drive toward exploration or toward
mastery, independent of external reward (e.g., Berlyne, 1960; Harlow, Harlow, & Meyer,
1950; Ryan & Deci, 2000; White, 1959). Moreover, the idea that unanticipated events can
engage reinforcement mechanisms is also consistent with neuroscientific findings. In
particular, the same midbrain dopaminergic neurons that are thought to report a temporal-
difference reward prediction error also respond to salient novel stimuli (Bunzeck & Duzel,
2006; Redgrave & Gurney, 2006; Schultz, Apicella, & Ljungberg, 1993).

When option discovery is viewed as a psychological problem, other possible mechanisms for
option discovery are brought to mind, which go beyond those so far considered in HRL
research. For example, Soar provides a highly detailed account of subgoal generation and chunk
formation, according to which subgoals, and later chunks, are established in response to
problem-solving impasses (Laird et al., 1986; Lehman et al., 1996). Another still richer source
of useful subgoals might be provided by the social environment. For example, empirical work
with both children and adults demonstrates that human observers spontaneously infer goals
and subgoals from the behavior of others (Gergely & Csibra, 2003; Meltzoff, 1995;
Sommerville & Woodward, 2005a; Tenenbaum & Saxe, 2006; Woodward, Sommerville, &
Guajardo, 2001). By this means, subgoals and associated action sequences could be gleaned
both from deliberate demonstrations from parents, teachers, and others, and from the behavior
of unwitting models (Greenfield, 1984; Yan & Fischer, 2002). Indeed, it seems natural to think
of much of education and child-rearing as involving the deliberate social transmission of useful
action routines. Related to this idea is the technique of shaping, whereby training is provided
on low-level tasks in preparation for training on more complex tasks. In recent work, Krueger
and Dayan (2008) have offered a reinforcement learning account of shaping effects, which
incorporates elements, such as subtask modularity, that parallel features of HRL.

Neuroscientific Implications

In the above, we have suggested potential bi-directional links between HRL and research on
learning and behavior in humans and animals. We turn now to the potential implications of
HRL for understanding neural function. To make these concrete, we will use the actor-critic
formulation of HRL presented earlier. Previous work has already drawn parallels between the
elements of the actor-critic framework and specific neuroanatomical structures. Situating HRL
within the actor-critic framework thus facilitates the formation of hypotheses concerning how
HRL might map onto functional neuroanatomy.12

1 These studies, directed at facilitating the learning of environmental models, are also relevant to learning of option hierarchies.
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Although accounts relating the actor-critic architecture to neural structures vary (see Joel et
al., 2002, for areview), one proposal has been to identify the actor with the dorsolateral striatum
(DLS), and the critic with the ventral striatum (VS) and the mesolimbic dopaminergic system
(see, e.g., Daw, Niv, & Dayan, 2006; O'Doherty et al., 2004; Figure 2C). Dopamine (DA), in
particular, has been associated with the function of conveying reward prediction errors to both
actor and critic (Barto, 1995; Montague et al., 1996; Schultz et al., 1997). In order to evaluate
how HRL would modify this mapping, we will focus individually on the elements that HRL
adds or modifies within the actor-critic framework, as introduced earlier. In the following two
sections, we consider four key extensions, two relevant to the actor component, and two to the
critic.

The Actor in HRL: Relation to Prefrontal Cortex

Extension 1: Support structure for temporally abstract actions—Under HRL, in
addition to primitive actions, the actor must build in representations that identify specific
temporally abstract actions or options. Using these, the actor must be able to keep track of
which option is currently selected and in control of behavior.

Potential neural correlates: This first extension to the actor-critic framework calls to mind
functions commonly ascribed to the dorsolateral prefrontal cortex (DLPFC). The DLPFC has
long been considered to house representations that guide temporally integrated, goal-directed
behavior (Fuster, 1997, 2004; Grafman, 2002; Petrides, 1995; Shallice & Burgess, 1991; Wood
& Grafman, 2003). Recent work has refined this idea by demonstrating that DLPFC neurons
play a direct role in representing task sets. Here, a single pattern of DLPFC activation serves
to represent an entire mapping from stimuli to responses, i.e., a policy (Asaad, Rainer, & Miller,
2000; Bunge, 2004; Hoshi, Shima, & Tanji, 1998; Johnston & Everling, 2006; Rougier, Noell,
Braver, Cohen, & O'Reilly, 2005; Shimamura, 2000; Wallis, Anderson, & Miller, 2001; White,
1999). According to the guided activation theory proposed by Miller and Cohen (2001),
prefrontal representations do not implement policies directly, but instead select among
stimulus-response pathways implemented outside the prefrontal cortex. This division of labor
fits well with the distinction in HRL between an option’s identifier and the policy with which
it is associated (Figure 6).

In addition to the DLPFC, there is evidence that other frontal areas may also carry
representations of task set, including pre-supplementary motor area (pre-SMA; Rushworth,
Walton, Kennerley, & Bannerman, 2004) and premotor cortex (PMC; Muhammad, Wallis, &
Miller, 2006; Wallis & Miller, 2003). Furthermore, like options in HRL, neurons in several
frontal areas including DLPFC, pre-SMA and supplementary motor area (SMA) have been
shown to code for particular sequences of low-level actions (Averbeck & Lee, 2007; Bor,
Duncan, Wiseman, & Owen, 2003; Shima, Isoda, Mushiake, & Tanji, 2007; Shima & Taniji,
2000). Research on frontal cortex also accords well with the stipulation in HRL that temporally
abstract actions may organize into hierarchies, with the policy for one option (say, an option
for making coffee) calling other, lower-level options (say, options for adding sugar or cream).
This fits with numerous accounts suggesting that the frontal cortex serves to represent action
at multiple, nested levels of temporal structure (Grafman, 2002; Sirigu et al., 1995; Wood &
Grafman, 2003; Zalla, Pradat-Diehl, & Sirigu, 2003), possibly in such a way that higher levels
of structure are represented more anteriorly (Botvinick, 2008; Fuster, 2001, 2004; Haruno &
Kawato, 2006; Koechlin et al., 2003).

12k oy different approaches to the mapping between HRL and neuroanatomy, see De Pisapia (2003) and Zhou and Coggins (2002;

2004).
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Extension 2: Option-specific policies—In addition to its default, top-level policy, the
actor in HRL must implement option-specific policies. Thus, the actor must carry a separate
set of action strengths for each option.

Potential neural correlates: As noted earlier, it has been typical to draw a connection from
the policy in standard RL to the DLS. For the DLS to implement the option-specific policies
found in HRL, it would need to receive input from cortical regions representing options. It is
thus relevant that such regions as the DLPFC, SMA, pre-SMA and PMC — areas potentially
representing options — all project heavily to the DLS (Alexander, DeLong, & Strick, 1986;
Parent & Hazrati, 1995). Frank, O’Reilly and colleagues (Frank & Claus, 2006; O'Reilly &
Frank, 2006; Rougier et al., 2005) have put forth detailed computational models that show how
frontal inputs to the striatum could switch among different stimulus-response pathways. Here,
as in guided activation theory, temporally abstract action representations in frontal cortex select
among alternative (i.e., option-specific) policies.

In order to support option-specific policies, the DLS would need to integrate information about
the currently controlling option with information about the current environmental state, as is
indicated by the arrows converging on the policy module in Figure 2B. This is consistent with
neurophysiological data showing that some DLS neurons respond to stimuli in a way that varies
with task context (Ravel, Sardo, Legallet, & Apicella, 2006; see also Salinas, 2004). Other
studies have shown that action representations within the DLS can also be task-dependent. For
example, Aldridge and Berridge (1998) reported that, in rats, different DLS neurons fired in
conjunction with simple grooming movements depending on whether those actions were
performed inisolation or as part of a grooming sequence (see also Aldridge, Berridge, & Rosen,
2004; Graybiel, 1995, 1998; Lee, Seitz, & Assad, 2006). This is consistent with the idea that
option-specific policies (action strengths) might be implemented in the DLS, since this would
imply that a particular motor behavior, when performed in different task contexts, would be
selected via different neural pathways.

Recall that, within HRL, policies are responsible for selecting not only primitive actions, but
also for selecting options. Translated into neural terms, this would require the DLS to
participate in the selection of options. This is consistent with data from Muhammad et al.
(2006), who observed striatal activation that varied with task context (see also Graybiel,
1998). It is also consistent with the fact that the DLS projects heavily, via thalamic relays, to
all of the frontal regions linked above with a role in representing options (Alexander et al.,
1986; Middleton & Strick, 2002).

Unlike the selection of primitive actions, the selection of options in HRL involves initiation,
maintenance and termination phases. At the neural level, the maintenance phase would be
naturally supported within DLPFC, which has been extensively implicated in working memory
function (Courtney et al., in press; D'Esposito, 2007; Postle, 2006). With regard to initiation
and termination, it is intriguing that phasic activity has been observed, both within the DLS
and in several areas of frontal cortex, at the boundaries of temporally extended action sequences
(Fujii & Graybiel, 2003; Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004; Zacks et al.,
2001). Since these boundaries correspond to points where new options would be selected,
boundary-aligned activity in the DLS and frontal cortex is also consistent with a proposed role
of the DLS in gating information into prefrontal working memory circuits (O'Reilly & Frank,
2006; Rougier et al., 2005).

The Critic in HRL: Relation to Orbitofrontal Cortex

As noted earlier, HRL also requires two key extensions to the critic component of the actor-
critic architecture.
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Extension 3: Option-specific value functions—Under HRL, in addition to its top-level
state-value function, the critic must also maintain a set of option-specific value functions. This
is due to the fact that the value function indicates how well things are expected to go following
arrival at a given state, which obviously depends on which actions the agent will select. Under
HRL, the option that is currently in control of behavior determines action selection, and also
determines which actions will yield pseudo-reward. Thus, whenever an option is guiding
behavior, the value attached to a state must take the identity of that option into account.

Potential neural correlates: If there is a neural structure that computes something like option-
specific state values, this structure would be expected to communicate closely with the VS, the
region typically identified with the locus of state or state-action values in RL. However, the
structure would also be expected to receive inputs from the portions of frontal cortex that we
have identified as representing options. One brain region that meets both of these criteria is the
orbitofrontal cortex (OFC), an area that has strong connections with both VS and DLPFC
(Alexander, Crutcher, & DelLong, 1990; Rolls, 2004). The idea that the OFC might participate
in computing option-specific state values also fits well with the behavior of individual neurons
within this cortical region. OFC neurons have been extensively implicated in representing the
reward value associated with environmental states (Rolls, 2004; Schultz, Tremblay, &
Hollerman, 2000). However, other data suggests that OFC neurons can also be sensitive to
shifts in response policy or task set (e.g., O'Doherty, Critchley, Deichmann, & Dolan, 2003).
Critically, Schoenbaum, Chiba and Gallagher (1999) observed that OFC representations of
event value changed in parallel with shifts in strategy, a finding that fits precisely with the idea
that the OFC might represent option-specific state values.

Extension 4: Temporal scope of the prediction error—Moving from RL to HRL
brings about an important alteration in the way that the prediction error is computed.
Specifically, it changes the scope of the events that the prediction error addresses. In standard
RL, the prediction error indicates whether things went better or worse than expected since the
immediately preceding time-step. HRL, in addition, evaluates at the completion of an option
whether things have gone better or worse than expected since the initiation of that option (see
Figure 3). Thus, unlike standard RL, the prediction errors associated with options in HRL are
framed around temporally extended events. Formally speaking, the HRL setting is no longer
a Markov decision process, but rather a semi-Markov decision process (SMDP).

Potential neural correlates: This aspect of HRL resonates, once again, with data from the
OFC. Note that, in order to evaluate whether things went better or worse than expected over
the course of an entire option, the critic needs access, when an option terminates, to the reward
prediction it made when the option was initially selected. This is consistent with the finding
that within OFC, unlike some other areas, reward-predictive activity tends to be sustained,
spanning temporally extended segments of task structure (Schultz et al., 2000). Another
relevant finding is that the response of OFC neurons to the receipt of primary rewards varies
depending on the wait-time leading up to the reward (Roesch, Taylor, & Schoenbaum, 2006;
see online appendix, Eq. 7). This suggests, again, that the OFC interprets value within the
context of temporally extended segments of behavior.

The widened scope of the prediction error computation in HRL also resonates with work on
midbrain DA function. In particular, Daw (2003) suggested, based on midbrain responses to
delayed rewards, that dopaminergic function is driven by representations that divide event
sequences into temporally extended segments. In articulating this account, Daw (2003)
provided a formal analysis of DA function that draws on precisely the same principles of
temporal abstraction that also provide the foundation for HRL, namely an SMDP framework.
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In further examining the potential links between DA and HRL, it may be useful to consider
recent work by O’Reilly and Frank (2006), which shows through computational modeling how
DA might support learning in working memory circuits, supporting the performance of
hierarchically organized, temporally-extended tasks. This research addresses issues somewhat
different from those that are central to HRL, focusing in particular upon tasks that require
preservation of information conveyed by transient cues (a case treated in machine learning
under the rubric of partially observable Markov decision problems). However, O’Reilly and
colleagues have also begun to explore the application of similar mechanisms to the learning
of abstract task representations (Rougier et al., 2005). One interesting aspect of this latter work
is its focus on cases where task-appropriate behavior can be acquired through attending
selectively to particular stimulus dimensions (e.g., color or shape). This connects with some
work in HRL, where the use of option-specific state representations have been explored (see,
e.g., Dietterich, 2000; Jonsson & Barto, 2001). Characterizing further the relationship between
this approach within HRL and the computational work by Rougier and colleagues is an inviting
area for further analysis.

Discussion

We have shown that recently developed HRL techniques have much in common with
psychological accounts of hierarchically organized behavior. Furthermore, through a new
actor-critic implementation of HRL, we have suggested several points of contact between HRL
and the neural substrates of decision making and hierarchical control. Before summing up, we
briefly consider the relation of HRL to two further topics that have been at the focus of recent
work on the control of action, and we enumerate some directions for further research.

Dual Modes of Action Control

Work on animal and human behavior suggests that instrumental actions arise from two modes
of control, one built on established stimulus-response links or ‘habits,” and the other on
prospective planning (Balleine & Dickinson, 1998). Daw, Niv and Dayan (2005) have mapped
these modes of control onto RL constructs, characterizing the former as relying on cached
action values or strengths and model-free RL, and the latter as looking ahead based on an
internal model relating actions to their likely effects, that is, model-based RL. Here we have
cast HRL in terms of the cache-based system, both because this is most representative of
existing work on HRL and because the principles of model-based search have not yet been as
fully explored, either at the computational level or in terms of neural correlates. However, it
is straightforward to incorporate temporal abstraction into model-based, prospective control.
This is accomplished by assuming that each option is associated with an option model, a
knowledge structure indicating the ultimate outcomes likely to result from selecting the option,
the reward or cost likely to be accrued during its execution, and the amount of time this
execution is likely to take (see Sutton et al., 1999). Equipped with models of this kind, the
agent can use them to look ahead, evaluating potential courses of action. Importantly, the search
process can now ‘skip over’ potentially large sequences of primitive actions, effectively
reducing the size of the search tree (Figure 1C; Hayes-Roth & Hayes-Roth, 1979;
Kambhampati, Mali, & Srivastava, 1998; Marthi, Russell, & Wolfe, 2007). This kind of
saltatory search process seems to fit well with everyday planning, which introspectively seems
to operate at the level of temporally abstract actions (‘Perhaps | should buy one of those new
cell phones....Well, that would cost me a few hundred dollars....But if | bought one, I could
use it to check my email...”). The idea of action models, in general, also fits well with work
on motor control (e.g., Wolpert & Flanagan, 2001), which strongly suggests the involvement
of predictive models in the guidance of bodily movements. Because option models encode the
consequences of interventions, it is interesting to note that recent neuroimaging work has
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mapped representations of action outcome information in part to prefrontal cortex (Hamilton
& Grafton, 2008), a region whose potential links with HRL we have already considered.

Strict versus Quasi-Hierarchical Structure

Although human behavior, like behavior in HRL systems, is often hierarchically structured,
there are also aspects of human behavior that resist a strictly hierarchical account (Botvinick
and Plaut, 2002; 2004; 2006; Botvinick, 2007, 2008). For example, naturalistic tasks exhibit
a great deal of overlap or shared structure (Schank & Abelson, 1977), a point that is reflected
in the errors or slips that occur in the performance of such tasks (Reason, 1992). Shared
structure raises a problem because temporal abstractions have only a limited ability to exploit
detailed patterns of overlap among tasks. Thus, using options (as they have so far been defined),
it would be difficult to capture the overlap among tasks such as spreading jam on bread,
spreading mustard on a hotdog, and spreading icing on a cake. Furthermore, execution of
subtasks in everyday behavior is highly context-sensitive, that is, the way in which a subtask
is executed can depend on the larger task context in which it occurs (Agre, 1988). Context
sensitivity raises the problem that different levels within a task hierarchy are no longer
independent. For example, the subtask of picking up a pencil cannot be represented as a self-
contained unit if the details of its execution (e.g., the rotation of the hand) depend on whether
one is going to use the pencil to write or to erase (see Ansuini, Santello, Massaccesi, & Castiello,
2006). Significantly, related tensions between hierarchical compositionality and context-
sensitivity have also been noted in work on HRL (Dietterich, 2000).

Botvinick and Plaut (2002; 2004; 2006) proposed a computational model of routine sequential
behavior that is sensitive to hierarchical task structure, but which also accommodates context-
dependent subtask performance and overlap between tasks. That model, like the HRL model
we have presented here, displays transfer effects when faced with new problems (Botvinick &
Plaut, 2002). Furthermore, Ruh (2007) has demonstrated that the Botvinick and Plaut (2004)
model can acquire target behaviors through RL. Understanding the relationship between this
computational approach and HRL is an interesting challenge for further investigation.

Directions for Further Research

The idea that HRL algorithms may be relevant to understanding brain function and behavior
gives rise to a wide range of questions for experimental research. To begin with, almost all of
the empirical parallels we have traced out in the present article call for further experimental
scrutiny. For example, although there is compelling evidence that dorsolateral PFC neurons
represent task context, there is as of yet only indirect evidence (e.g., Badre, 2008; Zacks et al.,
2001) to support the idea that PFC neurons also code discretely for subtask segments in
hierarchically structured tasks, as HRL would seem to require. Similarly, although there are
established aspects of dopaminergic function that resonate with predictions from HRL, HRL
also gives rise to predictions that would need to be tested through new experiments. In
particular, the version of HRL we have focused on here predicts phasic dopaminergic discharge
at subtask boundaries, scaling with the magnitude of option-level prediction errors.

In considering the coding of rewards, one particularly interesting question is whether there
might exist a neural correlate of pseudo-reward. As detailed earlier, the options framework,
like at least one other influential version of HRL (MAXQ, Dietterich, 2000), associates a
separate reward function with each individual subtask representation. This pseudo-reward
function is critical in shaping subtask-specific policies, directing action toward desirable
subtask outcomes, i.e., subgoals. An obvious question is whether neural structures that are
responsive to exogenous reward also respond to the attainment of subgoal states during the
performance of hierarchically structured tasks.
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Having suggested this possibility, it is important to note that in the case of pseudo-reward, the
framing of specific predictions requires consideration of differences between HRL
implementations. Indeed, there exist versions of HRL, such as the HAM framework (Parr &
Russell, 1998), that do not involve pseudo-reward at all, relying instead on a combination of
ordinary, exogenous reward and fixed constraints to shape subtask policies. Another point on
which HRL implementations differ, which may have implications for experimental predictions,
is in the representation of the value function. Whereas the options framework, as we have
discussed, maintains option-specific value functions, some other frameworks, including
MAXQ (Andre & Russell, 2001, 2002; Dietterich, 2000), decompose these value functions
into separate components, giving rise to slightly different learning algorithms. This difference
may lead different HRL frameworks to make non-equivalent fine-grained predictions. For
example, frameworks may vary in the prediction errors they would compute in a given domain,
giving rise to divergent predictions concerning dopaminergic function. In sum, just as with
non-hierarchical RL algorithms, any detailed investigation of HRL as a framework for
interpreting neural function and behavior will require some attention to algorithmic detail.

Conclusion

Computational RL has proved extremely useful to research on behavior and brain function.
Our aim here has been to explore whether HRL might prove similarly applicable. An initial
motivation for considering this question derives from the fact that HRL addresses an inherent
limitation of RL, the scaling problem, which would clearly be of relevance to any organism
relying on RL-like learning mechanisms. Implementing HRL along the lines of the actor-critic
framework, thereby bringing it into alignment with existing mappings between RL and
neuroscience, reveals direct parallels between components of HRL and specific functional
neuroanatomic structures, including the DLPFC and OFC. HRL suggests new ways of
interpreting neural activity in these as well as several other regions. HRL also resonates strongly
with issues in psychology, in particular with work on task representation and the control of
hierarchically structured behavior, adding to these a unifying normative perspective. Among
the most important implications of HRL is the way in which it highlights the option discovery
problem. Here, and on many other fronts, HRL appears to offer a potentially useful set of tools
for further investigating the computational and neural basis of hierarchical structured behavior.
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A B C

Figure 1.

An illustration of how options can facilitate search. (A) A search tree with arrows indicating
the pathway to a goal state. A specific sequence of seven independently selected actions is
required to reach the goal. (B) The same tree and trajectory, the colors indicating that the first
four and the last three actions have been aggregated into options. Here, the goal state is reached
after only two independent choices (selection of the options). (C) Illustration of search using
option models, which allow the ultimate consequences of an option to be forecast without
requiring consideration of the lower-level steps that would be involved in executing the option.
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An actor-critic implementation. (A) Schematic of the basic actor-critic architecture. R(s):
reward function; V(s): value function; &: temporal difference prediction error; n(s): policy,
determined by action strengths W. (B) An actor critic implementation of HRL. o: currently
controlling option, Ry(s): option-dependent reward function. V(s): option-specific value
functions; 6: temporal difference prediction error; ny(S): option-specific policies, determined
by option-specific action/option strengths. (C) Putative neural correlates to components of the
elements diagramed in panel A. (D) Potential neural correlates to components of the elements
diagramed in panel C. Abbreviations: DA: dopamine; DLPFC: dorsolateral prefrontal cortex,
plus other frontal structures potentially including premotor, supplementary motor and pre-
supplementary motor cortices; DLS, dorsolateral striatum; HT+: hypothalamus and other
structures, potentially including the habenula, the pedunculopontine nucleus, and the superior
colliculus; OFC: orbitofrontal cortex; VS, ventral striatum.
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Figure 3.

A schematic illustration of HRL dynamics. a, primitive actions; o, option. On the first timestep
(t = 1), the agent executes a primitive action (forward arrow). Based on the consequent state
(i.e., the state at t = 2), a prediction error & is computed (arrow running fromt=2tot=1), and
used to update the value (V) and action/option strengths (W) associated with the preceding
state. Att =2, the agent selects an option (long forward arrow), which remains active through
t = 5. During this time, primitive actions are selected according to the option’s policy (lower
tier of forward arrows). A prediction error is computed after each (lower tier of curved arrows),
and used to update the option-specific values (V,) and action strengths (W,) associated with
the preceding state. These prediction errors, unlike those at the level above, take into account
pseudo-reward received throughout the execution of the option (higher asterisk). Once the
option’s subgoal state is reached, the option is terminated. A prediction error is computed for
the entire option (long curved arrow), and this is used to update the values and option strengths
associated with the state in which the option was initiated. The agent then selects a new action
at the top level, which yields external reward (lower asterisk). The prediction errors computed
at the top level, but not at the level below, take this reward into account.
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Figure 4.

(A) The rooms problem, adapted from Sutton et al. (1999). S: start; G: goal. (B) Learning curves
for the eight doorway options, plotted over the first 150 occurrences of each (mean over 100
simulation runs). See online appendix for simulation details. (C) The upper left room from
panel A, illustrating the policy learned by one doorway option. Arrows indicate the primitive
action selected most frequently in each state. SG: option subgoal. Colors indicate the option-
specific value for each state. (D) Learning curves indicating solution times, i.e., number of
primitive steps to goal, on the problem illustrated in panel A (mean over 100 simulation runs).
Upper data series: Performance when only primitive actions were included. Lower series:
Performance when both primitive actions and doorway options were included. Policies for
doorway options were established through earlier training (see online appendix).
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Figure 5.

(A) The rooms problem from Figure 4, with ‘windows’ (w) defining option subgoals. (B)
Learning curves for the problem illustrated in panel A. Lower data series: steps to goal over
episodes with only primitive actions included (mean values over 100 simulation runs). Upper
series: performance with both primitive actions and window options included. (C) Illustration
of performance when a “shortcut’ is opened up between the upper right and lower left rooms
(center tile). Lower trajectory: path to goal most frequently taken after learning with only
primitive actions included. Upper trajectory: path most frequently taken after learning with
both primitive actions and doorway options. Black arrows indicate primitive actions selected
by the root policy. Other arrows indicate primitive actions selected by two doorway options.
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Figure 6.

Illustration of the role of the prefrontal cortex, as postulated by guided activation theory (Miller
& Cohen, 2001). Patterns of activation in prefrontal cortex (filled elements in the boxed region)
effectively select among stimulus-response pathways lying elsewhere in the brain (lower area).
Here, representations within prefrontal cortex correspond to option identifiers in HRL, while
the stimulus-response pathways selected correspond to option-specific policies. Figure adapted
from Miller and Cohen (2001, permission pending).
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