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Abstract
Multidimensional nuclear magnetic resonance (NMR) experiments measure spin-spin correlations,
which provide important information about bond connectivities and molecular structure. However,
direct observation of certain kinds of correlations can be very time-consuming due to limitations in
sensitivity and resolution. Covariance NMR derives correlations between spins via the calculation
of a (symmetric) covariance matrix, from which a matrix-square root produces a spectrum with
enhanced resolution. Recently, the covariance concept has been adopted to the reconstruction of non-
symmetric spectra from pairs of 2D spectra that have a frequency dimension in common. Since the
unsymmetric covariance NMR procedure lacks the matrix-square root step, it does not suppress relay
effects and thereby may generate false positive signals due to chemical shift degeneracy. A
generalized covariance formalism is presented here that embeds unsymmetric covariance processing
within the context of the regular covariance transform. It permits the construction of unsymmetric
covariance NMR spectra subjected to arbitrary matrix functions, such as the square root, with
improved spectral properties. This formalism extends the domain of covariance NMR to include the
reconstruction of non-symmetric NMR spectra at resolutions or sensitivities that are superior to the
ones achievable by direct measurements.

Keywords
Multidimensional NMR spectroscopy; indirect covariance spectroscopy; spectral reconstruction; fast
NMR methods

Introduction
Multidimensional nuclear magnetic resonance (NMR) is a powerful tool for probing molecular
connectivity and structure by displaying magnetization transfer between nuclear spins due their
magnetic interaction as correlation peaks in a multidimensional spectrum.1 However, multi-
dimensional NMR spectra with high resolution and sensitivity require the acquisition of a large
number of scans, which is NMR spectrometer time intensive.2 Establishment of direct
correlations between insensitive nuclei, such as 13C and 15N, requires particularly long
measurement times.3
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Indirect covariance NMR4 offers a linear algebraic approach to establish correlations between
pairs of hetero-nuclei that are coupled to a common set of protons. Formally, the indirect
covariance transform of the N1 × N2 NMR spectrum X produces the (symmetric) spectrum

 (where the superscripts T and 1/2 denote the matrix transpose and matrix-square
root, respectively). Unsymmetric covariance NMR5-8 generates asymmetric spectra via matrix
multiplication of two distinct spectra that share (at least) one common dimension. An example
is the multiplication of an 13C-1H HSQC9 with a 1H-1H TOCSY10 to correlate all 1H and 13C
nuclei in the same spin system. This reconstructs a 13C-1H HSQC-TOCSY spectrum from two
standard 2D experiments without requiring additional measurement time and thereby yields
additional 13C, 1H correlations, which can facilitate chemical shift assignment by linking
unassigned 13C chemical shifts to already assigned 1H and 13C chemical shifts.6
Hyperdimensional NMR reconstructs high-dimensional spectra, which are often asymmetric,
from lower dimensional spectra for the purpose of protein resonance assignment.11,12

COBRA13,14 and Burrow-Owl15 apply linear algebraic spectral manipulations for the same
purpose.

An important property of unsymmetric covariance NMR is that the sensitivity of the covariance
spectrum is limited only by the sensitivity of the experiments it combines.16 For example,
unsymmetric covariance of an 13C-1H HMBC17 with a 13C-1H HSQC spectrum establishes
carbon-carbon correlations with the enhanced sensitivity characteristic of an inverse
detected 13C-1H heteronuclear spectra rather than that of a direct detected 13C-13C correlation
spectrum.4

A key difference between symmetric and un-symmetric covariance NMR is the applicability
of the matrix-square root transform. The matrix-square root, which minimizes artifacts due to
relay effects and chemical shift (near) degeneracy (“pseudo-relay effects”)4,18-20 is properly
defined only for symmetric and positive semi-definite covariance spectra, e.g. when the product
matrix is a regular covariance matrix.

In this paper, a general approach is presented for constructing a covariance matrix from multiple
NMR spectra. Since the standard covariance transform is recovered as a special case when
identical spectra are used as input, the generalized covariance matrix formalism reconciles
symmetric and un-symmetric covariance processing. The generalized covariance matrix is
symmetric, which makes it amenable to the extraction of arbitrary matrix functions, including
the matrix-square root and other matrix powers λ. Depending on the types of spectra that are
correlated, application of the square root suppresses false positives. It is found that the analysis
of the variation of covariance peak intensity as a function of λ is an effective indicator for the
identification of false positives in unsymmetric covariance spectra. Covariation of a 13C-1H
HMBC with a 1H-1H TOCSY spectrum to obtain reliable 13C,1H correlations not detectable
in the HMBC experiment demonstrates the utility of this method. The generalized covariance
formalism therefore expands the power of covariance NMR to the reconstruction of non-
symmetric spectra.

Theory
Unsymmetric indirect covariance NMR5-8 takes an N1,1 × N2 2D spectrum X1 (matrix) and an
N1,2 × N2 2D spectrum X2 and ‘concatenates’ them into a single N1,1 × N1,2 spectrum C via
matrix multiplication:

(1)
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Matrix element Cij of C is a measure of the correlation between the pair (i,j) of spins belonging
to the ith row vector of X1 and the jth row vector of X2. Such a correlation either indicates a
direct interaction between the two spins, a mutual correlation to a common 3rd spin, e.g. via
spin-diffusion in NOESY spectra,18,21 or a pseudo-relay effect due to correlations to different
spins with identical chemical shift. In the symmetric case, i.e. X1 = X2, extraction of the matrix-
square root effectively reduces both relay and pseudo-relay effects.18,19,22

Generalized (indirect) covariance (GIC) NMR provides a framework in which unsymmetric
covariance spectra are embedded in symmetric covariance spectra amenable to general matrix
functions. GIC starts out with the construction of a stacked spectrum from n 2D spectra of
dimensions N1i × N2 (i = 1,…,n):

(2)

A generalized covariance matrix is then defined as

(3)

Because of Parseval’s theorem, Eq. (3) yields (up to a constant prefactor) the same result
irrespective whether the direct dimensions of X1,…,Xn are in the time domain or in the
frequency domain.18 Matrix C is symmetric and semi-positive definite, which permits the
straightforward calculation of arbitrary matrix functions, including matrix roots. For n=1, Eq.
(3) reduces to the indirect covariance NMR spectrum.4 For n ≥ 2, C contains the unsymmetric
covariance matrix given in Eq. (1) as an off-diagonal submatrix. For simplicity, the GIC
spectrum from X1 and X2 (n = 2) is denoted by X1*X2 and, when raised to the matrix power
λ, by [X1*X2]λ.

After application of singular value decomposition (SVD) to matrix S of Eq. (2), S = U·D·
VT , where U and V are orthogonal matrices and D is diagonal, Eq. (3) becomes

(4)

For the matrix-square root, λ = ½, it follows C0.5 = U·D·UT and for general powers

(5)

Of practical importance, calculation of a series of spectra with different powers λ of C only
requires a single SVD, which makes such calculations efficient.

The unsymmetric covariance matrix given by Eq. (1) constitutes an off-diagonal submatrix of
the generalized covariance matrix C of Eq. (3). The same submatrix of Cλ defines the λth power
of the unsymmetric covariance matrix including the matrix-square root of an unsymmetric
covariance matrix.
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GIC is applicable to a stack of spectra, X1,…,Xn, as long as each combination of covariance
spectra , gives rise to non-diagonal blocks and thereby expands the block-
diagonal parts stemming from the “auto-covariances” . GIC can reconstruct any spectrum
that factors into individually measurable NMR experiments. For example, a [13C-1H-
HMBC*1H-1H-TOCSY]λ covariance spectrum reconstructs a 2D 13C-1H HMBC-TOCSY
spectrum while [13C-1H-HMBC*15N-1H-HSQC]λ yields a 2D through-bond 13C-15N
correlation spectrum.23 Experiments probing spin-diffusion, relay, or multi-spin correlation
effects (NOESY, TOCSY, HMBC) are particularly suitable for GIC analysis due to the analogy
between the matrix (square) root operation of covariance NMR and the shortening of the
experimental mixing time.18

In symmetric covariance, the matrix-square root minimizes artifacts due to pseudo-relay
effects.18,19,22 Likewise, the square root of the generalized covariance matrix suppresses
artifacts in sub-matrices belonging to the unsymmetric covariance spectra. Hence, the
intensities of pseudo-relay correlation peaks are systematically weakened by the root operation
as compared to the intensities of bona fide signals. Generally, the more rapidly the covariance
cross-peak intensity Cij(λ) increases with λ, the less likely is that peak to be a valid signal.

Hence, the slope of  as a function of λ serves as a useful metric by complementing
signal intensity alone for assessing the veracity of the signal for matrix element (i,j).

Eq. (5) may be rewritten in terms of matrix elements (where Dk denotes the kth singular value
and Uik the ith component of the kth singular vector)

(7)

Thus the slope of the natural  is

(8)

Note that the plot of  is typically a straight line (Fig. 2) and thus the slope given by
Eq. (8) is constant over a broad range of λ values.

Materials and Methods
2D 1H-1H-TOCSY10 (90 ms mixing time using MLEV-17 24) and 13C-1H-HMBC spectra17

were recorded at 18.8 T and 298 K for a mixture of seven common metabolites at natural 13C
abundance (D-carnitine, D-glucose, L-glutamine, L-histidine, L-lysine, myo-inositol, and
shikimic acid) each at a concentration of 10 mM in D2O. The direct 1H dimension of each
spectrum was acquired with 2048 complex points and a spectral width of 8013 Hz. The
indirect 1H dimension of the TOCSY was acquired with 1024 complex points and the same
spectral with as the direct dimension. The indirect 13C dimensions of the HMBC spectrum was
acquired with 1024 complex points and a spectral width of 32206 Hz, respectively.

Additionally, 2D 1H-1H-TOCSY (50 ms mixing time using DIPSI-2 25) and 13C-1H HMBC
spectra were also recorded at 298 K using a sample of the MDM2-binding p53 peptide construct
with sequence ETFSDLWKLLPEN, described previously.26 The spectra were acquired with
the same spectral widths as above but with half the number of complex points along each
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dimension, except for the indirect dimension of the TOCSY having only 256 complex points,
and with a spectral width of 44643 Hz in the indirect (13C) dimension of the HMBC spectrum.

All spectra were recorded on a Bruker AVANCE 800 spectrometer equipped with a cryogenic
probe and processed in NMRPipe.27 For the HMBC spectra, a magnitude spectrum was
calculated after 2D FT.17 All other calculations were performed in Matlab.28

Results
To demonstrate the approach, a generalized indirect covariance (GIC) HMCB*TOCSY
spectrum for a 2-component mixture was calculated from a simulated 13C-1H HMBC spectrum
(Fig. 1A) and 1H-1H TOCSY spectrum (Fig. 1B) with sharp lines. The mixture consists of two
molecules represented by 2 different spin systems: the first has 3 linked 13C,1H pairs X-Y-Z
and the second has 2 pairs U-V. To simulate the effects of overlap, the protons of pairs Y and
U are assigned degenerate chemical shifts. Related models with different degenerate chemical
shifts were explored, but all gave results similar to those reported here. λ = 1 gives rise to a
false peak in the generalized indirect covariance spectrum between CX-HV as indicated in (Fig.
1C).

Figure 2A shows the suppression of the false positive CX-HV peak (red) achieved by varying
the exponent λ in Eq. (5). This log-linear plot demonstrates the higher slope (Eq. (8)) associated
with the false positive signal (red) relative to the true signals (black).

Figure 2B shows the analogous plot for a GIC HMBC*TOCSY spectrum derived from
experimental 13C-1H-HMBC and 1H-1H TOCSY spectra of a metabolite mixture sample. The
false positive signal, which incorrectly correlates a 13C resonance of myoinositol to a 1H
resonance of carnitine, exhibits a systematically stronger λ scaling compared to the true positive
signals. Its intensity in the λ = 1 covariance matrix lies between the intensities of two true
positive signals, a glucose cross-peak and a myoinositol cross-peak, but when λ = 0.5, its
intensity is only as high as the weaker of the two true signals and the slope of its intensity build
up as a function of λ is higher than the slope of the true signals. The higher slope and weaker
intensity at λ = 0.5 provide a signature that this peak is a false positive.

Fig. 3 demonstrates the preferential suppression of artifact signals via the matrix-square root
in two GIC HMBC*TOCSY covariance spectra calculated from two experimental pairs
of 13C-1H-HMBC and 1H-1H TOCSY spectra recorded of the metabolite mixture (Fig. 3A,B)
and the p53 peptide (Fig. 3C,D). Peak intensity better separates false peaks (red dots) from true
peaks (black dots) in the λ = 0.5 spectrum than in the λ = 1 spectrum (Fig. 3A,C and Table 1).
However, while intensity in the λ = 1 spectrum alone is a relatively poor indicator of peak
veracity, deviations from the trend visible amongst the true peaks in Fig. 3A,C are indicative
of peak authenticity: peaks lying on the upper left hand side of the distribution marked by the
ellipse, i.e. peaks for which the matrix-square root reduces peak intensity by a large amount,
are most likely to be false.

Plotting the slope (Eq. (8)) versus the intensity at λ = 0.5 also separates true from false peaks
(Fig. 3B,D). Peaks characterized by especially high slopes relative to their intensity (above and
to the left of the ellipse surrounding most peaks) are most likely to be false. In fact, plotting
the slope versus the intensity at λ = 0.5 identifies false peaks more effectively than does plotting
intensity at λ = 1 versus that at λ = 0.5.

The selection procedure can be formalized by applying principal component analysis (PCA)
in two dimensions,29 which in good approximation reproduces the ellipses drawn in Fig. 3.
The major axis of the ellipse is given by the first principal component and the minor axis by
the second principal component. PCA transforms intensity and slope into a new variable pair
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of independent statistics that is a linear combination of the original pair. The first principal
component adjusts peak intensity using slope information, while the second component
combines intensity and slope information into a measure of peak quality. Under the assumption
that the principal components are Gaussian distributed, the value for the second principal
component calculated for a given peak can be transformed into a p-value that quantifies the
probability that this peak is real rather than an artifact arising from spurious chemical shift
degeneracy.

The following procedure allows one to edit peaks picked from a GIC derived spectrum: i)
perform PCA as described above on (only) the peaks picked in the λ = 0.5 spectrum, ii) reject
peaks for which the p-value calculated (as in a one-tailed test) from the second principal
component is less than 5%. Application of this procedure cuts the false-positive rate (reported
for the λ = 0.5 spectra in Table 1) in half while only rejecting one (p53 peptide) and two
(metabolite mixture) true peaks. The peaks plotted in Fig. 3 include only those peaks reported
in Table 1 whose line shapes do not qualitatively change as a function of λ as illustrated in Fig.
4. This figure shows a region of the metabolite mixture GIC [HMBC*TOCSY]λ spectrum for
different λ values. The unsymmetric covariance spectrum (λ = 1) displays a noise ridge (cross-
hatched box) 16 due to the covariance of a signal arising from the carnitine methyl groups with
noise. This ridge is suppressed after application of the matrix roots using the GIC formalism.

The decrease in intensity with decreasing λ for the false positive is again much more
pronounced than for the other peaks: relative to the other peaks in panel A, peak (3) is quite
strong whereas it is weak relative to the other peaks in panel C and negative in panel D. The
slope given by Eq. (8) at λ = 0.5 for this peak is 52 while a slope of 45 is typical for this data
set. This peak appears in the upper left of Fig. 3B (encircled in red) outside of the ellipse
surrounding true peaks. Due to its high slope and low intensity at λ = 0.5, this peak can be
easily identified and eliminated improving the analysis of the GIC HMBC*TOCSY spectrum.

Application of λ ≤ 0.5 also recovers the splitting present in the direct dimensions of the HMBC
and TOCSY spectra of this mixture, which is lost by covariation of the direct dimension in the
unsymmetric covariance process. However, the onset of distortions in line-shape (e.g. peak 2
in Fig. 3D) and signal reduction generally preclude the use of very low λ values (λ ≤ 0.25).

Fig. 5 shows a region of the GIC HMBC*TOCSY spectrum of the p53-peptide. Again, the
matrix-square root suppresses a false positive peak and a ridge, demonstrating the applicability
of generalized covariance to larger systems, such as peptides. Unlike an experimentally
recorded HSQC-TOCSY, the GIC HMBC*TOCSY exhibits correlations connecting
quaternary and other non-protonated carbons, such as carbonyl and carboxyl carbons as
illustrated in Fig. 6. Thus, GIC provides a powerful representation of spectral information for
the resonance assignment of small and large molecules, including peptides.

Discussion and Conclusions
Many informative spin correlations are not directly accessible by experiment by
multidimensional NMR due to measurement and sensitivity considerations. For instance,
correlations between insensitive nuclei can often be observed only indirectly, i.e. via
correlations between those nuclei via protons. Other spectra, such as heteronuclear NOESY
and TOCSY, which contain useful information for resonance assignment and structure
determination of complex molecules, are often not collected due to limited sensitivity and
spectrometer time constraints. However, unsymmetric covariance NMR can reconstruct
heteronuclear TOCSY and NOESY spectra from homonuclear NOESY and TOCSY spectra
and common heteronuclear 13C-1H HSQC or HMBC spectra.7
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Similarly, the high-dimensional correlation information required to make chemical shift
assignments in polypeptides can often only be practically measured by a series of lower
dimensional spectra. A typical manual analysis of NMR spectra establishes higher order
correlations via a comparison of strip plots. Visual assessment of a non-vanishing correlation
of peaks between slices (strip plots) in two NMR spectra links the spin-systems associated with
the strip plots being compared. Automated analysis methods, particularly those for protein
backbone assignment,30-37 often work with peak lists rather than with the underlying spectra.
However, such methods generally require high quality peak lists that are manually curated.
Recently developed methods such as hyperdimensional NMR,11,12 COBRA13 and Burrow-
Owl15 use unsymmetric covariance5,7 to automate the traditional manual approach of
establishing spin correlations via comparison of strip plots, prior to peak picking. However,
the application of such methods can confound downstream analysis due to the presence of
spurious correlations between strip plots caused by (near-)degenerate chemical shifts and
therefore may benefit from the generalized indirect covariance approach presented here. GIC
establishes correlations between spectra rather than peak lists and thereby ‘delays’ the
otherwise iterative and sometimes difficult process of peak picking until true peaks become
self-evident.

The GIC formalism generalizes the use of the matrix-square root for the suppression of relay
effects and pseudo-relay effects, originally demonstrated for symmetric covariance NMR
spectra,18,19 to unsymmetric covariance spectra.6 Previous work in covariance reconstruction
of unsymmetric spectra compared unsymmetric and indirect covariance results in order to
identify artifacts in each.20 The generalized covariance matrix (Eq. (3)) presented here
computes both unsymmetric and symmetric covariance spectra in the same step. Furthermore,
the GIC formalism allows for the extraction of multiple roots in a single covariance calculation.
For the examples used here, extraction of the square root via the generalized covariance matrix
reduces the false positive count of a HMBC*TOCSY spectrum by about a factor of three.
Removal of peaks characterized by weak intensity following extraction of the square root
concomitant with a rapid intensity build up with λ further reduces the false positive rate.

The generalized covariance formalism addresses the issue of false positives in unsymmetric
covariance spectra caused by resonance overlap and extends the applicability of unsymmetric
covariance NMR to systems with an increased number of signals of greater resonance
degeneracy, including complex mixtures, for example of metabolites, and biological
macromolecules, such as peptides and proteins. By providing a mechanism to identify false
positive correlations, generalized indirect covariance lays a linear-algebraic foundation for the
accurate and sensitive identification of spin correlations that are distributed over multiple 2D
NMR spectra. The establishment of spin correlations that are not easily experimentally
observable via an automated method analogous to the comparison of strip plots, mark a path
toward the development of computer-based assignment procedures that are as robust as are the
most expert manual analyses of NMR data.
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Figure 1.
Schematic HMBC (A), TOCSY (B), [HMBC*TOCSY]1 (C) and [HMBC*TOCSY]0.5 (D)
spectra for a model mixture containing one spin-system with 3 connected 13C-1H pairs X-Y-
Z and one spin-system consisting of 2 13C-1H pairs U-V where the carbon/carbon connectivities
are between X-Y, Y-Z, and U-V. Note the degeneracy in chemical shift for the protons
of 13C-1H pairs Y and U, which leads to false positive (red) signals in the
[HMBC*TOCSY]λ=1 spectrum. Application of the matrix-square root in the GIC formalism
eliminates most false positives. The two most intense false positives (dark red) are not
completely suppressed with decreasing λ. They can be identified as false positives because of
their large slope as a function of λ. The peaks circled in gray are those whose traces are displayed
in Fig. 2.
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Figure 2.
Increase of covariance peak intensity with respect to the exponent (λ) used in transforming the
generalized covariance matrix. (A) Log-linear plot tracking the intensity build-up with
increasing λ for three example traces from the simulated spectra of Figure 1. (B) Analogous
plot for an experimental generalized indirect covariance (GIC) HMBC*TOCSY spectrum of
a metabolite mixture. In panel B, the black curves belong to myo-inositol (stronger peak) and
glucose (weaker peak). In all panels, black traces with filled circles correspond to expected
signals while red traces with open circles correspond to false positive signals. Note the
characteristically higher slopes of the false positive traces.
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Figure 3.
Suppression and identification of false positive signals via matrix-square root and λ scaling.
(A,C) Comparison of intensity with λ = 1 and λ = 0.5 of (unsplit) peaks in covariance
[HMBC*TOCSY]λ spectra of (A) a metabolite mixture and (C) the p53-peptide. (B,D)
Comparison of slope vs. intensity at λ = 0.5. Panels B and D show data corresponding to the
pairs shown in panels A and C, respectively. Black dots represent data derived from true peaks
while red dots belong to false peaks. Line (i) demarcates the minimum intensity for which
peaks are picked in the λ = 0.5 spectrum, while line (ii) demarcates the minimum intensity for
which peaks are picked in the λ = 1 spectrum. The green ellipses surround the bulk of data to
guide the eye. The red circles enclose (A,B) the false positive peak shown in Figs. 2,4 and
(C,D) the false positive peak shown in Fig. 5.
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Figure 4.
Spectral region of [HMBC*TOCSY]λ spectrum of a metabolite mixture with (A) λ = 1, (B) λ
= 0.75, (C) λ = 0.5, (D) λ = 0.25. Black contours indicate positive signals, and red contours,
negative signals. The cross-hatched region indicates a noise ridge, which is suppressed by the
matrix power of λ ≤ 0.5. Decreasing the value of λ also effectively suppresses peak (3), an
artifact due to chemical shift near-degeneracy (pseudo-relay) between myo-inositol and
carnitine 1H resonances. Peaks (1) and (2) arise from myo-inositol, while Peaks (4) and (5)
arise from the geminal protons attached to C6 in the cyclohexene ring of shikimic acid. Their
distorted line-shapes, particularly pronounced with λ = 0.25 (C,D) reflect J-splittings in the
underlying HMBC and TOCSY spectra, corresponding to those observed in the 1D 1H
spectrum of shikimic acid available via the BMRB.38
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Figure 5.
Selected region of the generalized indirect covariance [HMBC*TOCSY]λ spectrum of the p53
peptide calculated using (A) λ = 1 and (B) λ = 0.5. Black contours indicate positive signals,
and red contours indicate negative signals. Peaks (1), (2) and (3) are Phe 3 (CB-HA), Lys 8
(CE-HA) and Leu 10 (CB-HA), respectively. Peak (4) is a pseudo-relay artifact caused by
accidental near-degeneracy that is suppressed by the matrix-square root, which also eliminates
the horizontal ridge in panel A.
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Figure 6.
Novel long-range carbonyl-proton and carboxyl-proton correlations of p53 peptide derived
from GIC [HMBC*TOCSY]1/2. Cross-peaks initially present in the 13C-1H-HMBC spectrum
are depicted by black contours. Peaks arising from covariance of the HMBC with the 1H-1H
TOCSY spectrum are colored in red. The assignments of the peaks are as follows: (1) Glu 12
(C’-HB2), (2) Glu 12 (C’-HB3), (3) Glu 1 (C’-HB2), (4) Glu 1 (C’-HB3), (5) Leu 9 (C’-HB2),
(6) Pro 11 (C’-HG3), (7) Pro 11 (C’-HB3), (8) Lys 8 (C’-HB2), (9) Lys 8 (C’-HG2), (10) Leu
10 (C’-HG), (11) Leu 6 (C’-HG), (12) Glu 12 (CD-HB2), (13) Glu 12 (CD-HB3), (14) Glu 1
(CD-HB2) and (15) Glu 1 (CD-HB3). While 13C-1H HSQC and HSQC-TOCSY spectra lack
carbonyl/carboxyl-proton cross-peaks, the 13C-1H HMBC spectrum correlates carbonyl and
side-chain carboxyl carbons (such as the δ-carbons of glutamic acid) with protons via 2 and 3
bond correlations. The inclusion of TOCSY information via GIC processing results in longer-
range correlations such as those shown here in red.
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Table 1

Reduction in False Positive Rate via Square-Root Extraction

Metabolite mixture p53 (MDM2 binding peptide)a
λ = 1 λ = 0.5 λ = 1 λ = 0.5

True Peaks 107 103 103 101
False Peaks 6 2 15 4
False Positive Rate (%) 5 2 13 4

a
aliphatic/aliphatic 13C-1H peaks

J Phys Chem A. Author manuscript; available in PMC 2010 November 19.


