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Abstract
The relationship between selenium and cancer is complex because individuals with low serum
selenium levels benefit from selenium supplementation, but those with high serum selenium levels
are at increased risk for other diseases. This suggests that the use of selenocompounds might be
limited to particular circumstances, such as adjuvant therapy. A contributor to this dichotomy may
be the activity of certain selenium containing enzymes like the cytosolic thioredoxin reductase (TR1).
We evaluated the cellular response to select selenocompounds that have anticancer activity when
TR1 was attenuated by siRNA in RKO colon cancer cells. Methylseleninic acid (MSA), which is a
substrate for TR1, enhanced cytotoxicity to colon cancer cells when TR1 was attenuated. MSA
induced stress in the endoplasmic reticulum, as measured by GRP78 protein levels. However, this
pathway did not appear to account for the change in cytotoxicity when TR1 was attenuated. Instead,
knockdown of the cytosolic TR plus incubation with MSA increased autophagy, as measured by
LC3B cleavage, and apoptosis, as measured by Annexin V and mitochondrial dysfunction. Therefore,
the use of selenocompounds with anticancer activity, like MSA, might be utilized most effectively
with agents that targets TR1 in chemotherapeutic applications.

Introduction
Historically, selenium levels in forage crops have inversely correlated with mortality from
several types of cancer in the United States (Shamberger and Willis, 1971; Clark et al.,
1991); however, translating selenium-mediated cancer prevention to the clinical remains a
challenge. Indeed, the relationship between selenium supplementation and cancer
susceptibility has been the focus of two cancer prevention trials; a smaller scale trial
(Nutritional Prevention of Cancer trial, NPC) suggested supplementation reduced cancer
mortality as well as certain cancer risk (Clark et al., 1996) while a recent large scale Selenium
and Vitamin E Cancer Prevention Trial (SELECT) did not confirm the reduction in prostate
cancer risk expected, based on the NPC trial with selenomethionine supplementation (Lippman
et al., 2009). Indeed, these supplementation trials suggest that high levels of serum selenium
correlate with increased risk of type II diabetes (Stranges et al., 2007), and serum selenium
levels have a non-linear relationship with all-cause mortality, reducing mortality when
supplemented at low levels but perhaps increasing mortality at the highest selenium levels
(Bleys et al., 2008). At a minimum, these studies have raised questions regarding the utility of
selenomethionine supplementation as a long term prevention agent. Whether selenomethionine
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is the most appropriate or efficacious selenocompound for anticancer therapy or preventions
is still a matter of debate (Hatfield and Gladyshev, 2009). Therefore, selenium compounds
might be better utilized for anti-cancer activity in conjunction with other therapeutics (Hu et
al., 2008; Li et al., 2008) rather than long term supplementation for cancer prevention.

In spite of the results in the clinical trials, serum selenium levels continue to be inversely
correlated with colon cancer in epidemiology studies (Peters et al., 2006; Marshall, 2008;
Peters and Takata, 2008; Connelly-Frost et al., 2009). One potential mechanism of selenium-
mediated cancer modulation is its utilization in the synthesis of selenoproteins (Lobanov et
al., 2009). The role of certain selenoenzymes, like cytosolic thioredoxin reductase (TR1), is
complex as it can display both anticancer and pro-carcinogenesis functions (Hatfield et al.,
2009). On the genomic level, a human single nucleotide polymorphism has been identified
within the TXNRD1 sequence that reduces the risk of distal colon adenocarcinoma; however,
this polymorphism may not only affect the TXNRD1 gene (Peters et al., 2008).

One additional complication is that there may be interactions between selenocompounds and
TR1 in anti-cancer activities. Initially, certain selenocompounds were thought to be inhibitors
of TR1, but instead, some selenocompounds are substrates of TR1 (Gromer and Gross, 2002;
Zhao and Holmgren, 2002; Zhao et al., 2002). Therefore, our aim was to evaluate the TR1
dependence of the cytotoxicity of selenomethionine, 1,4-phenylenebis(methylene)
selenocyanate (p-XSC), or methylseleninic acid (MSA) in RKO colon cancer cells where we
attenuated the endogenous TR1 with siRNA. These compounds were chosen because they
represent distinct selenocompound classes. Selenomethionine is a selenium-containing amino
acid that can provide selenium to multiple cellular pools (Suzuki et al., 2006a), p-XSC is an
organic selenocompound that reacts with glutathione but does not release selenium to cellular
pools (Sohn et al., 2005), and MSA is readily converted to methylselenol, the selenocompound
thought to be responsible for selenium-mediated anticancer activity (Ip et al., 2000).
Selenomethionine has been used in clinical studies while p-XSC and MSA have displayed
promising anticancer activity in preclinical studies. Since MSA is a substrate for reduction to
methylselenol by TR1 (Gromer and Gross, 2002), we anticipated that this selenocompound
might demonstrate TR1-dependence in its cytotoxic anticancer activities. Indeed, we found
that MSA was the only selenocompound of this group that displayed differential activity
dependent on TR1 status. In addition, the targeting of TR1 with siRNA plus MSA accelerated
autophagy and the pro-apoptotic activity of this selenocompound.

Materials and Methods
Materials

Advanced DMEM, Glutamax, MitoProbe JC-1 Assay Kit, and Hank's balanced salt solution
(HBSS) were purchased from Invitrogen (Carlsbad, CA). Fetal bovine serum was purchased
from Hyclone (Logan, UT). The RKO cell line was purchased from American Tissue Type
Culture Collection (Manassas, VA). CellTiter-Glo Luminescent Cell Viability Assay was
purchased from Promega (Madison WI). Selenocompounds used included L-selenomethionine
from Acros Organics (Morris Plains, NJ), p-XSC was from LKT Laboratories, Inc (St. Paul,
MN) and methylseleninic acid (MSA) was from PharmaSe, Inc. (Lubbock, TX). Antibodies
directed at BiP/GRP78 and LC3B were purchased from Becton Dickinson and Company
(Franklin Lakes, NJ) and Sigma-Aldrich (St. Louis, MO), respectively. TR1 polycolonal
antibodies and secondary, donkey polyclonal anti-mouse and anti-rabbit antibodies conjugated
with horseradish peroxidase, were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA). Western Lighting chemiluminescence reagents were from PerkinElmer Life Sciences
(Boston, MA). Dithiothreitol and 3-methyladenine are purchased from Sigma-Aldrich.
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Cell culture
RKO colon cancer cells were used as a representative colon cell line and were maintained in
Advanced DMEM supplemented with 1% Glutamax and 2% fetal bovine serum. Advanced
DMEM is a medium with a low serum requirement that is supplemented with 5 μg/l sodium
selenite, and the serum used contained 37 ng/ml selenium, resulting in a selenium media
containing ∼37 nM selenium. This selenium content is similar to standard media supplemented
with 10% serum, and the selenite content alone is sufficient to support maximal glutathione
peroxidase 1 activity (a measure of selenoenzyme synthesis), and is ∼10× above the levels of
selenium required to abrogate selenium-deficient cell death (Leist et al., 1996; Baker et al.,
1998; Saito et al., 2003). RKO cells were used in this study since serum selenium levels and
colon cancer have been previously linked and the knockdown of thioredoxin reductase 1 was
accomplished with siRNA as previously described in this same cell line (Cassidy et al.,
2006).

ATP content analysis
Cellular viability was determined using the CellTiter-Glo Luminescent Cell Viability assay
which measures ATP content in cells (Crouch et al., 1993). ATP-dependent luciferase activity
was measured using a Perkin-Elmer VictorV3 Multimode Microplate Reader.

Cytometric Assay for Free Thiols
Cells were seeded into 6-well plates at a density of ∼ 2 × 105 cells/well and allowed to grow
overnight. Culture medium was refreshed at the time of treatment. Cells were trypsinized,
centrifuged at 250×g for 5 minutes, and resuspended in 1 ml phosphate buffered saline (PBS).
Cells were then centrifuged at 250×g for 5 minutes and resuspended in a fresh 1 ml of 1× PBS.
40 μM monobromobimane (mBBr) was added and samples were incubated at room
temperature in the dark for 5 minutes. mBBr fluorescence concentration was then determined.
Cellular fluorescence concentrations were determined 24 hrs after treatment using a Beckman
Cell Lab Quanta SC flow cytometer by dividing the fluorescence for each cell by its measured
electronic volume. For each assay, a minimum of 10,000 events per sample were recorded.

Immunochemical analysis
Cells in 6-well plates were placed on ice. Media was aspirated and cells were then washed with
1ml of cold 1× PBS, the PBS aspirated, and protein lysates were prepared as previously
described (Cassidy et al., 2006). Protein concentrations were determined using Bradford
reagents. Absorbance at 595 nm was measured using a Perkin-Elmer VictorV3. Proteins were
separated by NuPAGE 10% or 4-12% Bis-Tris gels, and transferred to a polyvinyl difluoride
membrane. Membranes were blocked with 5% nonfat dry milk in TBS-T and then probed for
TR1 (1:300), BiP/GRP78 (1:1000) or GAPDH (1:500) with specific antibodies. Peroxidase
conjugated secondary antibodies (1:5000) were used in conjunction with chemiluminescence
detection to evaluate protein expression. Protein was detected using Western Lightning
Western Blot Chemiluminescence reagent, visualized, and quantified using a Kodak Image
Station 440.

Apoptotic assays
Two cytometric assays were used to evaluate markers of apoptosis and mitochondrial status
using a CellLab Quanta SC flow cytometer.

Mitochondrial potential evaluation
Mitochondrial potential was measured using the MitoProbe JC-1 Assay Kit where 1 μM JC-1
was added to medium of cells attached to 6-well plates after MSA treatment. Cells were
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incubated at 37°C with 5% CO2 and 95% air for 30 minutes and then trypsinized, washed and
resuspended in HBSS. JC-1 fluorescence at 525 nm (JC-1 “green”) and 575 nm (JC-1 “red”
or “J-aggregates”) was determined for each sample. JC-1 fluoresces green when the
mitochondrial potential has been depolarized and forms aggregates that fluoresce red when the
mitochondrion is polarized (Salvioli et al., 1997). Carbonyl cyanide 3-chlorophenylhydrazone
(CCCP) was used at 25 μM to disrupt the mitochondrial membrane potential as a control.
Cellular fluorescence was determined 24 hrs after treatment by flow cytometry and for each
sample, a minimum of 10,000 events per sample was recorded.

Annexin V/PI staining
The Vybrant Apoptotic Assay Kit #2 was used in a dual color cytometric assay to evaluate
Annexin V as an early marker of cell death along with PI exclusion using a CellLab Quanta
SC flow cytometer. Cells were trypsinized, washed, and resuspended in 100 μl annexin-binding
buffer, 5 μl Alexa-488 conjugated Annexin V and 1 μl of 100 μg/ml PI was for a 15 min
incubation, and then the cells were diluted to 500 μl prior to cytometric evaluation. Cellular
fluorescence was determined following 16 or 24 hrs of MSA exposure and a minimum of
20,000 events per sample was recorded. The percentage of the cells that were not stained,
representing viable cells; Annexin V positive, representing early apoptotic cells; and Annexin
V plus PI double positive, representing late apoptotic cells, were quantified by flow cytometry.

Statistical Analysis
GraphPad Instat, version 3.06, was used to evaluate the statistical significance of the results.
Statistical significance was determined by one-way ANOVA with Bonferroni multiple
comparison post hoc tests and differences were considered significant for p<0.05.

Results
The role of TR1 in the cytotoxic response of these selenocompounds was examined in RKO
cells with endogenous levels of TR1 or with TR1 knocked-down by siRNA. We evaluated the
cytotoxic response following a 24 hr incubation of SEM, p-XSC, and MSA by measuring
cellular ATP content (figure 1). The attenuation of TR1 did not markedly alter SEM- and p-
XSC-mediated responses. SEM was only minimally toxic within 24 hr over the highest
concentration range used (figure 1A), while p-XSC's toxicity was independent of TR1-status
(figure 1B). However, the toxicity of MSA was TR1-dependent (figure 1C). Cells with reduced
TR1 levels due to siRNA treatment displayed a significant reduction in ATP levels at MSA
concentrations of ∼5 μM. The effect on TR1 protein expression following selenocompound
incubation was evaluated when the cells had ∼80% of ATP content of the control. The level
of TR1 protein was evaluated by immunochemical analysis as shown in figure 1D. The TR1
protein remaining, following the knockdown of TR1 compared to the scrambled siRNA
control, was 8 ± 4%. In cells treated with SEM, the remaining TR1 protein following
knockdown was 26 ± 7% compared to the control siRNA. In cells treated with p-XSC the
remaining TR1 protein following knockdown was 25 ± 5% compared to the control siRNA.
In the cells treated with MSA, the remaining TR1 protein following knockdown was 11 ± 4%
compared to the control siRNA.

To determine if the mechanism of enhanced cytotoxicity following MSA treatment in RKO
cells with reduced TR1 was related to endoplasmic reticulum (ER) stress (Wu et al., 2005; Zu
et al., 2006), ER chaperonins and cellular thiol status were evaluated and compared to cells
treated with the known ER disrupter dithiothreitol (DTT). The rationale for using DTT as a
positive control was from studies where DTT was shown to produce an ER stress response
(Thomas et al., 2007). It has also been demonstrated in yeast that DTT-mediated cytotoxicity
is dependent on the thioredoxin system (Trotter and Grant, 2002). The protein expression of
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BiP/GRP78, a marker of ER stress, was increased significantly (p<0.003) when cells were
incubated with MSA and DTT. MSA at either 15 or 25 μM increased Bip/GRP78 expression
by ∼80% over the control (p<0.01). No significant differences were observed between the
doses of 15 and 25 μM MSA. DTT increased Bip/GRP78 expression by ∼60% over the control
(p<0.05). The difference between MSA and DTT treatment was not found to be statistically
significant. Examples of the immunoblot data are displayed in figure 2A. Since we have
previously demonstrated that MSA alters free thiol status in other cancer cell lines as measured
by monobromobimane (mBBr) fluorescence (Poerschke et al., 2008), we compared cells with
endogenous TR1 or those where TR1 was attenuated, due to siRNA knockdown, to cell
populations also treated with MSA. TR1 knockdown decreased cellular free thiols as measured
by mBBr fluorescence however MSA increased mBBr fluorescence to comparable levels,
regardless of TR1 status (figure 2B). Incubation of the RKO cells with DTT at concentrations
that demonstrate ER stress showed a similar increase in mBBr fluorescence to that observed
in MSA-treated RKO cells (figure 2C). However, when we evaluated cellular ATP content
following TR1-knockdown, we observed no significant difference in viability that was
dependent on TR1 status (figure 2D). Therefore, it appears that the enhanced cytotoxicity
observed following MSA treatment of TR1-knockdown cells was due to other factors besides
enhanced ER stress.

Cells treated with si-TR1 and MSA seemed to round or appear smaller, so we measured the
autophagic response. Since autophagy is a mechanism activated in many stress situations, we
evaluated the cleavage of the LC3B protein as a robust biochemical marker of this process,
and there was a clear increase in the LC3B protein cleavage product, LC3B II, in cells with
reduced TR1 and treated with MSA compared to treatments with MSA or the siRNA alone
(figure 3A). The compound 3-methyladenine is commonly used to inhibit autophagy (Seglen
and Gordon, 1982). We measured the dose-dependent cytotoxicity of 3-methyladenine in RKO
cells and found that 1 mM was the highest dose we could use with minimal toxicity (∼80%
viable as measured by ATP content). This dose was insufficient to inhibit LC3B cleavage or
alter cell viability when the cells were treated with MSA and TR1-knockdown (data not shown).
However, the observed increase in autophagy appears distinct from the ER stress as DTT does
not promote LC3B cleavage (figure 3B), and therefore, this process may contribute to the
enhanced cytotoxicity we have observed with MSA and TR1 attenuation.

Since our measure of cellular viability was ATP production, we next examined the
mitochondrial membrane potential as a common marker of apoptosis in the primary organelle
that generates ATP. Cytometric evaluation of JC-1 stained cells show that TR1-knockdown
and MSA treatment resulted in mitochondrial dysfunction, as measured by a decrease in
mitochondrial potential, but that either MSA treatment or TR1-knockdown alone did not alter
the mitochondrial potential (figure 4). Since mitochondrial dysfunction can be a consequence
of autophagy or apoptosis, we next determined that the TR1-knockdown also promotes
apoptosis. We examined the Annexin V and PI double staining as a measure of apoptosis
progression. Annexin V positivity is a marker of early apoptosis when PI is excluded, but both
stain late apoptotic cells. Therefore, we measured the population of cells that were positive for
Annexin V conjugated to Alexa-488 and PI at 16 and 24 hrs after treating with 15 μM MSA
(a representative dataset is shown in figure 5, and triplicate datasets are combined in table 1).
There were low levels of Annexin V staining in the MSA and siRNA control samples but there
was an increase in Annexin V positive and increasing double positive cells over time (figure
5E & F) that show statistically significant changes with MSA concentration and time (table 1).

Discussion
Several selenocompounds have demonstrated anticancer activity in preclinical experiments.
In particular, MSA and p-XSC induce cell cycle arrest and apoptosis (Ip et al., 2002; Swede
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et al., 2003; El-Bayoumy et al., 2006). However, the interaction of selenocompounds and
selenoproteins in cell growth and apoptotic related activities is less clear. Some
selenocompounds likely contribute to selenoprotein expression. For example, TR protein
expression and activity has been demonstrated to be dependent on selenium availability
(Berggren et al., 1997; Gallegos et al., 1997; Berggren et al., 1999). However, the selenium
available for selenoprotein synthesis is dependent on the metabolism of the particular
selenocompounds (Suzuki et al., 2006a; Suzuki et al., 2006b; Suzuki et al., 2006c; Suzuki et
al., 2006d). Small molecule selenocompounds have been hypothesized to be required for the
anti-cancer activities of selenium (Ip et al., 2000), and therefore, the requirement for
selenoproteins has been questioned. Experimental systems have been generated that can
address these concerns more directly. For example, in mice with disrupted selenocysteine
tRNA have reduced selenoprotein synthesis, but increased colon cancer susceptibility
following induction with the carcinogen, azoxymethane, as measured by increased tumor
incidence and pre-malignant lesions compared to wild-type mice (Irons et al., 2006). However,
selenium supplementation resulted in accumulation of non-proteinacious selenium and
protection in both groups of mice. Therefore, the authors interpreted these results as indicating
that both selenoproteins and low molecular weight selenocompounds protect against cancer.
In another study, bigenic mice were engineered to be selenoprotein deficient, again due to
disruption of the selenocysteine tRNA, but also contained targeted expression of SV40 tumor
antigens to promote the development of prostate cancer. These mice were maintained on
selenium sufficient diets but the mice without selenoprotein synthesis demonstrated
accelerated lesion development with enhanced disease progression compared to transgenic
mice with only the SV40 tumor antigens (Diwadkar-Navsariwala et al., 2006). Therefore, these
studies strongly support the hypothesis that selenoproteins, and not just small molecule
selenocompounds, have roles in the cancer prevention activities of selenium. However, TR1
may be unique among selenoproteins in that attenuation of TR1 expression also mitigates tumor
phenotypes in transformed cells (Yoo et al., 2006; Yoo et al., 2007).

MSA functions by increasing stress to the ER and activating the unfolded protein response
(Wu et al., 2005; Zu et al., 2006). Moreover, the TR-Trx system was required to protect against
reductive stress (i.e. by treatment of these cells with DTT) mediated through the ER in yeast
(Trotter and Grant, 2002), so we anticipated that without TR1, we may have even a more
dramatic ER stress following incubation with MSA. However, functional differences may exist
between the mammalian and yeast thioredoxin system. Indeed, the yeast TR is not a
selenoprotein but it nevertheless provides many of the same reducing functions within the yeast
cell. Still, we observed increased free thiols with cells treated with MSA, and we observed
increases in expression of the ER chaperon protein, BiP/GRP78, which we interpret as
consistent with ER stress (figure 2). However, MSA certainly has a broader spectrum of activity
than simply inducing ER stress since DTT gave comparable results but in the context of the
TR1 knocked-down, MSA displays enhanced cytotoxicity while DTT does not.

The autophagic response observed with MSA appears to be novel for an
organoselenocompound; however, autophagy has been associated with inorganic selenium-
mediated cell death (Kim et al., 2007; Kim and Choi, 2008). Autophagy is generally associated
with promoting survival by recycling cellular components under nutrient limiting conditions
(Levine and Kroemer, 2008), and can have a pro-survival activity in cancer. However, the same
ability to remove damaged cellular components may mitigate tumor promotion (White and
DiPaola, 2009). Therefore, the autophagic response to MSA and TR1 knockdown is suggestive
of increased metabolic stress, but may not be the proximal mechanism of the enhanced
cytotoxicity.

Perhaps the best use for selenocompounds in cancer prevention and treatment could be their
utilization during cancer therapy along with other anticancer agents. Even selenomethionine,
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which has not demonstrated efficacy in the SELECT clinical studies, has demonstrated
enhancement of cell killing when lung cancer cell lines, but not normal lung cancer cells, were
subject to ionizing radiation (Shin et al., 2007). Selenomethionine may not be the most
appropriate selenocompounds for cancer prevention or neoadjuvant therapy since it can be
incorporated in cellular proteins in the place of methionine rather than generate functional small
molecule selenocompounds (Reid et al., 2002) and we did not observe any alterations in
cytotoxicity when TR1 was knocked-down. However, MSA has demonstrated improved
efficacy of conventional therapeutics in model systems (Hu et al., 2008; Li et al., 2008) and
we clearly observe multiple activities when TR1 is targeted simultaneously.

In this study, we demonstrate that MSA displays increased cytotoxicity when TR1 levels are
reduced using siRNA. Our data confirm that MSA induces ER stress; however, ER stress by
DTT did not result in cell death when TR1 was knocked-down. The combination of MSA and
the TR1 knockdown generate additional cellular stress as demonstrated by LC3B cleavage as
a biochemical marker of autophagy that was not observed by either treatment alone within the
time frame of the experiment. In addition, the knockdown of TR1 and treatment MSA promoted
apoptosis. In sum, these data suggest that MSA might be particularly effective in cancer
therapeutics in combination with agents that target TR1.
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Figure 1.
Cell viability as measured by ATP content of RKO cells treated with siRNA directed at TR1
(si-TR1, filled circle) or a control siRNA (si-Scramble, filled square) and then incubated with
increasing doses of A) SEM, B) p-XSC, and C) MSA. (D) Immunochemical analysis of TR1
protein levels in cells incubated with 60 μM SEM, 2 μM p-XSC, or 1.5 μM MSA.
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Figure 2.
Evaluation of ER stress and cellular free thiol status following treatment of RKO cells with
MSA or DTT along with TR1 attenuation via siRNA. (A) Immunochemical analysis of the ER
chaperone BiP/GRP78 following DTT or MSA incubation. (B) mBBr evaluation of cellular
free thiols following 15 μM MSA treated RKO cells. Cells with attenuated TR1 display
decreased free thiols compared to the control si-Scramble (*, p<0.05). When cells are incubated
with MSA, significant increases mBBr fluorescence were observed compared to the samples
without MSA incubation (††, p<0.01; †††, p<0.001). (C) DTT treatments result in similar
levels of free thiols as measured by mBBr. (D) Cell viability as measured by ATP content of
RKO cells treated with siRNA directed at TR1 (si-TR1, filled circle) or a control siRNA (si-
Scramble, filled square) and incubated with increasing amounts of DTT.
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Figure 3.
Biochemical assessment of autophagic response to MSA and TR1 knockdown. (A)
Immunochemical analysis of LC3B demonstrates increased cleavage to the LC3B II form with
the MSA treatment and TR1 knockdown compared to the control siRNA condition. (B)
Increased LC3B cleavage is observed in TR1 knockdown cells treated with MSA but not DTT.
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Figure 4.
Mitochondrial dysfunction as a measure of apoptosis. Cytometric analysis of RKO cells
incubated with MSA (15 μM) and TR1 knockdown using the mitochondrial fluorophore JC-1
to cytometrically measure the mitochondrial membrane potential. CCCP (25 μM), a recognized
mitochondrial membrane potential disrupter, was utilized as a control. Bars represent the
percentage of the cellular population with polarized mitochondria as indicated by red
fluorescence (JC-1 red, 525 nm) or depolarized mitochondria as indicated by green
fluorescence (JC-1 green, 575 nm) with standard deviations. An ANOVA indicated
significance (p<0.0001) and the CCCP and si-TR1 MSA treated samples were significantly
different from the other samples (***, p<0.001).
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Figure 5.
Annexin V and PI cytometric analysis as a measure of apoptosis. Panels A-C and D-F display
control, and MSA treated cells for 16 and 24 hrs, for cells with endogenous TR1 and with TR1
knockdown, respectively. The lower left quadrant displays the percentage of cells that are intact
(PI negative) and Annexin V negative. The lower right quadrant displays the cells that are
Annexin V positive, or are undergoing early phases of apoptosis. The upper right quadrant
displays cells that are both positive for PI and Annexin V and represents late apoptotic cells.
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Table 1
Apoptosis Measured by Annexin V and PI Staining

si-Scramble si-TR1

PBS Intact Cells 84±4.8% 86±5.4%
Early Apoptotic 14±3.6% 12±4.7%
Late Apoptotic 2.1±1% 2.4±1.1%

16 hr, 15 μM MSA Intact Cells 82±8.9% 67±3.3%
Early Apoptotic 15±8.3% 23±3%
Late Apoptotic 2.7±0.9% 9.3±1%

16 hr, 25 μM MSA Intact Cells 81±4.5% 56±3% **
Early Apoptotic 16±4% 29±3.5%
Late Apoptotic 3.2±1% 15±1% ***

24 hr, 15 μM MSA Intact Cells 85±3.4% 60±11% **
Early Apoptotic 12±3.6% 25±8%
Late Apoptotic 2.2±1% 15±3.4% ***

24 hr, 25 μM MSA Intact Cells 81±3.3% 36±8.8% ***
Early Apoptotic 15±6.3% 34±3% **
Late Apoptotic 4.3±3% 29±6.4% ***

Values represent percent of the population that represent intact cells (Annexin V and PI negative), early apoptotic (Annexin V positive), or late apoptotic
(Annexin V and PI positive). An ANOVA suggested a significant change (p<0.0001) in the cellular populations and Bonferroni multiple comparisons
tests indicate that statistically significant changes from the vehicle control samples in the Annexin V positive and double positive populations occur in
the si-TR1, 16 hr, 25 μM MSA (**, p<0.01) as well as in the si-TR1, 24 hr, 15 and 25 MSA treatment samples (**, p<0.01, and ***, p<0.001, respectively).
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