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Abstract

2-(4-Aminophenyl)benzothiazoles related to 1 are potentially important pharmaceuticals.
Metabolism apparently involves oxidation and esterification to 3. In water, hydrolysis and photolysis
of 3 generates the nitrenium ion 4 that can be detected indirectly by N3

− trapping and directly by
UV-vis spectroscopy following laser flash photolysis. The transient, with λmax 570 nm, and a lifetime
of 530 ns, reacts with N3

− at a diffusion-controlled rate and generates the quinol 6 by reaction with
water.

Benzothiazole derivatives such as 2-(4-aminophenyl)benzothiazole, 1, are under investigation
as anti-tumor, antifungal, and antibacterial agents,1–3 and as radiopharmaceuticals for binding
and in vivo imaging of Aβ-plaques, one of the earliest pathological processes in the
development of Alzheimer’s disease.4 One anti-tumor derivative of 1 is currently in Phase 1
clinical trials in Great Britain.5 The use of 1 and its derivatives as anti-tumor agents requires
biological activation.5,6 The proposed metabolism of 1 to form the active agent 3 is shown in
Scheme 1, although neither 2 nor 3 had been isolated and characterized. It is presumed that 3
further decomposes into a reactive electrophile, but no direct evidence for this proposal has
been presented.7

We have succeeded in synthesizing both 2 and 3 from 2-(4-nitrophenyl)benzothiazole using
procedures we previously developed for making similar derivatives of carcinogenic aromatic
amines (Scheme 2).8 Reduction of the nitro compound9 with hydrazine hydrate in the presence
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of 5% Pd/C catalyst generates 2 in moderate yield, while tratment of 2 with acetyl cyanide in
the presence of N-ethylmorpholine provides 3 in satisfactory yield. We now report the indirect
and direct detection of nitrenium ion 4 (Scheme 3) from hydrolysis and photolysis of 3.

Kinetics of the decomposition of 3 (2.5 × 10−5 M) at pH 7.1 in phosphate buffer, and the
formation of the major hydrolysis product 6 (Scheme 3, identified by HPLC and 1H NMR
comparison to an authentic sample10) monitored by UV spectroscopy, are described by two
pseudo-first-order rate constants, ko and k1. HPLC studies (Figure 1A) show that the larger rate
constant, ko governs the decay of 3, while the appearance of 6 is biphasic, and is fit well by a
rate equation for two consecutive first-order reactions. The larger rate constant generated by
the fit is equivalent in magnitude to ko measured for the disappearance of 3. The rate of
appearance of 6 is limited by the smaller rate constant, k1. Kinetics of the appearance of 6 are
consistent with its formation from a long-lived intermediate (lifetime ca. 2 h at 10 °C) that is
generated by hydrolysis of 3. Steady-state photolysis of an identical aqueous solution of 3 for
30 s with UVB lamps leads to photo-decomposition of 96% of 3 (Figure 1B). Generation of
6 now occurs via a simple first-order process governed by k1. Correction for the small amount
of 3 remaining after photolysis shows that 92% of the observed yield of 6 under photolysis
conditions is due to photo-decomposition of 3.

The results show that 6 is generated both by hydrolysis and photolysis of 3, and suggest that
a common pathway is involved in both processes.

Addition of N3
− to the hydrolysis solution does not affect the rate of decomposition of 3, but

does significantly decrease the yield of 6 at very low [N3
−] (Figure 2), demonstrating that

N3
− traps a reactive intermediate produced in a rate limiting step. As the yield of 6 decreases,

the yields of two new products, not generated in the absence of N3
−, increase. Application of

the “azide clock” equations11 to the yields of these three products generates the experimental
kaz/ks shown in Figure 2. Although the azide products have not yet been characterized, the
structure of 6 and the trapping results show that N3

− competes with the solvent for a selective
cationic intermediate, 4. The kinetics of the formation of 6 during hydrolysis of 3 implicates
5 as a precursor, although 5 has not yet been detected.

Laser flash photolysis (LFP) of 3 in O2-saturated pH 7.1 phosphate buffer at 308 nm generates
a transient UV spectrum with λmax ca. 570 nm (Figure 3). The absorbance at 570 nm decays
in a first-order manner (Supporting Information, Figure S1). The rate constant, kobs, increases
linearly with increasing [N3

−] (Figure 4).

The slope of that plot is kaz, the second-order rate constant for reaction of N3
− with the reactive

intermediate, while the intercept is ks, the pseudo-first-order rate constant for reaction of the
intermediate with the aqueous solvent. The ratio kaz/ks of (2.64 ± 0.13) × 103 M−1 is identical
to that obtained from the azide-trapping experiments, demonstrating that both experiments
detect the same intermediate, 4, with a lifetime (1/ks) of ca. 530 ns.

Scheme 3 summarizes the results of our experiments. This scheme is similar to that previously
demonstrated for the decomposition of ester derivatives of carcinogenic aromatic
hydroxylamines.12 The cation 4 is about as selective as the 4-biphenylylnitrenium ion, 7 (kaz/
ks = 2.9 × 103 M−1) that also yields a quinol, 8, as its major hydration product.12 The
intermediate detected after LFP is definitely 4, not the imine 5 because the kinetics performed
by UV spectroscopy and HPLC show that 5 has a lifetime of about 30 min at room temperature,
while the transient generated during the LFP experiments has a lifetime of 530 ns.

An apparent imine intermediate can be detected by HPLC during the conversion of 7 into 8.
12 This species has a lifetime of ca. 6 h at room temperature, while 7 has a lifetime of 560 ns
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under the same conditions.12 The quinol product 6 is also the hydration product of the related
oxenium ion 9 (Scheme 4).10

The azide adduct identified in that study is 10, and kaz/ks for 9 at 80 °C is 310 M−1.10 The
structure of 10 demonstrates that the charge in 9 is highly delocalized, and kaz/ks comparisons
to other oxenium ions show that the azide/solvent selectivity of 9 is similar to the 4-
biphenylyloxenium ion, 11.10 Since 4,7, 9, and 11 react with N3

− at or near the diffusion
controlled limit, the aqueous solution lifetimes of 4 and 7 and also of 9 and 11 are very similar.
10,12,13 These results show that the 4-(benzothiazol-2-yl) group behaves as a significantly
delocalizing and stabilizing substituent for both oxenium and nitrenium ions.

It is now apparent that putative metabolites of anti-tumor benzothiazoles will give rise to
selective, long lived nitrenium ions in aqueous solution. Although metabolites of carcinogenc
aromatic amines have long been known to generate highly selective nitrenium ion intermediates
in aqueous solution,12 this is, to the best of our knowledge, the first demonstration that a
putative metabolite of an anti-tumor drug also generates such an intermediate. We are
continuing this study with an emphasis on the reaction of 4 and related nitrenium ions with
biological nucleophiles.
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Figure 1.
Time course for the disappearance of 3 and formation of 6 at 10 °C in pH 7.1 phosphate buffer
monitored by HPLC with UV detection at 212 nm: (A) hydrolysis reaction in the dark, (B)
after steady-state photolysis for 30 s. Rate constants were obtained from fits to single or double
exponential rate equations.
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Figure 2.
Results of azide trapping experiment in pH 7.1 phosphate buffer at 30 °C. Key: 6( , 212 nm),
apparent major azide adduct ( , 330 nm), apparent minor azide adduct ( , 212 nm). The kaz/
ks is the average of the fit of all three materials to the standard “azide clock” formulae.
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Figure 3.
Transient absorbance spectrum obtained 20 ns after 308 nm excitation of 3 in O2-saturated pH
7.1 phosphate buffer. Spectrum recorded with a 20 ns window.
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Figure 4.
Plot of kobs from LFP experiments vs. [N3

−]. Data were fit by a weighted least-squares
procedure to obtain ks and kaz. Adjusted r2 = 0.9967.

Chakraborty et al. Page 8

Org Lett. Author manuscript; available in PMC 2010 November 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Proposed metabolism of 1.
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Scheme 2.
Synthesis of 2 and 3.
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Scheme 3.
Kinetic Scheme for 3 and 4.
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Scheme 4.
Chemistry of the related oxenium ion 9.
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