

NIH Public Access **Author Manuscript**

Org Lett. Author manuscript; available in PMC 2010 November 5.

Org Lett. 2009 November 5; 11(21): 4798–4801. doi:10.1021/ol9018002.

On the Impact of Steric and Electronic Properties of Ligands on Gold(I)-Catalyzed Cycloaddition Reactions

Diego Benitez‡, **Ekaterina Tkatchouk**‡, **Ana Z. Gonzalez**†, **William A. Goddard III***,‡, and **F. Dean Toste***,†

Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 and Department of Chemistry, University of California, Berkeley, CA 94720

Abstract

It is shown that [4+3] and [4+2] cycloaddition pathways are accessible in the Au(I) catalysis of allenedienes. Seven-membered ring gold-stabilized carbenes, originating from the [4+3] cycloaddition process, are unstable and can rearrange *via* a 1,2-H or a 1,2-alkyl shift to yield six- and sevenmembered products. Both steric and electronic properties of the AuL⁺ catalyst affect the electronic structure of the intermediate gold-stabilized carbene and its subsequent reactivity.

> Cycloisomerization and cycloaddition reactions catalyzed by cationic gold(I) complexes have been employed effectively to install high degrees of structural complexity under mild conditions.¹ Many of these reactions are proposed to proceed via cationic intermediates which, depending on the reaction, display reactivity reminiscent of gold-stabilized carbenes² or carbocations.³ This dichotomy is highlighted by the striking differences between the goldcatalyzed intermolecular reaction of allenes-alkenes and allene-dienes: the former generally provided the $[2+2]$ -cycloadduct,⁴ while the corresponding reaction with dienes allowed for ligand-dependant access to either the 6 or 7-membered ring products (Eq 1).⁵ Moreover, evidence was accumulated in support of a stepwise, cationic mechanism in the $[2+2]$ cycloaddition, which contrasted dramatically with the experimental support for concerted [4 +2] and [4+3]-cycloadditions. In order to elucidate the factors dictating the reaction pathways, we performed a quantum mechanical study using the M06 flavor⁶ of density functional theory (DFT). In doing so, we hoped to gain insight into, not only the mechanism of the [4+2] and [4 +3] cycloaddition reactions, but also the nature of the Au-C bond in these cationic intermediates and the factors governing their reactivity.

fdtoste@berkeley.edu; wag@wag.caltech.edu.

[†]University of California

[‡]California Institute of Technology

Supporting Information Available. Supplied are XYZ coordinates. This material is available free of charge via the Internet at <http://pubs.acs.org>.

(1)

The accuracy of our computational method [M06/LACV3P++**(2f)] was validated against relative binding data for [IPrAu]⁺ to isobutylene and propene. Geometry optimizations were performed using the M06 functional and the LACVP** basis set. Electronic energies were obtained from single point calculations using the $LACV3P++**(2f)$ basis set, which includes a double-ζ f-type polarization function on gold. All other atoms used the 6–311++G** (see S. I. for more details). The M06 analytic Hessian was used to obtain vibrational thermodynamic corrections (ZPE, H_{vib}, S_{vib}). We calculated a binding free energy difference $\Delta G = 1.0$ kcal/ mol in CH₂Cl₂ at − 60 °C, which is in excellent agreement with $\Delta G = 0.97$ kcal/mol from ¹H-NMR experiments.⁷

First, we located a transition structure for the uncatalyzed concerted [4+2]-cycloaddition process with a barrier of $\Delta G^{\ddagger} = 31.1$ kcal/mol (Figure 1). Not surprisingly, we were unable to locate a transition state for the uncatalyzed [4+3]. We next turned our attention to the Au(I)catalyzed reaction using PMe₃ as a ligand. Me₃PAu+ coordinates to the allene, followed by formation of Au-stabilized allylic cation⁸ **4** with an activation free energy barrier (**TS14**) of ΔG‡= 6.8 kcal/mol (Scheme 1). Intermediate **4** undergoes a concerted⁹ [4+3] cycloaddition via rate-limiting **TS45**10 at 14.6 kcal/mol (for L=PMe3) leading to intermediate **5**.

Our results suggest that intermediate **5** is a key bifurcation point in the pathways leading to the formation of six- and seven-membered ring products **2** and **3** via a 1,2-alkyl shift (**TS52**) or via a 1,2-hydrogen shift (**TS53**).11,12 We were able to locate a transition state (**TS12**) for the conversion of 1 ·AuPMe₃ to 2 ·AuPMe₃ by a direct [4+2]-cycloaddition; however, this process is 13.9 kcal/mol higher in energy than the rate-determining barrier for the pathway via intermediate **5**.

Having established the mechanism using $PMe₃$, we calculated the relative energies for key intermediates and transition structures for catalysts bearing $P(OPh)_{3}$, PPh_{3} , and $P(tBu)_{2}(o$ biPh). The phosphite ligand facilitates the $[4+3]$ cycloaddition with respect to PMe₃ and PPh₃ (**TS45**·AuP(OPh)₃ is 7.9 and 7.2 kcal mol⁻¹ lower in energy than for PMe₃ and PPh₃ respectively). In contrast, $[Au \cdot P(tBu)_{2}(o-biPh)] + \text{catalyzed reaction shows the highest}$ activation barrier of 9.9 kcal/mol for the [4+3] cycloaddition (**TS45**). This difference in activation energy was confirmed by a catalyst competition experiment $(5\%$ (PhO)₃PAuCl, 5% (tBu) ₂(o -biPh)PAuCl, 10% AgSbF₆, CH₂Cl₂, rt) that resulted in exclusive formation of **2** (eq. 2). In addition, $[AuP(tBu)_2(o-biPh)]+$ activates the uncoordinated allenic double bond, promoting a highly asynchronous concerted [4+2] cycloaddition. Our results predict that when di-*t-*butylbiphenylphosphine is used as the ligand, the [4+2] cycloaddition pathway (**TS12**, 17.3 kcal/mol) becomes competitive with the [4+3] (**TS45**, 15.1 kcal/mol). Thus, our calculations suggest that a $[4+2]$ pathway is responsible for the 4% (3% predicted) of six-

membered ring product (2) observed experimentally when $[AuP(tBu)/(o-biPh)] +$ is used a catalyst.

In order to account for the differences in activation energy for the cycloaddition (**TS45)**, we considered the effects that the different ligands have on the Au –C bond. We calculated snapbond energies for $[AuL]^{+}$ to C and find that the Au –C bond is much stronger for L=P (OPh) ₃ [92 kcal/mol in **5**·AuP (OPh) ₃] than for P (tBu) ₂ $(o$ -biPh) [78 kcal/mol in **5**·AuP $(tBu)_{2}(o-biPh)$]. Indeed, the carbene intermediate is less stabilized by $[AuP(tBu)_{2}(o-biPh)]^{+}$, resulting in the observed higher energy for **TS45** compared to the $[AuP(OPh)_3]+catalyzed$ reaction. Based on natural bond orbital¹³ (NBO) analyses, we find that the gold-carbene bond is composed of weak σ and π -components. The σ -interaction originates from the C sp² lone pair partially overlapping the 6s orbital on gold, which is partially populated by donation from L. In addition, the π -component of the bond is a highly polarized $d\pi$ to $p\pi$ donation from an Au lone pair to the empty $p\pi$ -orbital on C.¹⁴

We next examined **TS52** and **TS53** (Figure 2) with different ligands in order to assess factors that might lead to a preference for 1,2-H or alkyl shift. In all cases, the 7-membered ring in **5** adopts a chair-like conformation. Consequently, this geometry is essentially conserved in transition structures **TS52** for the alkyl shift. The 1,2-alkyl shift involves both σ and π character in the carbene. We envision that density from $C2 \sigma$ -lone pair is shifted towards C3, contributing to the resulting double bond. In turn, C4 migrates with the C3 –C4 electron pair, which at the transition structure (**TS52**) forms an occupied $p\pi$ -orbital that overlaps with the empty $p\pi$ -orbital at C2. Thus, the alkyl shift is relatively insensitive to ligand effects and occurs with barriers of 6.1, 6.0 and 5.7 kcal/mol for $[AuP(tBu)_2(o-biPh)]+$, $[AuP(OPh)_3]+$, and $[AuPPh_3]+$ respectively.

In contrast, our results suggest that the barrier for the 1,2-H shift is affected (and raised relative to the metal-free case) by increased population of the C $p\pi$ -orbital by donation from the Au $d\pi$ -electrons.¹⁵ The free carbene intermediate undergoes the 1,2-H shift with a barrier of 1.3 kcal/mol.¹⁶ This barrier increases to 6.9 kcal/mol for the $[AuP(OPh)₃]$ +-stabilized carbene. In contrast, with $[AuP(tBu)/(o-biPh)]$ + the barrier only increases to 2.6 kcal/mol indicating that Au $d\pi$ -electrons have less overlap with the C p π -orbital in this transition state.

Based on previous theoretical and experimental analyses of dialkylbiaryl phosphines, 17 we hypothesized that steric effects of the biaryl were responsible for this difference. The distal aryl causes a repulsive steric interaction with the gold atom and with the substrate. As a consequence, the P-Au-C angle in the complexes bearing the biarylphosphine ligand is \sim 169°. This geometric distortion reduces the Au-d π to C-p π overlap. In accord with this hypothesis, we calculate a C-Au-P angle of $\sim 176^\circ$ for $[5 \text{AuP}(t \text{Bu})_2\text{Ph}] +$ and predict a 2:3 ratio of 67:33 for this intermediate, which we confirmed experimentally (eq 3).

Org Lett. Author manuscript; available in PMC 2010 November 5.

Our analysis of the gold-catalyzed [4+2]- and [4+3]-cycloaddition reactions finds that both reactions proceed through an initial concerted [4+3]-cycloaddition of a gold-activated allene with a diene. The selectivity for either pathway arises primarily from a preference for either 1,2-H or 1,2-alkyl shifts in the gold-stabilized carbene intermediate. We conclude that the impact of the gold catalyst on migratory aptitude is a consequence of the relative strength of the $d\pi$ to $p\pi$ interaction in the Au-C bond. Importantly, these results suggest that in addition to electronic propertes, 14 the sterics of the ligand can dramatically impact Au-C bonding, especially in $[AuP(tBu)_2(o-biPh)]+catalyzed reactions.$

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge NIHGMS (RO1 GM073932), Bristol-Myers Squibb, and Novartis for funding, and Johnson Matthey for the generous donation of AuCl3. Facilities were funded by grants from ARO-DURIP and ONR-DURIP.

References

- 1. (a) Hashmi SK, Rudolph M. Chem Soc Rev 2008;37:1766. [PubMed: 18762826] (b) Gorin DJ, Sherry BD, Toste FD. Chem Rev 2008;108:3351. [PubMed: 18652511] (d) Shen HC. Tetrahedron 2008;64:7847.
- 2. Prieto A, Fructos MR, Diaz-Requejo MM, Pérez PJ, Pérez-Galán P, Delpont N, Echavarren AM. Tetrahedron 2009;65:1790. (b) Fürstner A, Davies PW. Angew Chem Int Ed 2007;46:3410. (c) Jiménez-Núñez E, Echavarren AM. Chem Rev 2008;108:3326. [PubMed: 18636778] (d) Shapiro ND, Toste FD. J Am Chem Soc 2007;129:4160. [PubMed: 17371031] (d) Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew Chem, Int Ed 2008;47:718. (e) Johansson MJ, Gorin DJ, Staben ST, Toste FD. J Am Chem Soc 2005;127:18002. [PubMed: 16366541]
- 3. (a) Shi X, Gorin DJ, Toste FD. J Am Chem Soc 2005;127:5802. [PubMed: 15839674] (b) Fürstner A, Morency L. Angew Chem Int Ed 2008;47:5030. (c) Jiménez-Núñez E, Claverie CK, Bour C, Cárdenas DJ, Echavarren AM. Angew Chem, Int Ed 2008;47:7892. (d) Toullec PY, Biarre T, Michelet V. Org Lett 2009;11:2888. [PubMed: 19480435]
- 4. Luzung MR, Mauleón P, Toste FD. J Am Chem Soc 2007;129:12402. [PubMed: 17887681]
- 5. Mauleón P, Zeldin RM, Gonzalez AZ, Toste FD. J Am Chem Soc 2009;131:6348. [PubMed: 19378998]
- 6. (a) Zhao Y, Truhlar DG. Theo Chem Acc 2008;120:215. (b) Zhao Y, Truhlar DG. Acc Chem Res 2008;41:157. [PubMed: 18186612]
- 7. Brown TJ, Dickens MG, Widenhoefer RA. J Am Chem Soc 2009;131:6350. [PubMed: 19368391]

- 8. (a) Lee JH, Toste FD. Angew Chem Int Ed 2007;46:912. (b) Gandon V, Lemiere G, Hours A, Fensterbank L, Malacria M. Angew Chem Int Ed 2008;47:7534. (c) Mauleón P, Krinsky JL, Toste FD. J Am Chem Soc 2009;131:4513. [PubMed: 19275228]
- 9. We were able to find stable intermediate 6, presumed to be on the path to step-wise $2+2$ and $3+2$ cycloaddition pathways. All attempts to locate a step-wise pathway leading to 2 and 3 led to concerted TS45.
- 10. In contrast, a related DFT study of Pt and Au-catalyzed [4+3]-cycloaddition suggests "a 1,2-hydride shift on the generated carbene intermediate as the rate-limiting step". See: Trillo B, López F, Montserrat S, Castedo L, Lledós A, Mascareñas JL. Chem–Eur J 2009;15:3336.
- 11. A stepwise mechanism was proposed for a similar reaction, see: Gung BW, Craft DT. Tetrahedron Lett 2009;50:2685.
- 12. Trillo B, López F, Gulías M, Castedo L, Mascareñas JL. Angew Chem Int Ed 2008;47:951.
- 13. Reed AE, Curtiss LA, Weinhold F. Chem Rev 1988;88:899.
- 14. (a) Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard WA III, Toste FD. Nature Chem 2009;1:482. (b) Gorin DJ, Toste FD. Nature 2007;446:395. [PubMed: 17377576]
- 15. Similar effects have been calculated for transition states for 1,2-H-shifts of singlet carbenes. See: (a) Keating AE, Garcia-Garibay MA, Houk KN. J Phys Chem A 1998;102:8467.and references therein (b) Albu TV, Lynch BJ, Truhlar DG, Goren AC, Hrovat DA, Borden WT, Moss RA. J Phys Chem A 2002;106:5323.
- 16. We were unable to locate a transition state for the 1,2-alkyl shift of the free carbene.
- 17. (a) Barder TE, Buchwald SL. J Am Chem Soc 2007;129:5096. [PubMed: 17388595] (b) Herrero-Gómez E, Nieto-Oberhuber C, Lopez S, Benet-Buchholz J, Echavarren AM. Angew Chem Int Ed 2006;45:5455.

Figure 1.

Calculated transition state structures $(L = PMe₃)$ for the concerted [4+2]- and [4+3]cycloaddition reaction of dienes and gold-complexed allenes.

Org Lett. Author manuscript; available in PMC 2010 November 5.

Figure 2.

Calculated structures for **5**, **TS53** ($L = P(tBu)2(o-biPh)$ and metal-free), and **TS52** ($L = P$ (OPh)₃). Selected bond lengths for **TS53** and **TS52** with L= $P(tBu)_{2}(o-biPh)$ and L= $P(OPh)_{3}$ shown in red and blue, respectively. Selected bond lengths for **5** and **TS53** for metal-free structures shown in black.

Scheme 1. Au-catalyzed [4+3] and [4+2]-cycloadditions.

Org Lett. Author manuscript; available in PMC 2010 November 5.

