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Abstract
Rhabdomyosarcoma (RMS), consisting of alveolar (aRMS) and embryonal (eRMS) subtypes, is the
most common type of sarcoma in children. Currently, there are no targeted drug therapies available
for RMS. In searching for new molecular therapeutic targets, we performed genome-wide siRNA
library screens targeting human phosphatases (n=206) and kinases (n=691) initially against an aRMS
cell line, RH30. Sixteen phosphatases and 50 kinases were identified based on growth inhibition after
72 hours. Inhibiting polo-like kinase 1 (PLK1) had the most remarkable impact on growth inhibition
(~80%) and apoptosis on all three RMS cell lines tested including RH30, CW9019 (aRMS) and RD
(eRMS), while there was no effect in normal muscle cells. The loss of PLK1 expression and
subsequent growth inhibition correlated with decreased p-CDC25C and Cyclin B1. Increased
expression of WEE 1 was also noted. The induction of apoptosis after PLK1 silencing was confirmed
by increased p-H2AX, propidium iodide uptake, chromatin condensation, as well as caspase-3 and
PARP cleavage. Pediatric Ewing’s sarcoma (TC-32), neuroblastoma (IMR32 and KCNR) and
glioblastoma (SF188) models were also highly sensitive to PLK1 inhibition. Finally, based upon
cDNA microarray analyses, PLK1 mRNA was over-expressed (>1.5 fold) in 10/10 RMS cell lines
and in 47% and 51% of primary aRMS (17/36 samples) and eRMS (21/41 samples) tumors,
respectively, compared to normal muscles. Similarly, pediatric Ewing’s sarcoma, neuroblastoma and
osteosarcoma tumors expressed high PLK1. We conclude that PLK1 could be a promising therapeutic
target for the treatment of a wide range of pediatric solid tumors including RMS.
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Introduction
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of children and
adolescents. The majority (66%) of cases of RMS are diagnosed in children younger than 6
years of age (1). This disease is thought to arise from primitive mesenchymal progenitors that
have undergone a limited program of myogenic differentiation (2). RMS consists of a highly
heterogeneous family of tumors showing varying degrees of skeletal muscle differentiation
(3). Embryonal rhabdomyosarcoma (eRMS) and the morphological spindle/botryoid variants
are associated with intermediate and superior patient prognosis, respectively, while alveolar
rhabdomyosarcoma (aRMS) is more aggressive with a high frequency of metastasis at the time
of initial diagnosis (4). Current treatment for RMS includes chemotherapy, radiation and
surgery. The “gold standard” chemotherapeutic agents vincristine, actinomycin D and
cyclophosphamide are commonly prescribed to RMS patients (1). Chemoresistance is fairly
common as are treatment related side-effects (1,5). This is coupled to the fact that the present
cure rate for children with metastatic RMS is still only 20 – 30% (6,7). Unlike advanced
treatment strategies for other types of malignancies, there are no targeted drug therapies
available for RMS that could potentially improve overall cure rates and reduce morbidity. Thus
identifying new molecular targets of the disease is necessary.

Loss of heterozygosity on the short arm of chromosome 11 (11p15.5) characterizes eRMS
(8). In contrast, aRMS harbor the reciprocal chromosomal translocations t(2;13)(q35;q14) or
t(1;13)(p36;q14), generating a chimeric fusion gene involving the PAX3 gene (chromosome
2) or PAX7 (chromosome 1) and FKHR (chromosome 13), a member of the fork-head family
(9). The resulting gene fusions encode PAX3-FKHR and PAX7-FKHR proteins that combine
transcriptional domains from corresponding wild-type proteins and are more potent
transcription factors (10). These proteins induce cell transformation, inhibit myogenic
differentiation and apoptosis, and thus enhance oncogenic activity (11). Recently, several gene
expression studies of primary RMS tumors have provided new information about the pathways
involved in RMS (6,12–19). New evidence indicates that aRMS can be experimentally induced
by expressing PAX/FKHR fusions gene in mesenchymal stem cells followed by the
introduction of activating RAS mutation (20). Despite new knowledge and the belief that RMS
arises from disrupted proliferation and differentiation of skeletal muscle progenitor cells, the
mechanisms of growth control of RMS are not fully understood.

Kinases and phosphatases control the reversible processes of phosphorylation and are
deregulated in many diseases, such as cancer. A recent study of genome-wide small interfering
RNA (siRNA) libraries against the HeLa cervical carcinoma cell line has demonstrated that a
variety of phosphatases and kinases are critical in cancer cell survival (21). Kinase inhibitors
targeting PAX3-FKHR, IGF-1R, CDK4/6 and EGFR have also shown potent anti-tumorigenic
activity on RMS under in vitro and in vivo conditions (5,7,22–24). It is reported that
phosphorylation levels of receptors and non-receptor tyrosine kinases, as well as protein kinase
C, are elevated in RMS tumors and therefore have high therapeutic potential (25). These studies
indicate that interfering with key signal transduction pathways may lead to improved therapies
for RMS. However, genome-wide screens have not been reported to date.

In this study, we screened two siRNA libraries of 897 human phosphatases and kinases against
an aRMS cell line, RH30 (SJCRH30), with the goal of finding novel therapeutic targets for
this particular type of cancer.
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Materials and Methods
Cell Lines

RMS cell lines, RH30, CW9019 and RD, and a mouse muscle cell line, C2C12, were cultured
in Dullbecco’s Modified Eagle Medium purchased from Invitrogen; a human pediatric
glioblastoma multiforme cell line, SF188, was cultured in MEM/EBSS medium from Hyclone;
an Ewing’s sarcoma, TC-32 and two neuroblastoma cell lines, IMR32 and KCNR, were
maintained in RPMI 1640 medium from Invitrogen. All media contained 10% fetal bovine
serum (FBS) except for TC-32, IMR32 and KCNR cells that were grown in medium with 15%
FBS. The cell lines were maintained at 5% CO2 at 37°C and subcultured twice weekly during
the experimental period.

Phosphatase and Kinase siRNA Libraries
The siRNA libraries (V2.0) of 206 phosphatases and 691 kinases were purchased from Qiagen.
There are two different sequences of siRNAs targeting each of the genes in the libraries. The
siRNA samples were supplied in 96-well plates. They were diluted to working stocks at 2uM
upon arrival following the manufacturer’s instructions, and stored at −20°C until use.

siRNA Library Screen and High Content Screening (HCS) Analysis
RH30 cells were seeded (5000/well) into each well of 96-well plates (Becton Dickinson)
overnight. The cells were then transfected with siRNA using Lipofectamine RNAiMAX
(Invitrogen) following the manufacturer’s instruction. The final concentration of siRNA was
5 nM in 120 µl medium per well. The assay plates were incubated at 37°C with 5% CO2 for
72 h. Forty minutes before the end of siRNA treatment, nuclear dyes, Hoechst 33342 and
propidium iodide (PI) (Sigma-Aldrich) were added to each well of the 96-well plates to give
a final concentration of 1 µg/ml of each dye, and the plates were incubated as before. The cells
were washed gently with phosphate buffered saline (PBS) three times before the cells were
fixed in 2% paraformaldehyde. The plates were kept at 4°C in the dark before analysis on the
ArrayScan HCS system (Thermo Fisher Scientific). Twenty focus fields per cell well were
scanned and analyzed. The screen was repeated at least once to confirm the activity of siRNAs.
Cells treated with Lipofectamine RNAiMAX alone without siRNA served as controls.
Additionally, scrambled siRNAs and green fluorescent protein siRNAs were included in the
libraries, and served as internal references in each assay plate. Apoptosis was identified by
nuclear morphology and dye intensity by the ArrayScan HCS system (26). Growth inhibition
was calculated as a percentage of the control. To focus on the phosphatases and kinases with
the most significant effect on cell growth, only those siRNAs that were active for both
sequences and showed a minimum of 30% inhibition compared to control were considered to
be active in the screen.

Effects of Silencing the Selected Phosphatases and Kinases in Different RMS Cell Lines
To evaluate whether the active phosphatases and kinases identified in the primary screen are
similarly active in different RMS cell types, twelve phosphatases and 16 kinases were silenced
in two additional RMS cell lines, CW9019 (aRMS) and RD (eRMS). The experimental
methods are the same as described above for the library screen.

Analysis of the Active Genes by IPA
To explore the possible links or interactions among the active phosphatases and kinases
identified in the siRNA library screen, IPA software by Ingenuity Systems was employed to
further analyze these genes and to group them into functional categories (4) and cell signaling
pathways.
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Effect of PLK1 Knocking Down on Pediatric Cancer Cell Lines in vitro
To test the effect of silencing PLK1 on cell growth in vitro, RH30, CW9019, RD, SF188 and
C2C12 cell lines were cultured and transfected with PLK1 siRNA as described above for the
library screen with the addition of six replicates for each treatment.

Immunofluorescent Assays and Immunoblotting
To directly visualize the expression of PLK1 in cells, RH30, CW9019, RD and SF188 cells
were seeded at 1.0 × 105 cells on glass cover slips, washed with PBS, fixed with 2%
formaldehyde for 20 min and rinsed twice with PBS. The slides were then incubated with PBS
containing 0.1% saponin (Sigma-Aldrich) for 30 min. Next, the cover slips were washed with
PBS, and incubated with either rabbit anti-PLK1(8–21) antibody (1:100, Calbiochem) or (for
double-staining) a mixture of mouse anti-PLK1 antibody (1:100, Sigma-Aldrich) with rabbit
antibody against either p-CDC25C Ser198 (1:100; Cell Signaling Technology), cyclin B1(M-20)
or WEE 1(C-20) ( 1:100, Santa Cruz Biotechnology) dissolved in buffer containing 10% bovine
serum albumin and 2% goat serum for 1 h at room temperature in a humidified container. After
washing three times with PBS, the slides were incubated with Alexa 488 anti-rabbit antibody
or mixture of Alexa 546 anti-mouse antibody and Alexa 488 anti-rabbit antibody (for double-
staining) for 1 h, washed three times and then mounted with Vectashield mounting medium
from Vector Laboratories. Hoechst 33342 dye was used for nuclear staining.

The silencing efficacy of PLK1 siRNA on protein expression was tested using standard SDS-
PAGE methods (27) on a panel of pediatric cancer cell lines, including RH30, CW9019, RD,
SF188, TC-32 (Ewing’s sarcoma), IMR32 and KCNR (neuroblastoma) and C2C12 (mouse
myoblast). Primary antibodies used for the studies and their dilutions were as follows: anti-
PLK1 (1:5000; Sigma-Aldrich), anti-caspase 3 (cleaved), anti-PARP (cleaved) and anti-pan-
actin (1:1000; Cell Signaling Technology). Apoptosis of the cells was simultaneously assessed
by probing with anti-p-H2AXS139 antibody (1: 1000) from Abcam. Apoptosis after PLK1
siRNA treatment of RH30, CW9019, RD and SF188 cells was also analyzed quantitatively on
the HCS system using PI and p-H2AXS139 as indicators as described (26).

PLK1 mRNA Expression in RMS Cell Lines and Primary Tumors
RMS cell lines used for microarray analysis included five eRMS cell lines (Birch, RD,
TTC-442, TTC-516, and TTC-1318), one aRMS fusion-negative cell line (RH18), and four
aRMS FAX3-FKHR fusion-positive cell lines (HR, JR-C, RH28, and RH30). All RMS cell
lines were cultured in RPMI 1640 medium with 10% FBS (Invitrogen).

Frozen tumor samples from patients enrolled in the Intergroup Rhabdomyosarcoma Study
Group (IRS-IV and IRS-V) Children’s Oncology Group clinical trials were obtained from the
Pediatric Cooperative Human Tissue Network (CHTN) tumor bank. Additional tumor samples
and normal (5 yrs old) or fetal skeletal muscle samples were obtained from the Childrens
Hospital Los Angeles (CHLA) institutional tumor bank. Histopathologic diagnoses were based
on the International Classification of Rhabdomyosarcoma criteria (28). All tumor samples
contained >80% tumor cells. Total RNA extraction, gene expression microarrays and data
analysis were performed as previously described (29,30).

PLK1 mRNA Expression in Primary Tumors of Pediatric Ewing’s Sarcoma, Neuroblastoma
and Osteosarcoma

To assess expression of PLK1 in other pediatric solid tumors, as well as in normal human
tissues, whole genome expression profiling data from Affymetrix GeneChip Human Exon 1.0
ST oligonucleotide microarrays was analyzed. For tumor studies, total RNA was isolated from
samples acquired from the CHLA tumor bank with preparation and labeling of RNA for array
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hybridization performed in the CHLA genome core facility according to Affymetrix protocols.
Data files for 33 normal tissue samples (11 different tissues in triplicate) were downloaded
from the Affymetrix website
(http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx). Raw
signal data from all normal and tumor cell files was analyzed using Partek Genomics Suite
software (Partek). Signal intensities for core probesets were quantile normalized by robust
multichip averaging and transcript expression levels determined by median summarization.

Results
siRNA Library Screen Identifies Phosphatases and Kinases Central to the Growth Control of
RMS

In this study, we profiled the impact of each human kinase and phosphatase by transfecting
RH30 cells with 5 nM siRNA in duplicate using two unique oligonucleotides. Cell growth was
assessed 72 h later by Hoechst 33342 staining using a HCS system. From this screen, we
determined that 16 of the 206 phosphatases (~8% of all the known phosphatases) evaluated
played a significant role in proliferation and survival of RH30 cells in vitro (Table 1). The
degree of growth inhibition ranged from 30 – 80% and in some instances apoptosis was also
observed. Much of the anti-tumor activity was observed in protein (tyrosine and serine/
threonine) phosphatases (Table 1). We queried public databases for evidence of these
phosphatases in RMS. Notably almost all of these “survival phosphatases” have previously
been shown to be either up-or down-regulated in RMS tumor samples compared to normal
muscle (Table 1), and they are thus potential therapeutic targets for RMS. With respect to the
kinase screen, 50 of the 691 kinases (~7% of the kinome) were shown to play a significant role
in the growth and survival of RH30 cells in vitro (Table 2). Knocking down these kinases by
siRNAs caused an overall 30 – 80% growth inhibition and/or apoptosis. Most of the active
kinases are functionally related to cell cycle, cell death, MAPK signaling and lipid metabolism
(Table 2). Approximately one-third of the identified kinases are known to be expressed, either
down- or up-regulated, in RMS tumor samples (Table 2). Yet, most of them have not previously
been associated with RMS. Of particular note, PLK1 was one of the most important “survival
kinases” for RMS identified in this screen. Further validation of this exciting lead is described
below.

To understand how the identified phosphatases and kinases are functionally related to one
another the data were analyzed using IPA. IPA employs proprietary databases to establish cell
signaling networks based on peer-reviewed publications. The analysis confirmed the functional
categories of phosphatases and kinases based on gene ontology and demonstrated that there is
a significant association of the identified genes with functions in cell cycle, cell death, and
metabolism (Table 1 and 2; Fig. 1). Of the 50 kinases identified, many of them are directly or
indirectly involved in MAPK, PI3K and Jnk pathways, that lead to the eventual activation of
PLK1 (Fig. 1D). On a genome-wide scale, the present study provides new clues about the
growth control of RMS cells and important signaling networks involved. This information may
lead to the development of novel therapeutic approaches in the future.

Ablation of Identified Phosphatases and Kinases Inhibits the Growth of Both aRMS and
eRMS in vitro

Given the molecular heterogeneity of RMS and the initial aRMS-based screen, the effects of
silencing selected phosphatases and kinases that were identified in the primary screen were
further tested on two additional RMS cell lines, CW9019 (aRMS) and RD (eRMS). The
selected siRNAs targeting 12 phosphatases were rescreened and showed significant growth
inhibition on both RH30 and CW9019 cells (Fig. 2A). Similarly, the siRNA silencing of 16
selected kinases inhibited the growth of all three RMS cell lines, RH30, CW9019, and RD
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(Fig. 2B). The results indicate a broad activity of these target genes on RMS, and further
validate the screening results. It is noteworthy that inhibiting PLK1 consistently proved to have
the greatest impact on growth suppression.

Silencing PLK1 Induces Significant Growth Inhibition and Apoptosis of Pediatric Cancer Cell
Lines

In order to validate PLK1 as a potential target, its expression was evaluated in the RMS cell
lines, RH30, CW9019 and RD, and a human pediatric glioblastoma multiforme cell line,
SF188, by immunofluorescence and Western blotting. PLK1 was readily detectable in each of
these cell lines and was exclusively found in the nucleus (supplementary Fig. S1). Silencing
PLK1 by siRNA caused more than 80% growth reduction in these four cell lines but not in a
mouse myoblast cell line, C2C12 (Fig. 3A). Evidence for the induction of apoptosis following
the loss of PLK1 was independently confirmed using cell-based immunofluorescence assays
for p-H2AXS139 and PI uptake (Fig. 3B). The growth reduction correlates with the loss of
PLK1 protein expression by immunoblotting and an induction of apoptosis as indicated by p-
H2AX S139 (Fig. 3C). These findings were extended to models representing pediatric Ewing’s
sarcoma (TC32), glioblastoma (SF188) and neuroblastoma (IMR32 and KCNR) where
silencing PLK1 markedly induced apoptosis based on the induction of p-H2AXS139 (Fig. 3C).
Furthermore, we confirmed that silencing PLK1 leads to the induction of apoptosis given the
observed activation of caspase 3 and PARP cleavage (supplementary Fig. S2). In contrast,
silencing PLK1 in non-tumor mouse myoblast C2C12 cells did not induce apoptosis (Fig. 3C
and supplementary Fig. S2). To explain how the loss of PLK1 leads to growth inhibition and
the induction of apoptosis we report that silencing PLK1 caused decreased levels of p-CDC25C
and cyclin B1. There was also an increase in the cell cycle arresting protein WEE 1 (Fig. 3D).

PLK1 Is Over-expressed in 10/10 RMS Cell Lines and in ~50% of Primary RMS Tumors
Gene expression microarray analysis revealed that PLK1 was highly expressed in all ten RMS
cell lines examined compared with normal (5 yrs old) or fetal skeletal muscle cells (Fig. 4A).
Moreover, PLK1 was present in all primary tumor samples and it was over-expressed (>1.5
fold increase compared to normal tissue) in 47% and 51% of primary aRMS (17/36 samples)
and eRMS (21/41 samples) tumors (Fig. 4B and C; supplementary Table S1) based on gene
expression analysis. The over-expression of PLK1 applies to subtypes of aRMS regardless of
whether or not they express PAX-FKHR fusion proteins. Specifically, PLK1 was over-
expressed in 67% (4/6 cases) of tumors where neither PAX3/FKHR nor PAX7-FKHR were
detected. Similarly, 43%, (9/21 cases) of PAX3-FKHR positive tumors and 44% (4/9 cases)
of PAX7-FKHR positive tumors over-expressed PLK1. Thus, PLK1 is commonly expressed
in primary RMS and an excellent candidate for targeted therapy.

PLK1 Is Over-expressed in Primary Tumors of Pediatric Ewing’s Sarcoma, Neuroblastoma
and Osteosarcoma

When PLK1 expression in primary pediatric tumors of RMS, Ewing’s sarcoma, neuroblastoma
and Osteosarcoma were compared together in the same study, it was found that all four groups
had significantly (p < 0.001) higher levels of PLK1 than normal tissues from breast, cerebellum,
heart, kidney, liver, muscle, pancreas, prostate, spleen and thyroid (Fig. 4D). The results
support our earlier findings in RMS and expanded the potential application of PLK1 in more
pediatric cancers.

Discussion
Recently several studies have described the in vivo gene expression profiles of RMS, with the
aim of associating specific genes that distinguish subtypes of RMS either for tumor diagnosis
or for tumorigenesis (4,6,12–18,30). Our study represents the first attempt to identify novel
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therapeutic targets by directly measuring the inhibitory effect of siRNA libraries on the growth
of RMS cells. As a result, we have identified 16 phosphatases and 50 kinases that play
significant roles in the growth control of RMS cells. Some of these genes are implicated in
RMS cells for the first time while others have previously been linked to this disease, including
CDK4, PDGFRA, PRKCD, PRKCQ, SKP2, etc. (Table 2) (4,22,25,31). Overall these
examples illustrate the power of using an unbiased genome-wide screening strategy to identify
novel targets, particularly when the results confirm more traditional candidate gene approaches.
The screening results further advance our understanding of the growth control of RMS cells.
In addition, some of these active genes are known to be present in primary tumor samples and
are considered important in the tumorigenesis of RMS and perhaps growth control. Together
this indicated a promising avenue for the advancement of targeted therapies for this recalcitrant
disease.

Several cell signaling pathways have been suggested for RMS tumors for their involvement in
anti-apoptosis, tumor progression and growth (19). In particular, PDK-1/AKT, IGF-2/AKT or
ERK, PI3K/AKT, mTOR/Hif-1α/VEGF and STAT3 pathways have been implicated in RMS
(19,24–25,31–35). Consistent with this, we show by IPA analysis that a majority of the active
kinases are associated directly or indirectly with MAP/PI3K/Jnk pathways, and that these
pathways lead to the downstream activation of PLK1 that is one of the most important “survival
kinases” for RMS identified in the screen. Such information is crucial in understanding RMS
in a large context and in designing therapeutic strategies accordingly, as the combined therapy
of several key targets may lead to better outcomes of the treatment.

Drug discovery efforts have already been initiated against cell cycle related kinases, such as
cyclin-dependent kinases (CDK), Aurora and Polo-like kinase families. These cell cycle
protein kinases play critical roles in mitotic entry and chromosome segregation and are often
over-expressed in a variety of cancers (36). Inhibition of these proteins frequently results in
mitotic arrest and subsequently apoptosis. Therefore, it is not surprising that a large number
of the active kinases identified in this study, in particular, PLK1, AUKRB and CDK4, are in
the functional groups related to cell cycle, cell death or apoptosis. The pharmacologic inhibition
of these cell cycle protein kinases may represent a useful therapeutic strategy to control tumor
growth and possibly promote myogenic differentiation in RMS (22). Clinical trials addressing
the efficacy of PLK have recently begun for the treatment of adult cancers (37,38), and therefore
similar approaches may be taken to improve the treatment of pediatric RMS.

PLK1 is perhaps the best characterized member of the human Polo-like family. It acts in both
mitotic entry and progression, and plays a key role in cell cycle checkpoint recovery after DNA
damage (38). PLK1 is over-expressed in a variety of cancers, such as lung, breast, ovarian and
prostate cancers (36), and often correlated with poor patient prognosis (38). Numerous studies
have now established that PLK1 is a prime target for drug development in proliferative diseases
such as cancers (36,38,39). However, its significance in childhood cancers has not been
reported. PLK1 was identified in our study as one of the most important survival kinases for
RMS cells in vitro since silencing it resulted in the greatest degree of growth inhibition
compared to the other kinases and phosphatases tested. It was also found to be over-expressed
in 49% of primary RMS tumors (n= 77) in this study. Our data also indicates that normal
skeletal muscle may not require PLK1 while cancer cells do. This is in direct support of the
studies that show PLK1 depletion induced apoptosis in cancer cells, while normal cells could
survive (40,41). It has been suggested that the loss of PLK1 in primary cells may be
compensated by backup kinases and thus is less sensitive to PLK1 depletion (41). In our study,
silencing PLK1 in the RH30 cancer cell line led to decreased protein levels of p-CDC25C and
cyclin B1, both of which are direct targets of this kinase (42,43). Conversely, there was an
increase in WEE 1, the cell cycle inhibitor. These results indicate that the significant growth
inhibition of PLK1 silencing on RMS cells is likely attributable to cell cycle arrest at G2/M,
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followed by apoptosis, as is the case in other cancer cell types (41,44,45). In addition, there
are reports that PLK1 is involved in the inhibition of the mitochondrial-mediated apoptosis
pathway by maintaining the stability of anti-apoptotic proteins such as survivin, Bcl-2 and
Mcl-1 (46). Several studies have shown that induction of apoptosis after PLK1 depletion is
independent of the p53 pathway. However, this issue remains somewhat controversial (41,
45,47). The RMS cell lines used in this study express mutant p53 (48,49), indicating that its
status may not be a determinant of sensitivity to PLK1 depletion. Further study is necessary
to clarify the apoptotic pathway.

Similar to PLK1, the knock down of several phosphatases and kinases such as PPP1R12C,
SKIP, PRKCD, AURKB and PFTK1 also resulted in significant inhibition of RMS cell lines,
and are candidates for further evaluation. Also, for some siRNAs in the libraries, the two siRNA
duplexes targeting the same gene showed significant differences in their growth inhibition
activity (data not shown). They were not considered further in this study, but deserve future
investigation. In addition, it is noted that some of the active genes identified in this study were
reported to be down regulated in a few gene profiling studies (16,17,19,22), although silencing
them by siRNA caused significant in vitro growth inhibition. The essential roles of theses genes
under in vitro condition may reflect a difference of expression and importance of the genes
from that under in vivo conditions. There are also conflicting reports of the gene expression
status (15–17,19,22,31). Future exploration of these potential therapeutic candidates should be
accompanied by confirmation of their in vivo status.

In conclusion, we used a genome-wide rather than candidate approach to search for novel
molecular targets for RMS. By screening the siRNA libraries of human phosphatases and
kinases, we have identified 16 phosphatases and 50 kinases that play significant roles in the
growth control and survival of RMS cells. In particular, PLK1 is one of the most important
survival kinases for RMS. Silencing it by siRNA caused significant growth inhibition and
apoptosis in vitro. More importantly, it is over-expressed in about half of the RMS primary
tumor biopsies examined regardless of their molecular subtype, and thus holds great promise
to be a therapeutic target for RMS. The same is true for other types of pediatric Ewing’s
sarcoma, osteosarcoma, neuroblastoma and brain tumors such as glioblastoma multiforme. A
recent study reported that PLK1 was an excellent molecular target for the treatment of
leukemias and may have important implications for improving the treatment of pediatric
hematological malignancies (50). Further studies on PLK1 and other identified genes may lead
to better and safer therapeutic strategies for RMS and other pediatric cancers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Active phosphatases and kinases grouped into functional categories as well as cell signaling
pathways by IPA analysis. A, Functional categories of phosphatases. B, Simplified signaling
pathways for phosphatases. C, Functional categories of kinases. D, Simplified signaling
pathways for kinases. Note the small p-values and thus large –log (p-value) indicating
significant association rather than random observation for categories such as cell cycle, cell
death, etc. The p-value is calculated with the right-tailed Fisher's Exact Test according to IPA.
Only those that have more Functions/Pathways/Lists Eligible molecules than expected by
chance are significant.
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Figure 2.
siRNA gene silencing of selected phosphatases and kinases which were identified in primary
screens significantly inhibited the growth of additional aRMS and eRMS cell lines. A, Growth
inhibition of two aRMS cell lines, RH30 and CW9019, by 12 phosphatase-directed siRNAs.
B, Growth inhibition of two aRMS cell lines, RH30 and CW9019, and an eRMS cell line, RD,
by 16 kinase-directed siRNAs. Data are average of two independent tests for each cell line.
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Figure 3.
Growth inhibition and apoptosis induced by PLK1 siRNA treatment in different pediatric
cancer cell lines. A, Percentage of growth of cell lines following PLK1 treatment (PLK1)
compared to mock treated cells (C). Data are mean ± SD. B, Percentage of apoptotic cells of
RH30, CW9019, RD and SF188 cells after PLK1 siRNA treatments as well as the apoptotic
nuclear morphology of RH30 revealed by immunofluorescence. Apoptosis is based on PI-
positive cells analyzed by the HCS system (p < 0.05, Student’s t-test). For apoptotic nuclear
morphology, the top panel shows control samples and the bottom panel shows PLK1 siRNA
treated samples. Arrows indicate nuclear condensation or fragmentation. C, Immunoblotting
of PLK1 and p-H2AX S139 in different pediatric cancer cell lines, showing the decrease of
PLK1 and the increase of p-H2AX S139 levels in PLK1 siRNA treated samples (PLK1)
compared to the controls (C). Note that p-H2AX S139 in mouse muscle C2C12 cells did not
increase after treatment. RMS: rhabdomyosarcomas; GBM: pediatric glioblastoma
multiforme; Ewing: Ewing’s sarcoma; NB: neuroblastoma. D, Mechanism of growth inhibition
of RMS (RH30) by silencing PLK1. Note that the cells after PLK1 knockdown (PLK1 siRNA)
express lower levels of p-CDC25C and cyclin B1. There was also increase in the cell cycle
inhibitor WEE 1 in contrast to the control (WT).
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Figure 4.
Expression of PLK1 mRNA in normal skeletal muscle samples, RMS cell lines, primary tumor
biopsies of pediatric RMS, Ewing’s sarcomas, osteosarcoma and neuroblastoma as revealed
using cDNA microarrays. A, PLK1 over-expression in ten RMS cell lines. B, PLK1 expression
in primary aRMS tumor biopsies. C, PLK1 expression in primary eRMS tumor biopsies. D,
PLK1 expression in primary tumor biopsies of Ewing’s sarcoma (ESFT), neuroblastoma
(NBL) and osteosarcoma (OS) in comparison to RMS (ERMS and ARMS) and normal tissues.
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