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Abstract
Background—Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine
known to induce adipocyte dedifferentiation and insulin resistance. Inflammation, insulin resistance,
and obesity have been implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).

Methods—Fasting plasma from 43 baboons were assayed for MCP-1, insulin, glucose, alanine
aminotransferase (ALT), and aspartate aminotransferase (AST). Adipocyte number and volume were
measured via biopsies of omental adipose tissue. The homeostatic model assessment method
(HOMA) was used to estimate systemic insulin resistance.

Results—Sex and age adjusted correlations were significant for MCP-1 with adipocyte number (r
= −0.42; P = 0.01), adipocyte volume (r = 0.38; P = 0.02), HOMA (r = 0.45; P = 0.004), ALT (r =
0.46; P = 0.03) and AST (r = 0.45; P = 0.03).

Conclusions—These results suggest that MCP-1 is related with adipocyte dedifferentiation and
systemic insulin resistance, thereby potentially contributing to the development of NAFLD.
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Introduction
In obesity adipocytes expand in size because of the deposition of triglyceride [14]. However,
this expansion may be limited. Chen et al. hypothesized that excessive hypertrophy of the fat
cells might create a hypoxic environment within the adipose tissue [6]. Consequently, this
reduced availability of oxygen could lead to adipocyte death [31], which may then trigger
macrophage infiltration to clear the cellular debris [8]. It is believed that monocyte
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chemoattractant protein-1 (MCP-1), a chemokine released by adipocytes, is responsible for
attracting monocytes into these injured fat depots [7].

The expression and secretion of MCP-1 is known to be elevated during obesity in both mice
[44] and humans [4]. MCP-1 mediates its action by binding to its specific receptor CC
chemokine receptor 2 (CCR2) [5]. In a recent study, obese mice lacking CCR2 had low
macrophage concentrations in adipose tissue [45]. In addition, MCP-1 is believed to induce
the dedifferentiation of adipocytes, which might result in obesity-related disorders because of
ectopic fat deposition. The expression of MCP-1 is higher in visceral, as compared with
subcutaneous, adipose tissue [4]. This protein impairs insulin-stimulated glucose uptake in
adipocytes, resulting in insulin resistance [34]. Thus, it is postulated that MCP-1 may play an
integral role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) [19].

Two major risk factors of NAFLD are visceral obesity and insulin resistance [1]. In the
pathogenesis of NAFLD in overweight and obese individuals, insulin, and excessive free fatty
acids from insulin-resistant omental adipose tissue drain directly into the liver via the portal
vein. In the liver, insulin up-regulates the conversion of unesterified fatty acids to
triacylgycerols by the activation of sterol regulatory binding protein-1C [23]. In insulin-
resistant states there is a sustained upregulation of microsomal TG transfer protein (MTP)
expression and protein levels as a result of resistance to insulin’s inhibitory effect on MTP.
This results in increased Very-low-density lipoprotein (VLDL) production and secretion.
When TG production exceeds FA oxidation and VLDL production [42,43], this result in lipid
accumulation in the hepatocytes, which might triggers a cascade of necroinflammatory changes
in the liver [11].

At present, the gold standard for diagnosing fatty liver disease is a biopsy [3]. However, two
biochemical markers of hepatic injury, plasma alanine aminotransferase (ALT), and aspartate
aminotransferase (AST) will be used in this study as non-invasive surrogates for NAFLD
[41].

The purpose of this study is to evaluate the importance of inflammation in the pathogenesis of
NAFLD, using overweight and obese baboons as a model of chronic inflammation. We
hypothesize that the increased circulating levels of MCP-1 are associated with fewer mature
adipocytes. This inflammatory molecule might also result in insulin resistance and elevate
circulating levels of markers of liver dysfunction because of subsequent liver injury caused by
fat deposition.

Materials and methods
Animals

Forty-three (31 females and 12 males) unrelated baboons (Papio hamadrayas cynocephalus)
were included in this study. The baboon colony is maintained at the Southwest National Primate
Research Center located at the Southwest Foundation for Biomedical Research (SFBR) in San
Antonio, TX, USA. These animals are gang-housed and fed a low fat, standard monkey chow
diet ad libitum (Harlan Teklad 15% monkey diet, 8715, Indianapolis, IN, USA).

Sampling and analyses
The Institutional Animal Care and Use Committee of the SFBR approved all procedures.
Animals were fasted overnight (12 hours) and sedated with ketamine before collection of blood
samples. Body weights were measured on a calibrated electronic scale (GSE, Chicago, IL,
USA). A total of 10 ml of blood was drawn from the antecubital vein in heparin tubes. Plasma
was obtained by centrifugation at 2000 g for 10 minutes and was stored in aliquots at −80°C
for future analysis. Assays for ALT and AST were conducted by standard laboratory techniques
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using an Alfa Wasserman ACE clinical chemistry instrument (West Cladwell, NJ, USA).
Glucose was analyzed on an Analox spectrophotometer by the glucose oxidase method. Insulin
and MCP-1 were measured by chemiluminescence in a Luminex 100 with endocrine multiplex
immunoassay (Linco Research Inc., St. Charles, MO, USA). Insulin resistance was calculated
by the homeostatic model assessment (HOMA) method [26].

Biopsies of omental adipose tissue were taken from anesthetized baboons. One centimeter
incision was made in the abdominal midline a centimeter above the umbilicus through the
abdominal wall. The omentum was retrieved using a grasping forceps. Approximately 1 gm
of omental fat was sequestered by ligature, excised, and immediately frozen in liquid nitrogen,
for storage at −80°C and/or in liquid nitrogen. The facia and skin were sutured.

Adipocyte number and volume per gram of tissue was analyzed by methods previously
described by Lewis et al. [24]. All samples whose replicates varied >5% variations were
reanalyzed. Wet weight, triglyceride mass, fat cell volume, and fat cell number were measured
in the omental, fat depots. The mean diameter of adipocytes was measured by the method of
DiGirolamo et al. [12] as modified by Stiles et al. [40]. The fat pads from the omental adipose
depots of baboons were minced, gassed for 15 s (O2–CO2, 95:5%) and incubated at 37°C in a
shaking water bath for 60 minutes with Krebs ringer bicarbonate buffer (KRB) at pH 7.4
containing 1.5 mg/ml collagnease. The freed adipocytes were filtered through a 200 μm mesh
silk, washed three times with KRB buffer. Mean adipocyte volume i.e. cell diameters were
measured microscopically assuming the adipocytes are spherical. Triglyceride was extracted
and triglyceride content was measured from the omental tissue sample. Fat cell number was
calculated by dividing the total volume of triglyceride per sample by mean adipocyte volume.

Percent body fat was obtained by bioimpedance using a Xitron multi-frequency bioimpedance
analyzer (Xitron Technologies Corp., San Diego, CA, USA). The animals were placed on their
backs on a rubber mat and electrodes were attached to shaved areas on both wrists and ankles.

Statistical analysis
Descriptive statistics and other analyses were conducted using spss (version 10.0; SPSS Inc.,
Chicago, IL, USA). Results are expressed as mean (standard error of mean). Student’s t-test
was used to evaluate the differences between sexes. All variables, other than sex and age, were
log transformed to obtain a Gaussian distribution. Linear regression was performed, controlling
for the effect of age and sex to estimate the partial correlation of plasma MCP-1 with omental
adipocyte number and volume, HOMA scores, and plasma ALT and AST. Residual analysis,
using Cook’s distance and leverage coefficients, was conducted to analyze the effect of any
point on the estimated regression [39].

Results
Table 1 provides sex-specific descriptive statistics for all traits analyzed in this study. The study
population was comprised of more than twice as many females as males. The mean body weight
of females was lower than that of males with female body weights ranging from 14 kg to 32
kg and that of males from 28 kg to 47 kg. Females were significantly older and had reduced
concentrations of plasma MCP-1 as compared with males. Adipocyte number and volume,
HOMA and plasma levels of ALT were not substantially different between the sexes. However,
differences between the circulating concentrations of AST approached statistical significance.

After controlling for age and sex, plasma MCP-1 was negatively associated with adipocyte
number (Fig. 1) and positively associated with adipocyte volume (r = 0.38; P = 0.02), HOMA
(Fig. 2), ALT (Fig. 3), and AST (Fig. 4).
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Discussion
This is the first study to demonstrate that plasma levels of MCP-1 are negatively associated
with omental adipocyte number and positively associated with HOMA and markers of liver
dysfunction in baboons.

In adipocyte dedifferentiation loss of mature adipocyte phenotype occurs through the
suppression of two transcription factors, CCAAT/enhancer binding protein α (C/EBPα) and
peroxisome proliferator-activated receptor γ (PPARγ) [36]. These factors act in concert to
regulate the expression of adipogenic genes required to maintain mature fat cells in a
differentiated state [22]. Sartipy and Loskutoff have suggested that MCP-1 may cause a
reduction in the number of fat cells by reducing the mRNA expression of PPARγ [34]. In
addition, Nadler et al. have reported that adipose tissue from obese mice exhibit a decreased
number of C/EBPα and PPARγ transcripts [29]. The down regulation of these adipogenic genes
might be because of obesityrelated inflammation.

An alternate explanation for the relationship between adipocyte size and MCP-1 is that enlarged
adipocytes secrete more MCP-1. In obesity, white adipose tissue becomes enlarged because
of increased adipocyte size (hypertrophy) and/or number (hyperplasia) [16]. Adipocyte size is
a function of the balance between lipogenesis and lipolysis [37]. However, fat cell number is
controlled by the equilibrium between proliferation or differentiation and apoptosis [2]. It is
postulated that failure of pre-adipocytes to differentiate into mature lipid storage cells expands
the existing adipocytes during periods of surplus energy intake [17]. The resultant hypertrophic
cells are known to have dysfunctional lipid and glucose metabolism [38], leading to insulin
resistance [27] and ectopic fat accumulation in tissues other than adipose depots [10]. However,
it is hypothesized that fat cells have a limited capacity to expand [20]. Once the enlarged cells
reach a critical mean volume they are liable to rupture because of stress [28].

The dead adipocytes activate inflammatory signaling pathways. These pathways could
compromise the insulin sensitivity of the remaining fat cells [8]. In addition, dead cells attract
macrophages into the adipose tissue to clear cellular debris [45]. These immune cells release
cytokines into the milieu, which further exacerbates insulin resistance within the adipose tissue
[46]. The impairment of insulin signaling, in turn, stimulates lipolysis and increases the
circulating concentrations of unesterified fatty acids [32]. These free fatty acids that are
released, particularly from the visceral fat depots, are transported to the nearby organs such as
the liver and may cause organ damage by initiating hepatic triglyceride accumulation [13]. Our
data suggests that obesity-related inflammation may lead to an abnormal adipocyte life cycle,
which reduces the number of lipid-bearing mature adipocytes and thereby potentially leading
to other metabolic complications.

A positive relationship between plasma levels of MCP-1 and the insulin resistance index
(HOMA) was observed in this study. This association has also been shown in mice and humans.
For example, Kamei et al. demonstrated that over expression of MCP-1 in transgenic mice
resulted in a systemic insulin resistance [18]. In a study by Weisberg et al. insulin sensitivity
improved in obese mice treated with an antagonist of CCR2, the MCP-1 receptor [45]. In
overweight and obese humans who are prone to having low insulin sensitivity, the circulating
levels of MCP-1 were positively related to HOMA scores [21]. Thus, it is likely that MCP-1
may participate in the pathogenesis of insulin resistance by impairing insulin signaling and
reducing insulin-mediated glucose uptake [18].

We also found that circulating concentrations of MCP-1 were positively related to markers of
liver dysfunction, plasma ALT, and AST. The levels of these liver enzymes are known to be
elevated in obese and insulin-resistant individuals [9]. MCP-1 may be associated with elevated
levels of ALT and AST through its contribution to both insulin resistance and hepatic
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inflammation. Thus, the disruption of insulin signaling in adipocytes because of inflammatory
molecules may lead to ectopic fat deposition [33]. This triglyceride accumulation in the liver
may then increase the susceptibility to hepatic inflammation and apoptosis. Subsequently, these
events may lead to a release of hepatocyte constituents into the circulation and raising the blood
levels of liver injury markers.

The serum levels of MCP-1 are elevated in individuals with steatosis, with the highest
concentrations in subjects with non-alcoholic steatohepatitis [15]. The association between
MCP-1 and NAFLD is strengthened further by the findings of Kanda et al. who showed that
insulin resistance and hepatic steatosis were ameliorated as a result the deletion of the MCP-1
gene in mice that were fed a high fat diet [19].

Although baboons have been used extensively for the study of alcoholic fatty liver disease
[25,30,35], this is the first time that this primate has been used as a model for obesity-related,
hepatic pathology. Briefly, this article suggests that MCP-1 and adipocyte cell number are
inversely related. This endogenous, immunomodulatory chemokine might promote adipocyte
dedifferentiation (reduced cell number) events that may interfere with insulin-mediated
glucose uptake and subsequent insulin resistance. Ultimately, obesityrelated inflammation, in
conjunction with insulin resistance, may lead to the pathogenesis associated with NAFLD.
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Fig. 1.
The association between the plasma monocyte chemoattractant protein 1 and adipocyte cell
number in baboons. *Age and sex adjusted.
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Fig. 2.
The association between the plasma monocyte chemoattractant protein 1 and HOMA insulin
resistance index in baboons. *Age and sex adjusted.
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Fig. 3.
The association between the plasma monocyte chemoattractant protein 1 and aspartate
aminotransferase in baboons. *Age and sex adjusted.
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Fig. 4.
The association between the plasma monocyte chemoattractant protein 1 and alanine
aminotransferase in baboons. *Age and sex adjusted.
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Table 1

Descriptive statistics of baboons*

Trait Male Female P-value

Number 12 31
Weight (kg) 32.42 ± 1.6 19.22 ± 0.8 0.0001
Age (years) 14.35 ± 1.06 20.67 ± 1.0 0.001
Monocyte chemoattractant protein 1 (pg/ml) 229.68 ± 19.1 152.89 ± 8.9 0.0001
Adipocyte number (× 106 cell) 5 × 106 ± 1 × 106 4 × 106 ± 9 × 105 0.60
Adipocyte volume (nl) 0.33 ± 0.1 0.55 ± 0.1 0.09
Percent body fat (%) 15.06 ± 2.3 20.06 ± 1.8 0.14
Glucose (mg/dl) 77.29 ± 2.9 75.17 ± 4.6 0.7
Insulin (μU/dl) 47.87 ± 10.7 56.94 ± 6.9 0.49
HOMA 1.37 ± 0.4 1.59 ± 0.2 0.62
Alanine aminotransferase (IU/l) 32.41 ± 3.7 28.40 ± 3.1 0.47
Aspartate aminotransferase (IU/l) 29.25 ± 2.9 23.51 ± 1.5 0.06

HOMA, Homeostasis model assessment method.

*
Mean (SEM).
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