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Abstract

The CRTC1-MAML2 fusion oncogene underlies the etiology of mucoepidermoid salivary gland
carcinoma (MEC) where it confers a favorable survival outcome as compared with fusion-negative
MEC. While these analyses suggested that detection of CRTC1-MAML2 serves as a useful
prognostic biomarker, we recently identified outlier cases of fusion-positive MEC associated with
advanced-staged lethal disease. To identify additional genetic alterations that might cooperate with
CRTC1-MAML2 to promote disease progression, we performed a pilot high-resolution
oligonucleotide array CGH (aCGH) and PCR-based genotyping study on 23 MEC samples
including14 fusion-positive samples for which we had clinical outcome information. Unbiased
aCGH analysis identified inactivating deletions within CDKN2A as a candidate poor prognostic
marker which was confirmed by PCR-based analysis (CDKN2A deletions in 5/5 unfavorable
fusion-positive cases and 0/9 favorable fusion-positive cases). We did not detect either activating
EGFR mutations, nor copy number gains at the EGFR or ERBB2 loci as poor prognostic features
for fusion-positive MEC in any of the tumor specimens. Prospective studies with larger case series
will be needed to confirm that combined CRTC1-MAML2 and CDKN2A genotyping will optimally
stage this disease.

INTRODUCTION

MEC is the most common malignant salivary gland tumor characterized by variable
histopathologic features and unpredictable clinical behavior. Although multiple phenotypic
grading systems have been developed to better classify these tumors, (Clode et al., 1991;
Hicks et al., 1995; Goode et al., 1998; Brandwein et al., 2001; Luna, 2006), their clinical
utility has remained limited due to subjectivity and the biological heterogeneity within and
between tumor grades.

In 2003, the CRTC1-MAMLZ2 fusion oncogene was identified at the breakpoint of a recurrent
translocation t(11;19) and was shown to be the pathogenic event that underlies the
development of the majority of MEC cases (Tonon et al., 2003; Enlund et al., 2004).
Evidence supporting CRTC1-MAMLZ2 in the etiology of these tumors was i) the ability of
CRTC1-MAMLZ2 to transform rat RK3E cells in vitro and in vivo (Coxon et al., 2005), ii) the
identification of the fusion transcript in MEC-like tumors arising from distinct tissues
including major and minor salivary glands, bronchopulmonary tree, thyroid, breast, skin,
and cervix (Behboudi et al., 2005; Kazakov et al., 2007; Tirado et al., 2007; Achcar et al.,
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2009; Lennerz et al., 2008), and iii) tumor growth suppression by RNA. targeted to the
fusion transcript exclusively in tumor cells carrying the t(11;19) translocation (Komiya et
al., 2006).

Over 150 cases of MEC have been tested for the CRTC1-MAML2 transcript by RT-PCR or
fluorescent in situ hybridization (FISH) with a 55% detection rate overall (Martins et al.,
2004; Behboudi et al., 2006; Okabe et al., 2006; Tirado et al., 2007; Fehr et al., 2008a,b).
Undifferentiated MEC, however, rarely expressed CRTC1-MAML2 while over 80% of low
or intermediate grade mucoepidermoid cases tested were fusion-positive. This suggested that
CRTC1-MAMLZ2 is a reliable diagnostic marker in differentiating subtypes of MEC and that
some high-grade fusion-negative tumors may represent a misclassification of a non-MEC
aggressive carcinoma not otherwise specified (NOS). Accordingly, retrospective survival
analyses of different series of these tumors demonstrated that patients with fusion-negative
tumors had a significantly worse survival as compared with fusion-positive cases (Behboudi
et al., 2006; Okabe et al., 2006; Tirado et al., 2007), suggesting that CRTC1-MAML2 may
serve a specific diagnostic and prognostic molecular marker for MEC.

While most fusion-positive tumors were cured following surgical resection, a few outlier
cases initially presented with, or subsequently developed, lethal stage 4 disease (Tirado et
al., 2007; Kazakov et al., 2009), suggesting that these unfavorable CRTC1-MAML2 positive
tumors may have somatically acquired additional genetic alterations that conferred enhanced
invasiveness or tumor survival properties. To address this important issue, we collected all
available cases of fusion-positive primary MEC tumors and performed global, high-
resolution aCGH to compare the copy number variation (CNV) genotype between samples
collected from good and poor prognosis fusion-positive cases.

MATERIALS AND METHODS

Patient Samples

Primary MEC samples were obtained from the Head and Neck Section of the Department of
Pathology, MD Anderson Cancer Center. All primary tumor cases were reviewed by two
pathologists and samples were collected under approved Institutional review. In addition, we
studied two MEC tumor cell lines (H292 and H3118) that were isolated from patients at the
National Naval Medical Center who died of complications from metastatic stage 4 MEC
(Tonon et al., 2003) as well as 4 non-MEC control tumor cell lines (ACC3, H620, H1725,
H1944) (Otterson et al., 1995). CRTC1-MAML?2 status was obtained by RT-PCR from
microdissected sections as previously described (Tirado et al., 2007).

Whole Genome Amplification

Array CGH

Ten nanograms of genomic DNA was amplified using the GenomePlex Whole Genome
Amplification (WGA-2) kit (Sigma-Aldrich, St. Louis, MO) and purified using the QlAprep
Spin Miniprep kit (Qiagen, Valencia, CA). For purification, five volumes of Buffer PB was
added directly to the amplification products, applied to QIAprep Spin Miniprep Columns,
and centrifuged at maximum speed for one minute. The spin column was then washed with
75 ul PE Buffer. An additional two-minute centrifugation step was performed to remove
residual wash buffer. The purified DNA was eluted with 50 ul Buffer EB and quantified
using the NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE).

For each aCGH hybridization, 2500 ng of amplified DNA from the reference control
(female gDNA, Promega, UK) and MEC sample was directly labeled with Cy3-dUTP and
Cy5-dUTP, respectively, using the BioPrime Array CGH Genomic Labeling Module
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(Invitrogen, Carlsbad, CA) and the manufacturer’s recommended protocol. Labeled products
were purified two times with 450 pl TE and concentrated using a Vivaspin concentrator
(Sartorius, Germany). Labeled reference and experimental samples were combined to a final
volume of 79 ul and mixed with 25 pl of human COT1 DNA (Invitrogen, Carlsbad, CA), 26
ul Agilent 10X Blocking Agent, and 130 pl Agilent 2X Hybridization Buffer (Agilent
Technologies, Santa Clara, CA). The hybridization mixture was denatured at 95°C for 5
minutes, incubated at 37°C for 30 minutes, and applied to commercially available Human
Genome CGH Microarray Kit 105A arrays (Agilent Technologies, Santa Clara, CA), which
contain 99,000+ coding and non-coding human sequences. Following 48-hour rotating
incubation at 65°C in an Agilent microarray chamber, the arrays were washed in Oligo
aCGH Wash Buffer 1 at room temperature for 5 minutes followed by a second wash for 1
minute in Oligo aCGH Wash Buffer 2 prewarmed to 37°C. The arrays were scanned at 5 ym
resolution using an Agilent G2505C DNA microarray scanner and the data were normalized
using Feature Extraction software (version 10.5.1, Agilent Technologies, Santa Clara, CA).

aCGH Data Analysis

The data were visualized and analyzed using CGH Analytics (version 6.0, Agilent
Technologies, Santa Clara, CA) or Nexus 4 software (version 8.0, BioDiscovery Inc, El
Segundo, CA). To optimize aberration calls and minimize background-related gains and
losses using Nexus 4, the Rank Segmentation algorithm with a significance threshold of 1.0
x 10710 was used. The settings for aberration calls for all but three of the samples were 0.8
for amplification, 0.4 for gain, —0.4 for loss, and —0.8 for homozygous deletion. For three
samples (184H7, 396A6, and 400D1), the settings for aberration calls were 0.85 for
amplification, 0.43 for gain, —0.43 for loss, and —0.85 for homozygous deletion.

CDKN2A Methylation Analysis

Bisulfite conversion of DNA was performed as described previously to create a template for
methylation-specific PCR (MS-PCR) (Chen et al., 2005). Briefly, 200 ng genomic DNA
from each sample was denatured by NaOH at a final concentration of 0.2 M in a volume of
50 pL at 37 °C for 15 minutes. 30 uL of 10 mM freshly prepared hydroguinone and 520 uL
of freshly prepared 3.0 M NaHSO3, pH 5.0 (Sigma, St. Louis, MO) was added and the
mixture was incubated at 56 °C for 16 hours. Bisulfite-modified DNA was purified using the
Wizard DNA Cleanup kit (Promega, Madison, WI). The DNA was desulfonated by
incubation with NaOH at a final concentration of 0.3 M at room temperature for 15 min and
further neutralized by adding ammonium acetate, pH 7.0, to a final concentration of 3 M.
The DNA was precipitated with ethanol and resuspended in distilled water to a final
concentration of 2 ng/uL. Bisulfite-treated DNA was used as the template for methylation
specific-PCR, as described previously (Chen, et al. 2005). Briefly, 5 uL of bisulfite-
converted genomic DNA served as the PCR template in a 25 pL reaction containing 0.19
mM each dNTP, 1.5 mM MgCI2, 400 nM of forward and reverse primers, and 1.25 U of
AmpliTag Gold. Two different primer pairs to detect CDKN2A methylation were employed
as follows: forward amplification primerl (5-TATTCGGTGCGTTGGGTAGCGTTTTC-3')
and reverse amplification primer2 (5'-
CGACGAAAAACAACATAAAACCGACGACGA-3), forward primer3 (5'-
TTTTTTATTCGATTTCGGGTCGCGGTC-3') and reverse primer4 (5'-
AACCGCGTACGCTCGACGACTACG-3"), respectively. The PCR cycling parameters
were as follows: hot start at 94 °C for 9 minutes to inactive the inhibitors of AmpliTaq Gold,
followed by 45 cycles of 94°C (30 seconds), 66 °C (30 seconds), and 72 °C (45 seconds),
then 72 °C for10 minutes, and 10 °C to cool. A separate PCR reaction with forward primer5
(5"-AATCAACCAAAAACTCCATACTACTCCCC-3') and reverse primer6 (5'-
AGGAAGAAAGAGGAGGGGTTGGTTGG-3") was carried out to detect the presence of
either methylated or unmethylated CDKN2A exon 1. The exon 6 region of B-actin (ACTB1)
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was amplified as genomic DNA control using forward primer (ACT2118(AS)bsF), 5'-
TCCTAACCTCACTATCCACCTTCCAAC-3' and reverse primer (ACT2297(AS)bsR), 5'-
CAGTATGAGGTGTGTGTATTTGTTAGGGGT-3'. All the PCR products were separated
by 3% agarose gel electrophoresis with 1X TAE, and the DNA intensities were analyzed by
using InGenius LHR system (Cambridge, United Kingdom).

EGFR PCR and sequencing

RESULTS

Using 10 ng genomic DNA from each sample as template, the exon19 and exon21 regions
of EGFR gene were amplified in a 50 pl volume with forward primer (EGFR-E19F), 5'-
ACCATCTCACAATTGCCAGTTAACGTC-3' and reverse primer (EGFR-E19R), 5'-
ACATCGAGGATTTCCTTGTTGGCTTTC-3', and forward primer (EGFR-E21F), 5'-
GGCATGAACTACTTGGAGGACCGTC-3' and reverse primer (EGFR-E21R), 5-
CTGCATGGTATTCTTTCTCTTCCGCAC-3', respectively. The PCR cycling parameters
were as follows: hot start at 94 °C for 9 minutes to inactive the inhibitors of AmliTaq Gold,
followed by 40 cycles of 94°C (30 seconds), 65 °C (30 seconds), and 72 °C (45 seconds),
then 72 °C for10 minutes, and 10 °C to cool. The PCR products were analyzed by 2%
agarose gel electrophoresis with 1X TAE and subjected to DNA sequencing.

We performed a pilot study using high-resolution aCGH on tumors with known CRTC1-
MAML2 status to conduct a global unbiased search for candidate gene loci exhibiting
recurrent CNV gains or losses in MEC tumors. Of the 23 MEC samples in this dataset, 14
were CRTC1-MAML?2 fusion-positive and 9 were fusion-negative (Table 1). As previously
reported (Behboudi et al., 2006;0kabe et al., 2006;Tirado et al., 2007), patients with fusion-
negative MEC samples showed an inferior prognosis with 8 of 9 subjects that succumbed to
lethal disease and the sole fusion-negative survivor had a completely resected tumor
localized to the thyroid gland (Table 1). In contrast, the majority of fusion-positive MEC
patients did not die of their disease (9/14). Therefore, we have focused this pilot study on
identifying candidate CNV loci within this more homogeneous subset and initially tested 15
genomic samples with the highest quality DNA (10 fusion-positive and 5 fusion-negative
MEC samples) by aCGH to identify all chromosomal loci that showed a discrete segment
with a common region showing gain or loss in at least 4 independent samples (Figure 1A).
This analysis identified 12 loci on 11 different chromosomal arms with either gains or
losses, including a region of DNA loss in chromosome band 9p21.3 that spanned the
CDKN2A gene (Figure 1B). Using Nexus CGH software, we then searched for regions of
significant copy number differences between favorable and unfavorable CRTC1-MAML?2
fusion-positive cases (Figure 2). Of interest, fusion-positive favorable cases showed fewer
CNV alterations by aCGH than unfavorable cases which is consistent with the hypothesis
that aggressive tumors have acquired a degree of genomic instability with additional genetic
alterations that characterizes advanced disease in other malignancies. This comparative
analysis identified 6 chromosomal regions with significant differences (5 with gains and 1
with loss) between the two groups (Figure 2B). Detailed inspection of the 9p21.3
chromosomal region showed that it overlapped precisely with the CDKN2A locus in all
unfavorable case (4/4) while none of the six favorable fusion-positive cases showed
genomic CDKN2A loss (Figure 3A). One MEC tumor cell line (H3118) showed a discrete,
single oligonucleotide probe homozygous deletion by aCGH that could not be detected with
the Nexus software using the default settings for segmentation but could be detected with
the CGH analytics software (Figure 3B), and homozygous deletion of CDKN2A was
confirmed in this sample using semi-quantitative PCR and by absent protein expression in
immunoblot analysis (data not shown). In addition, we observed that the genomic deletion in
H3118 mapped exclusively to CDKN2A and flanking intronic sequence, leaving intact the
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adjacent CDKN2B/p15 and pl4arf coding sequences which suggests that CDKN2A is
selectively targeted in the 9p21.3 region for inactivation in these tumors.

While it was not a focus of this study, we also analyzed separately the aCGH patterns for the
CRTC1-MAMLZ2 fusion-negative MEC samples (Figure 4A). We generated a frequency plot
table for discrete chromosomal regions with CNVs that were detected in at least 2 MEC
samples (Figure 4B) and, as expected, we observed a high degree of genomic variability in
each of these poor prognosis cases (Figure 4). However, although we detected evidence for a
CDKNZ2a deletion in 1/5 primary tumor samples, the number of cases tested were too small
for any further analysis.

Although inactivation of CDKN2A in salivary gland tumors has been inconsistently reported
(Cerilli et al., 1999; Guo et al., 2007), deletion or hypermethylation of CDKN2A has been
previously identified as an early event, as well as a poor prognostic marker, for several other
tumor types, including lung cancer and oral squamous tumors (Rocco and Sidransky 2001;
Brock et al., 2008; Sailasree et al., 2008). Therefore, since both somatic deletion and/or
hypermethylation are common events to inactivate CDKN2A (Herman et al., 1995; Otterson
et al., 1995), we subjected genomic DNA from the MEC samples to metabisulfite treatment
followed by methylation-specific PCR using two different sets of methylation specific
CDKN2A primers (Figure 5A). We also included three lung cancer cell lines with defined
CDKN2A status as controls: H620 (unmethylated CDKN2A); H1755 (hypermethylated
CDKN2A); and H1944 (deleted CDKN2A) as previously reported (Otterson et al., 1995) and
the ACC3 non-MEC cell line. We observed a methylation signal in the H1725 control lung
cancer samples, but detected evidence for CDKN2A methylation in only 1/9 fusion-negative
and in none of the fusion-positive MEC samples (Figure 5B), suggesting that
hypermethylation is an uncommon event in MEC tumors.

As expected, we detected a homozygous deletion of CDKN2A in the H1944 lung cancer
control sample as well as in both MEC tumor cell lines (H292 and H3118) which also
correlated with absent CDKN2A/p16 protein expression by immunoblot analysis in both
MEC tumors (data not shown). In contrast to human tumor cell lines, however, primary
MEC samples represent admixtures of cell types with variable degrees of contaminating
normal tissue that makes the quantitative assessment of homozygous DNA deletions more
difficult. To determine the presence of CDKN2A deletion, we performed semi-quantitative
PCR on the data set under the same limited cycling conditions with linear amplification
using primers for both CDKN2A and beta-actin. We observed a reduced CDKN2A/actin
ratio for each patient sample where we had previously identified discrete CDKN2A deletions
by aCGH. Conversely, we did not detect a reduced CDKN2A/actin ratio in samples without
evidence for deletion by aCGH confirming these results and aCGH analyses corresponding
to the chromosomal 9p21 region spanning CDKNZ2A are shown for all 15 MEC tested
(Figure 6).

Finally, since activating mutations of EGFR (Dahse and Kosmehl 2008; Han et al., 2008), as
well as amplification of ERBB1/EGFR and ERBB2, have been reported in subsets of MEC
tumors, we subjected genomic DNA harvested from the 23 MEC cases to PCR amplification
of EGFR exons 19-21 followed by resequencing and did not detect evidence for activating
somatic mutations in any of the samples (data not shown). These, and other recent data
(Macarenco et al., 2008; Rossi et al., 2009), suggest that activating EGFR kinase mutations
are an exceedingly rare event in mucoepidermoid cancer. In addition, while we detected
evidence for a high copy number ERBB2 amplicon in 1/15 samples, this patient presented
with a favorable prognosis CRTC1-MAML2 fusion-positive tumor and was alive free of
disease following surgery (case 93G6). These data, therefore, do not suggest that mutation
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or amplification of EGFR or ERBB2 is a poor prognostic marker for CRTC1-MAML?2
positive MEC.

DISCUSSION

While MEC is the most common malignant salivary gland tumor, it has also been reported
in a wide range of non-conventional salivary gland sites. The detection of the identical
CRTC1-MAMLZ2 fusion transcript in tumors from disparate organ sites including the oral
cavity, lung, thyroid, breast, cervix, and skin, indicate this alteration represents an important
unifying event in the tumorigenesis of MEC and suggests that the incidence of CRTC1-
MAML2 related malignancies may be underestimated in current clinical practice (Behboudi
et al., 2005; Kazakov et al., 2007; Tirado et al., 2007; Lennerz et al., 2008; Achcar et al.,
2009). Traditionally, several grading systems based on light microscopic features have been
used to guide the surgical and clinical management of these tumors (Scianna and Petruzzelli,
2007). However, recent retrospective studies have suggested that testing for the presence of
the CRTC1-MAMLZ2 rearrangement may complement histologic scoring to classify good
prognosis patients to help avoid the late complications of combined modality treatment in
these fusion-positive cases (Behboudi et al., 2006; Okabe et al., 2006; Tirado et al., 2007).
Two obstacles for this approach, however, is the lack of prospective clinical studies
demonstrating the usefulness of CRTC1-MAML2 testing, and the recent observation that a
subset of patients with CRTC1-MAML2 positive MEC rapidly develop advanced stage lethal
disease (Tirado et al., 2007; Kazakov et al., 2009).

To improve the ability to genotype MEC patients into more a homogeneous prognostic
classification, we have undertaken a pilot study to perform a global, non-biased search for
additional oncogenic targets that may cooperate with CRTC1-MAML2 expression to confer
the unfavorable outlier phenotype. Strikingly, we identified deletions within the CDKN2A/
pl16 gene in all 5 poor prognosis CRTC1-MAML2-positive cases available to us which
included 4 patients with a death due to documented metastatic MEC (10H2, 181A2, H292,
H3118) and 1 case of a 54 yo male patient with a 4 cm neck tumor that died at home without
available medical records for review (338C4). In contrast, no evidence for CDKN2A
deletion or hypermethylation was detected in 9 fusion-positive MEC tumors that were alive
free of disease or that were documented to have died of other causes without a MEC
recurrence. Although not a focus of this study, we also noted that CRTC1-MAML?2 fusion-
negative tumors had a markedly inferior prognosis (8/9 died of disease) as previously
reported (Behboudi et al., 2006; Okabe et al., 2006; Tirado et al., 2007) and several of these
samples also showed evidence for either CDKN2A methylation or deletion. Similarly,
deletion and/or hypermethylation of CDKN2A has been demonstrated to be an early
tumorigenic event in many different types of carcinomas including squamous cell tumors of
the head and neck and lung cancer (Rocco and Sidransky, 2001; Baylin and Ohm, 2006;
Brock et al., 2008). However, in contrast to lung cancer where CDKN2A hypermethylation
is a well described poor prognostic marker for early-stage disease (Brock et al., 2008) and
where inactivation of the RB/CDKNZ2A pathway is detected in essentially all advanced stage
cases (Kaye, 2002), there is less known about the role of CDKN2A in MEC or other
subtypes of malignant salivary gland cancers (Cerilli et al., 1999; Li et al., 2005; Guo et al.,
2007). For example, one study with patients from the United States detected loss of
heterozygosity at polymorphic markers flanking the CDKN2A locus in 7/9 salivary duct
carcinomas but rarely in MEC (Cerilli et al., 1999), while another study, with patients of
Asian descent, observed evidence for CDKN2A deletions and methylation in 24% and 34%
of cases, respectively (n=38 cases), using PCR analysis of archived genomic DNA (Guo et
al., 2007). In this latter report, a higher rate of CDKN2A deletions was detected in high
grade as compared to low or intermediate grade MEC, however none of these studies
included an analysis for the CRTC1-MAML2 fusion transcript to allow for the assessment of

Genes Chromosomes Cancer. Author manuscript; available in PMC 2011 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Anzick et al.

Page 7

the impact of CDKNZ2A inactivation on otherwise good prognosis fusion-positive cases.
Further evidence suggesting a role for the sequential accumulation of CDKN2A mutations in
the progression of invasive salivary gland cancer was the observation of a CDKNZ2A deletion
in a case of carcinoma ex pleomorphic adenoma that was not present in the initial matched
benign pleomorphic adenoma sample (Suzuki and Fujioka, 1998), as well as the finding of a
higher rate of CDKN2A hypermethylation in a series of carcinoma ex pleomorphic adenoma
as compared to pleomorphic adenoma (Augello et al., 2006).

In summary, progress in the classification and management of malignant salivary gland
cancers has been hampered by the inclusion of a heterogeneous collection of distinct tumor
subtypes within small clinical trials and case reports. The observation that both CRTC1-
MAML2 and CDKN2A status may optimally define a more homogenous prognostic category
for patients with MEC tumors may help in the design of future prospective studies to
develop clinical guidelines and to search for new therapeutic agents.
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Figure 1.
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A) Genome-wide frequency plot of gains (green) and losses (red) in MEC samples as a
percentage of the total group (n=15). Arrow depicts the 9p21 locus spanning the CDKN2A

gene. B) Summary of discrete chromosomal segment gains or losses observed in > 4

independent MEC samples.
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Figure 2.

A) Genome-wide comparison between CRTC1-MAML2 fusion-positive cases that died of
disease (DOD) versus fusion-positive cases that did not DOD. Regions of p<0.05 are
marked by horizontal bars of gains (green) and losses (red) on the significance track (and
tabulated in the lower panel). The frequency plot is shown for each subgroup as vertical bars
and the arrow depicts the CDKN2A locus in chromosome band 9p21.3. B) Regions of
significant difference (p<0.05) between fusion-positive died of disease (DOD) versus
fusion-positive alive samples. Dataset included six alive samples and four DOD samples.
Frequency indicates percentage in positive, DOD samples. * The frequency of loss at 9p21
is 100% because one sample (H3118) had a discrete oligo deletion which was not detected
using the default settings for segmentation, but was demonstrated by inspection of the CGH
analytics pattern (see text and Fig 3).
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Figure 3.

A) Difference in frequency of chromosome 9 copy number gains or losses in fusion-positive
DOD versus fusion-positive did not DOD. Area of p<0.05 is marked by a red (loss)
horizontal bar on the significance track and gains and losses are shown in vertical green and
red bars, respectively. For each group, values above the 0% baseline indicate a higher
frequency in the fusion-positive, DOD group whereas values below the 0% baseline
represent a higher frequency in the fusion-positive, alive MEC group. The location of
CDKNZ2A is indicated (arrow). B) Identification of a discrete CDKN2A deletion in fusion-
positive MEC sample H3118.
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Figure 4.

A) Genome-wide frequency plot of gains (green) and losses (red) in the group of fusion-
negative MEC samples as a percentage of the total group (n=5). B) Summary of discrete
chromosomal segment gains or losses observed in > 2 independent MEC samples.
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Figure 5.

A) Cartoon depicting the CpG island flanking regulatory CDKN2A exon 1 sequences
(Otterson, et al. 1995) and the approximate locations for methylation-specific primer pairs
MSP1/2 and MSP3/4 and non-methylation sensitive primer pairs bs 5/6. B) Semi-
guantitative PCR reactions were performed at the same time using linear amplification.
Control non-MEC samples for unmethylated (ACC3 and H620), methylated (H1725), and
deleted (H1944) CDKN2A.
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Figure 6.

Depiction of aCGH data at chromosome band 9p21.3 band in all 15 MEC tumors subjected
to aCGH. Data were generated from CGH Analytics software using the ADM-2 algorithm at
a threshold of 6. The normalized log?2 ratios of each MEC to reference oligo array feature is
represented as a single dot and plotted along the chromosome position on the vertical axis.
Copy number gains (red) or losses (green) were defined as normalized log2 ratio > 0.5 or <
—0.5, respectively. The position of CDKN2A is indicated by an arrow.
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