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Abstract

The wealth of genomic technologies has enabled biologists to rapidly ascribe phenotypic characters
to biological substrates. Central to effective biological investigation is the operational definition of
the process under investigation. We propose an elucidation of categories of biological characters,
including disease relevant traits, based on natural endogenous processes and experimentally observed
biological networks, pathways and systems rather than on externally manifested constructs and
current semantics such as disease names and processes. The Ontological Discovery Environment
(ODE) is an Internet accessible resource for the storage, sharing, retrieval and analysis of phenotype-
centered genomic data sets across species and experimental model systems. Any type of data set
representing gene-phenotype relationships, such quantitative trait loci (QTL) positional candidates,
literature reviews, microarray experiments, ontological or even meta-data, may serve as inputs. To
demonstrate a use case leveraging the homology capabilities of ODE and its ability to synthesize
diverse data sets, we conducted an analysis of genomic studies related to alcoholism. The core of
ODE’s gene-set similarity, distance and hierarchical analysis is the creation of a bipartite network
of gene-phenotype relations, a unique discrete graph approach to analysis that enables set-set
matching of non-referential data. Gene sets are annotated with several levels of metadata, including
community ontologies, while gene set translations compare models across species. Computationally
derived gene sets are integrated into hierarchical trees based on gene-derived phenotype
interdependencies. Automated set identifications are augmented by statistical tools which enable
users to interpret the confidence of modeled results. This approach allows data integration and
hypothesis discovery across multiple experimental contexts, regardless of the face similarity and
semantic annotation of the experimental systems or species domain.
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Introduction

High-thoughput molecular biology provides a means to rapidly associate underlying molecular
pathways and other substrates to biological structures and functions. These associations are
used to characterize phenotypes and in a limited way, to define the relations among them. There
are numerous methodologies for empirical creation and analysis of gene-sets from this type of
data. In contrast, defining biologically meaningful categories of phenotypes, particularly those
which share a common mechanism is problematic due to the often subjective and
phenomenological description of such categories.

Working from the top down, ontology development efforts develop and impose a knowledge
structure on biology. Phenotype ontologies such as the Mammalian Phenome Ontology (MPO)
[1] and the Phenotype And Trait Ontology (PATO) [2] are projects designed to organize higher
order phenotypes based on construct knowledge. Both make use of formalized processes for
describing relations pioneered by the Gene Ontology Consortium [3]. These and other existing
ontology development strategies often do not allow for the description of explicit structure and
relationship among defined phenotypes. In the case of behavior, for example, there is limited
shorthand to describe the essential categories of complex characteristics mediated by shared
biological pathways. This is in contrast to biochemical pathways which are often more-well
worked, though even the humble biochemical pathway becomes exquisitely complex as
pathway members expand beyond reaction enzymes to the tremendous array of associated gene
products involved in transport, anchoring, aggregation, synthesis and other processing of
enzymes and substrates. Furthermore, it is challenging to compactly define and unify sets of
processes that have different external manifestations of common internal processes. It then
becomes vital to implement an approach that discovers the natural organizations of related
behavioral processes as a reflection of underlying empirically-derived gene sets using dynamic
points of intersection. Lastly, existing paradigms rely on prior knowledge or relevant gene
groupings to describe new relationships successfully. For many new or largely uncharacterized
genomic features, this is a significant problem. By constructing hierarchical ontologies from
known gene-phenotype relationships, ODE breaks from existing constructs by separating the
naturally occurring gene-network from the a priori concept structure of the ontology.

The automated and semi-automated creation and analysis of gene sets is a well-developed area
enabling rapid development and interpretation of empirical data. This data is often synthesized
and grouped through category matching approaches, wherein new empirical data is intersected
with known, curated functional annotations for groups of genes. The most widely supported
effort of this sort is the Gene Ontology [3] annotation effort which uses carefully curated
experimental data from functional studies of each gene-phenotype association. Other pathway
databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [4], GenMAPP
[5], and the Biocarta collection contain gene set annotations largely based on known systems
and pathways. Highly curated data banks and tools for pathway reconstruction, such as
Ingenuity’s Pathway Analysis package (Ingenuity Systems, Mountain View, CA), can be used
to construct and annotate gene networks. Indeed, numerous tools have been described for the
analysis of various category representations [6-9]. While these tools are often an invaluable
aid for distilling and interpreting gene lists and pathways resulting from differential expression
analysis, they suffer from a few limitations. Most notably, these include the need for cross-
species data integration, and the need to understand, identify and analyze a highly granular and
uncharacterized set of related biological processes underlying the broad disease constructs that
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are assessed through various experimental methods. Analysis of cross-species convergence of
gene-phenotype associations, termed ‘convergent functional genomics,” has been profitably
employed in an analysis of bipolar disorder across species in several experimental contexts
[10].

From a genome perspective, there have been many attempts to produce convergent analysis of
phenome expression on genome scales, covering a variety of species including mouse, rat,
human, and yeast [11-16]. Although each such example provides forward thinking approaches
to cross-experimental data integration, the methodology of these existing efforts focuses on
the creation of comprehensive ontologies of narrow domains, or on the mapping of high-
throughput data to existing ontologies. These approaches often preclude the set-set comparison
on non-referential data across diverse experimental domains or between species. Current
mapping efforts to facilitate large scale phenotype interoperability are encouraging [17-19],
but suffer from the challenges inherent to the lofty goals of structuring and describing
compactly knowledge of all of biological function.

We present The Ontological Discovery Environment (ODE) as a Web-based software
environment that extracts existing phenomenologically-driven complex trait genomic analysis,
and integrates it with a simultaneous analysis of instances (gene-trait associations) and
ontologies (classes of genes and traits). In this way, ODE provides and analyzes articulations
between gene space and phenome space [20]. ODE addresses the challenge of phenome
mapping by accumulating gene-phenotype knowledge through data integration and hypothesis
driven discovery across multiple labs and multiple experimental contexts. Emergent discovery
in this software environment relies on user-submitted and publicly available gene sets
associated with various species and phenotypes, and integrates them using categorical
metadata, such as homology. In this way, ODE seeks to define the ontology of complex
biological processes, such as behavior, based on intrinsic biological entities, rather than
external phenotypic manifestations, which are often subject to historical and cultural biases.
The collection of unique ODE tools builds a shared biological architecture of apparently
distinct processes, enabling recognition of biological function in health and disease.

ODE’s novel approach to gene set analysis also incorporates computation-critical aspects of
genome-scale discovery. This is a particularly pressing issue because classification and
assessment of the phenome space is theoretically unbounded. Recent Bayesian network
approaches have made significant contributions to our understanding of cross-domain
synthesis but do not offer robust information about local relationships [19] needed for granular
analysis. Since set relationships are discrete structures that can naturally be described as finite
simple graphs, graph algorithms can be harnessed to interpret and analyze the enormous
correlation matrices that arise in the study of transcriptomic and other sorts of -omic data.
Bipartite graph representations of gene-phenotype associations are a discrete combinatorial
approach that shows promise in preserving information while escaping constrained semantics
as demonstrated by clustering of disease phenotype and genes in a fixed data set [21]. In
particular, by representing each gene list as a phenotype vertex connected to vertices
representing each gene on the list in a bi-partite graph, ODE provides data integration while
maintaining substructure relationships of nested gene-set clusters. The creation of emergent
phenome ontologies as presented here addresses these computational demands in large part by
exploiting novel mathematical tools, such as fixed-parameter tractability [22], and by
employing innovative implementations of combinatorial algorithms we have synthesized for
supercomputers at our disposal [23]. Consequently, by leveraging high performance
computing, ODE is uniquely positioned to provide phenome models in genome-scale space.

Gene sets, the primary input to the analyses, may be empirically defined or dynamically created
within ODE’s repository of gene relationships. Multiple tools are available to perform

Genomics. Author manuscript; available in PMC 2010 December 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Baker et al.

Page 4

integrative, gene-centered analysis, and provide confidence metrics for model structure and
data aggregation. ODE’s tools include gene set clustering, pairwise Jaccard Similarity and
Distance Analysis, Hypergeometric tests, and a highly efficient biclique method for
constructing a map of the gene-centered, empirical phenome. Visualization of the resultant
phenotypes can then be seen in real time and used for iterative testing and gene set creation.
By integrating this approach into a web-based software system, we facilitate the analysis and
interpretation of sets of genomic results, enabling comparison, intersection and integration of
convergent data from several species and many experiment types, including mutant analyses,
genome wide association studies, microarray experiments and virtually any other genomic data

type.

Results and Discussion

The ODE environment uses bipartite graphs to dynamically create phenotype relationship
diagrams to enable users to produce new knowledge about phenotype similarity and the
underlying gene interconnectivity. Indeed, any type of data set representing gene-phenotype
relationships, such quantitative trait loci (QTL), literature reviews, microarray experiments
and ontological annotations, may be used as the foundation to create self-describing phenotype
hierarchical graphs. To demonstrate a use case leveraging the homology underpinnings of ODE
and its ability to synthesize information from various data sets, we conducted an analysis of
alcoholism related behaviors in several model systems.

The initial data set includes genes from mouse strains selected for their functional abilities after
acute ethanol exposure, called high and low acute functional tolerance or HATF2 and LAFT2,
respectively [24]. A second set of genes that are differentially expressed in response to acute
ethanol in two mouse strains, C57BL/6 and DBA/2 [25] is added. Cross-homology
functionality is demonstrated by the inclusion of a differential gene expression analysis in rats
after traumatic induced brain injury [26]. Finally, to bring in genes associated with differing
states of complex behavior, a set of bipolar disorder candidate genes derived from a mouse
differential expression study are included [10]. Each of these data sets are publicly available
and pre-loaded into ODE as part of a large library of experimental data currently included as
part of the environment, which currently includes data from Mus Musculus, Homo Sapiens,
Drosophila Melanogaster, Rattus Norvegicus and Danio Rerio. This library also includes data
from the Kyoto Encyclopedia of Gene and Genomes (KEGG), Gene Ontology (GO), and
phenotypic alleles table of the Mouse Genome Informatics database, which consists of all of
the Mammalian Phenotype Ontology terms and the mutant alleles to which these terms are
associated, and results from many published genetic and genomic studies entered by users of
our Web-based software system.

The ODE function, Jaccard Similarity (Figure 1), is one of several ODE tools for pairwise
comparison of diverse gene sets. This analysis uses Jaccard’s positive match correlations to
identify statistically similar gene sets. A complete pairwise Venn diagram display reveal 11
genes at the intersection of bipolar disorder [26] and traumatic brain injury [25], 13 genes at
the intersection of bipolar disorder and acute ethanol response, and 14 genes at the intersection
of bipolar disorder and acute functional tolerance to alcohol. All other pairwise intersections
are populated.

To integrate these data sets, an analysis of higher order intersections was performed using the
PhISH tool, which enumerates and illustrates all intersections. Results of the PhISH analysis
of these data sets (Figure 2) highlight gene-phenotype relationships based on empirically
derived heterogeneous data sets. The hierarchical distribution of intersections demonstrate a
separation of genes into distinct categories that reflect underlying phenotypic states; genes
involved in neural function, oxidative stress, depression, or mania emerge as a part of the
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empirically created ontology. In the root node a genetic singularity converges on mobp, a gene
with demonstrated increased levels in schizophrenia patients with a history of substance abuse
[27].

Significance of the tree is ascertained by examining phenotype parsimony and node overlap
parameters. After permutation testing the parsimony value, which is reflected in the shape of
the tree, is found to be normal and non-significant due to the presence of all combinations of
phenotypes (p=1.0, n=50,000). The second measurement determines if there is more gene
overlap in node intersections than expected by random chance. This is significant since, given
multiple permutation tests, there are more observed overlaps than expected (p=5.99988 -
1072, n=50,000).

Interactive visualization of the gene-phenotype association bi-partite graph (Figure 3) reveals
highly connected (high-degree) gene nodes, and the pattern of gene-phenotype aggregation. A
degree threshold can be set to filter out low-degree nodes, i.e. those genes which are connected
to only a small number of phenotypes. Selection of a gene node can be used to perform a search
for additional connected phenotypes.

ODE creates an environment in which data from existing, phenomenologically-driven genomic
analysis can be integrated for a simultaneous and seamless analysis of instances (genes — traits
associations) and ontologies (classes of genes and traits). Using ODE, a natural organization
of complex traits such as basal and alcohol related behavioral processes may be elucidated,
thereby reflecting common biological substrates for the relevant behaviors. By integrating
genome-wide empirical associations, new information may be added to known pathways and
novel relations may be revealed. The goal is not biochemical reaction or interaction analysis,
but rather, to ask fundamental questions about the relations among behavioral processes such
as stress response and alcohol consumption, or learning and addiction. Thus, the arbitrary and
incomplete nature of experimental pathway data is not an impediment. By making use of a
“gene and gene product parts list” that is empirically associated with a phenotype, common
components can be identified and used to identify relations among any process. The relations
of common components form a rational ontology, and can be identified through strictly
empirical approaches. This enables well-studied biological and behavioral constructs to be
mapped to actual biological processes, pathways and systems.

The ODE has numerous applications. The tool can be used for convergent validation of
experimental results, validation of biological assays as metrics of related phenotypes,
translational analysis for validation of animal models and treatments designed to mimic human
disease and identification of candidate genes from among a list of positional candidates found
in quantitative trait locus analysis and linkage analysis. Links to other resources from inside
the tool facilitate annotation and aggregation of additional information around discovered
networks. This interactive environment with features for storage and sharing of interim results
can support integration of diverse data across interdisciplinary collaborative efforts. Indeed,
ODE-associated tools may be extended to include alternative methods to test associations
between disparate sources using a variety of statistical tests, such as edge permutation and node
label permutation tests [28].

A property of phenome ontology we find exciting is its ability to create ontologies that can be
mapped, linked and aligned. Previous attempts at ontological alignment have focused on
semantic equalities [29]. These approaches, however, are subject to lexical and data prejudice.
Using inter-species homology translations, along with a consequent mapping of a variety of
annotations, will enable empirically based ontology alignments and, perhaps, a convergence
of the vast numbers of community ontologies being created. Through the process of ontological
discovery from empirical observation, we believe that a fundamental reclassification of disease
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based on biological substrate, rather than external manifestation will one day be possible. This
will enable biologists and clinicians to define the effects of genetic diversity, environmental
perturbation and points of therapeutic intervention in terms of the functional processes
underlying diverse mechanisms of disease rather than in terms of the often convergent outputs
of these diverse perturbations.

Methods and Materials

Data Structure and Interoperability

ODE’s organizing metaphor is the gene and the subsequent superset of gene-sets and sets of
gene-sets. Consequently, ODE accepts gene sets generated through any methodology dedicated
to gene-network creation. For example, gene sets may defined from public microarray data
including the Genome Institute of Novartis tissue specific gene expression data [30], MGI
tables of phenotypic alleles, Gene Network’s genetic correlation to gene expression [31],
literature associations obtain via text mining using bibliographic similarity based approaches
[32] or Latent-Semantic Indexing [33], and even hand curated NCBI’s Gene Reference Into
Function. A higher order and somewhat less empirical class of gene lists comes from numerous
literature reviews and hypothesis-based studies in which researchers have compiled gene lists
involved in various behavioral constructs including pain [34], aggression [35], alcohol specific
[25], and drug abuse [36], among others. In addition, GAGGLE integration through FireGoose
[37] enables bi-directional ODE interface with MeV, R, Cytoscape or other sites such as
DAVID [38], STRING [39], or KEGG [4]. Novel gene sets are also dynamically generated as
a function of the analysis tools, iteratively optimized by users, and edited to create new sets of
genes.

The software environment attempts to alleviate data incompatibility through the collection of
metadata and pooling community gene annotation information. Metadata is collected during
gene upload, using a web-based form designed to maximize free-form, ontological, and
publication-centric information. For example, a PubMed ID (PMID) is sufficient to extract
published information associated with the data set of interest and asynchronous tree menus
allow users to assign multiple observations from community ontologies [3,40] that may be
used to describe their data. The use of existing OBOs means that metadata is extensible to any
number of emerging ontologies and allows gene sets to be searched via a variety of biologically-
relevant relationships. Plasticity in ontology metadata also allows the ontological alignment
between different organisms, community ontology efforts, and experimental data sets.

Gene identifiers used in upload can come from a variety of databases, which are filtered based
on the species and identifier type provided by the user during upload. The ODE upload process
maps uploaded genes to the species’ reference database identifier (i.e. HGNC, MGI, RGD,
etc.). If there is no reference identifier, the next most unique identifier is used (typically Entrez
or Ensembl identifiers). This process ensures that ambiguous gene symbols from different
species are kept distinct in the database. During analysis, gene name collisions across species
are avoided by feeding uniqgue ODE GENE IDs to the analysis tools. Homology relations are
established using Homologene tables, though other mappings can be easily incorporated into
the software. Once complete, the results are post-processed for on-screen display to add gene
names.

To insulate against rapid changes in the underlying technology, the ODE web interface is built
on standardized and open source middleware and server-side development tools. Database
interaction and HTML production is handled by PHP 5 and CSS. Dynamic client-side objects
are achieved through javascript and asynchronous client-server interactions (AJAX), where
appropriate, and web security is offered through https protocols. Pages are served using Apache
Server 2.0 [41], while dynamic database accessibility is provided by PostgreSQL v 8.0, an
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object-relational active database that provides lightweight, but robust, data consistency. Data
interoperability with the ODE environment is further enhanced through the use of XML. The
modular implementation of ODE’s web interface allows dynamic access to multiple tools in
isolation of the set-enabled data structures paradigm. Documentation and tutorials are available
on the site in the form of a quick-start guide, interactive help, and a narrated movie
demonstration.

Analysis Tools

Phenome Interdependency and Similarity Hierarchy—The ultimate goal of ODE is
to construct empirically-derived phenome ontologies based on user-submitted and
dynamically-generated sets of genes, displayed by the ODE as a Phenome Interdependency
and Similarity Hierarchy (PhISH). Creating a PhI1SH graph is computationally challenging but
solvable due to recent advances in algorithms for bipartite graph analysis [42]. Briefly,
phenotype supersets are defined by common connections to a gene or genes (Figure 4). These
sets reside in the root node of an is-a hierarchy for the classification of phenotypes. Subsets
are defined by connections to additional genes. These child nodes are associated with the same
biological networks as the parent node, but are also connected to additional genes. Node
splitting rules based on similarity, and stopping rules based on node size, are applied to limit
the growth and density of the tree. To enhance the multi-domain integration of divergent data
types, this approach using bipartite graphs employs discrete associations, of which types and
thresholds may be defined by the user.

Information Condensation—The automated and semi-automated creation of models
requires algorithms that ensure users the ability to rapidly gauge the context and confidence
of results. We recognize that the literature describing statistical significance of network
relationships within fixed data sets remains unresolved, and attempt to provide qualifying, if
not deterministic, measurements of dynamic result sets. This is achieved by measuring
characteristics representative of information aggregation occurring at the level of genes and
phenotypes and applying permutation tests or other metrics to determine the chance occurrence
of similar results. For example, the goal of phenome information aggregation in a bipartite
graph or biclique is to minimize the number of intersections present, meaning that a large
number of phenotypes were reduced to a limited set of categories based on shared biological
substrates. In practical terms this is viewed as the parsimony of the phenome map, represented
by (Eg. 1.1) and (Eq. 1.2) where Phenotypes is number of genes in an input set.

n
. Phenotypes
bicl lquespossiblezz ( k )

=1 Eq. 1.1

- L b ic’liquesobxerwd
parsimony=-——————
bicliques possible Eq. 1.2

Here, larger values reflect the greater aggregation or condensation of phenotypes. From this
perspective, a single root containing all phenotypes is an optimal result with maximal
aggregation. According to (Eq. 1.2) it is apparent that even the addition of a single disjoint
phenotype substantially reduces parsimony. Figure 5 demonstrates how parsimony is a
generalization of the PhISH diagram shape, where irregular graph distributions have lower
phenotype aggregation values and may be assigned probability values based on permutation
tests.

Genomics. Author manuscript; available in PMC 2010 December 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Baker et al.

Page 8

PhISH Permutation Tests—Permutation tests were performed to place gene aggregation
and phenotype aggregation into statistical context and to determine how the topology of the
PhISH diagram deviates from random [43]. Here, genes and phenotypes are shuffled within
the information set, keeping the same overall density of gene-phenotype connections.
Simulations against randomized data sets have a two-fold benefit. First, it enables assessment
of the impact of false positive and false negative information on the resulting graph. The
addition of false positive gene-phenotype associations adds links and nodes, connecting non-
overlapping pairs of phenotypes, condensing two 2-phenotype nodes into a single 3-phenotype
node, for example. In general this produces a taller tree that approaches the maximal phenotype
aggregation value of a regular tree where all combinations of phenotypes are represented.
Adding false negatives breaks links and removes nodes, deconstructing a tree into the minimal
aggregation of all input phenotypes represented by a completely disjoint tree. These effects of
permutation testing are described for a synthetic data set in Figure 6. Secondly, permuting a
known data set n number of times produces a distribution of phenotype aggregation values
allowing the probability measurement of the observed values.

Another property of interest is overlap, or the density of gene-phenotype associations. This is
calculated per node and aggregated across the entire tree. Based on the density of intersections
of any sets of genes, we compute the exact probability of obtaining a result of higher or lower
overlap. The scores of individual bicliques (Eq. 2.1) are combined across all sets in the entire
tree (Eq. 2.1), where GenesSghiigren IS the number of genes in the union of all children of a
biclique node. Either result is desirable depending on the user’s goal of identifying common
or unique substrates.

phenotypes

1.0
SCOrepiclique=
( 8€Nes children )
8eNepiclique Eq. 2.1
bicliques yyervea
overlap= SCOrepiclique
biclique=1 Eq. 2.2

Set Analysis Tools—ODE’s analysis tools build on maturing approaches to set analysis,
specifically, on a variant of the binomial or hypergeometric test to determine whether members
of each category are over-represented among a list of genes. ODE adds the Jaccard positive-
match coefficient as a metric of set similarity, because this measure is not upwardly biased by
a high rate of true negative results found in comparison of sparse sets. GoTree Machine was
among the first to use a reference set [9] to estimate whether category members were over-
represented among a list of genes relative to possible representation from the set of genes
considered. Newer tools, such as ErmineJ, take advantage of the entire vector of gene
expression values rather than forcing the gene set to have a categorical representation [7]. Both
standalone and web-based tools exist, but most of them simply allow an identification of
relations to a single user entered gene set, or a limited group of gene sets, with a very limited
set of functions facilitating union and intersection analysis. For example, existing tools allow
one to ask questions such as, “Does this set of genes differentially expressed in response to
stressors correspond to any known pathways or categories?” In contrast, ODE tool variants
expand upon this approach to include matching sets of sets to other sets of sets, for example,
by asking “Do stress related gene sets have any common relationships with alcohol
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consumption related gene sets?” Using hypergeometric, Jaccard similarity and distance, and
fisher tests produces a high-level view of the landscape of gene relationships represented in
the test set and, while not required to construct Ph1SH graphs, these gene set similarity matrices
provide inputs to clustering methods and act as filters for empirical ontology classifications.
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Figure 1. Jaccard Similarity

When combined with PhISH, this technique demonstrates the significant overlap of gene sets
between comparison groups. This provides a rapid means to identify and organize sets of
interest. The Jaccard results may be used to identify common genes of interest (inset) that, in
turn, may be linked to external resources, such as STRING.
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Figure 2. PhISH representation of gene-phenotype interactions
Genes sets representing a variety of phenotype states, including ethanol exposure in the mouse,
GS1139 [25] and GS1778 [24], mouse bipolar candidate genes, GS1250 [10], and differential
gene expression in the rat following traumatic brain injury, GS3649 [26], were analyzed using
bipartite association matrices, and organized in a PhISH diagram. The resulting intersections
demonstrate a separation of genes into distinct categories that reflect initial phenotype sets.
Genes involved in (A) neural function, (B) oxidative stress, (C) depression-related, and (D)
mania-related emerge as a part of the empirically created ontology. In the root node, genes
converge on the gene mobp, a gene with demonstrated increased levels in schizophrenic
patients with a history of substance abuse [27]. Significance of the network is ascertained
through a permutation test of two parameters. The phenotype parsimony is normal and non-

significant due to the presence of all combinations of phenotypes (p=1.0, n=50,000). The

second measurement determines if there is more gene overlap in node intersections than
expected by random chance. This is significant since, given a few thousand genes, there are
more overlaps than predicted during permutation analysis (p=5.99988 - 10>, n=50,000).
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Figure 3. Overlap Visualization
Genes are laid out from left to right in increasing overlap with data sets. Each gene is
hyperlinked to search for related data sets.
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Figure 4. Creation of Phenome Interdependency and Similarity Hierarchy (PhISH)

Phenotype supersets are defined by common connections to a gene or genes. These sets reside
in the root node of an is-a hierarchy for the classification of phenotypes. Subsets are defined
by connections to additional genes. These child nodes are associated with the same biological
networks as the parent node, but are also connected to additional genes. Node splitting rules
based on similarity, and stopping rules based on node size, are applied to limit the growth and
density of the tree. (A) Gene-phenotype bipartite graph and three maximal bicliques, (B)
Representation of the Phenome Map as a DAG of all maximal bicliques, (C) Decomposition
of the DAG into trees for each root (node of indegree 0).
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Figure 5. Phenotype Condensation

A single root containing all phenotypes is an optimal result of PhISH analysis with maximal
aggregation, but may produce a tree with a non-random distribution of nodes. This schematic
depicts how phenotype aggregation is a generalization of the PhISH diagram shape. (A) When
all phenotypes are represented, the tree is not-significantly more aggregated than chance trees
when compared to a randomized background with the same edge density in a permutation test
(p=0.99994, n=50,000). (B) Irregular graph distributions have lower phenotype aggregation
values and may be more unusual after permutation testing (p = 0, n = 50,000)
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Figure 6. Implications of false positive and false negative information

These images show a synthetic dataset with high overlap between 10 sets taken from a possible
1000 genes. (A) shows the original PhISH diagram. After simulating 50% false negatives in a
graph of the same size and density, the resulting PhISH diagram (B) has multiple root nodes
(split from the original root) and overall smaller phenotype overlap due to the lack of gene
aggregation. (C) shows the diagram after simulating 50% false positives in a graph of the same
size and density, which results in a much wider diagram with many nodes due to the large
number of combinations of gene aggregation possible from such a high overlap.

Genomics. Author manuscript; available in PMC 2010 December 1.




