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SUMMARY
Measurement error is pervasive in medical research. In periodontal research studies, one measure
of disease status is the probed pocket depth (PPD), the depth of the space between a tooth and the
surrounding gum. In larger studies, these assessments are made by multiple examiners, each
having distinct measurement error characteristics. Because PPD is recorded in whole millimeters,
it may be regarded as discrete and its associated error as misclassification error. This study
investigates the impact of this measurement error when evaluating the effect of periodontal disease
status on levels of inflammatory markers in gingival crevicular fluid (GCF). The marker readings
are either left or right censored, due to quantities that are either too small to be reliably quantified
or so large that they saturate the detector. Additionally, marker readings from multiple periodontal
sites within a subject's mouth are correlated. These considerations give rise to a clustered survival
model for the marker readings in which the discrete predictor of interest is misclassified.
Associations between the GCF markers and periodontal assessments are corrected for
misclassification error using the MC-SIMEX method. Simulation studies reveal the impact of
varying degrees of misclassification error on associations of interest. Analysis of pilot data from a
periodontal study, for which examiner misclassification rates are estimated from calibration
studies, further illustrates the approach.

1. INTRODUCTION
Measurement error is pervasive in medical research. Carroll et al. [1, §1.6] discuss examples
arising from nutrition research, in which nutrition intake instruments (24-hour recall or food
frequency questionnaires) are well known to be error prone; coronary kidney disease, in
which an estimated glomerular filtration rate is often substituted for a genuine laboratory
measurement; and pollution exposure studies, in which particulate concentrations at
specified locations are used as surrogates for personal exposure. There is a large body of
work addressing CD4 counts as noisy predictors for AIDS onset or progression (e.g.
[2,3,4,5,6,7,8] ), and, in an analogous context, Lin et al. [9] handle prostate-specific antigen
levels as noisy predictors for prostate cancer onset. Applications such as these have
motivated statistical methods for handling measurement error in a wide variety of models,
including linear regression, generalized linear mixed models [10,11,12], kernel smoothing
[6], Cox proportional hazards models [4], frailty models [13,14] and accelerated failure time
models [15]. This paper addresses an application arising from oral health research that leads
to a clustered survival outcome (subject to either left or right censoring) and a discrete
covariate measured with error. The approach combines the clustered survival measurement
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error models of Li and Lin [14] (and also [13]) with the misclassification covariate error of
[16].

In periodontal research studies, disease status is determined using multiple periodontal
assessments, e.g. probed pocket depth (PPD) and clinical attachment loss. In larger studies,
these assessments are made by multiple examiners, each subject to distinct measurement
error characteristics. This study investigates the impact of this measurement error when
evaluating the effect of periodontal disease status on levels of inflammatory markers in
gingival crevicular fluid (GCF). The levels of the inflammatory markers, specific cytokines,
are determined by an assay described briefly in Section 2.2 that has both a lower limit of
detection and a quantitation limit, hence leading to observations potentially censored either
below or above.

Variability in PPD determination is well known and has led to the established practice of
training and calibrating multiple examiners for larger oral health studies. While trained
examiners generally exhibit a high degree of agreement (over 95%) within one millimeter in
PPD, exact agreement is less impressive. Hence methods that incorporate PPD as an
explanatory variable are subject to the effects of measurement error in PPD. The simulation-
extrapolation (SIMEX) algorithm [17] provides a means to correct for the bias attributable to
measurement error. The SIMEX method empirically determines the relationship between the
degree of measurement error and the estimate of the coefficient of interest. A bias correction
for the estimated coefficient is obtained by extrapolating this relationship to the situation of
zero measurement error. The approach is quite flexible as it requires only a consistent
estimator when no measurement error is present and an estimator or known distribution for
the measurement error.

Küchenhoff et al. [16] introduced the misclassification SIMEX (MC-SIMEX) algorithm for
applying the simulation-extrapolation method to discrete variables measured with error. In a
series of simulation studies in the context of logistic regression models, they demonstrated
the ability of MC-SIMEX to substantially reduce bias in parameter estimates relative to
naive methods (i.e. methods that ignore measurement error). They further illustrated their
methods using data from a longitudinal study of caries experience, in which the binary
assessment of caries was subject to measurement error. Subsequent work derived an
estimate of the asymptotic variance of the bias-corrected coefficient [18] and provided an R
[19] package [20,21] that implements SIMEX and MC-SIMEX for a number of common
statistical models.

Motivated by the context of assessing the association between GCF cytokine levels and
PPD, this paper describes a statistical model for the cytokine levels that accommodates
within-mouth correlation and both left and right censoring. Because PPD is recorded as the
largest whole millimeter less than the value observed on the probe, PPD is handled as a
discrete predictor, subject to measurement error, i.e. misclassification. The structure of the
measurement error is specific to each oral examiner. A simulation study investigates the
ability of MC-SIMEX to correct for bias in the context of this model and data.

Section 2 describes briefly the study context and data motivating this work. Section 3
describes the statistical model of interest relating the PPD of a periodontal site to the
concentration of cytokines in GCF obtained from that site. The application of MC-SIMEX
in this model and implementation are discussed. A simulation investigating the ability of
MC-SIMEX algorithm to recover the association between PPD and cytokine concentration
is presented in Section 4. Analyses of the pilot periodontal study data are presented in
Section 5, and the paper concludes with discussion in Section 6.
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2. MOTIVATING DATA
A cross-sectional study was performed to investigate the association between periodontal
disease status and the concentrations of specific inflammatory markers in gingival crevicular
fluid. The study population consisted of African American Gullah with diabetes. The Gullah
are descendants of Africans brought to the US from the rice-growing regions of West Africa
who now inhabit the Low Country, especially the Sea Islands, of South Carolina and
Georgia. Demographic information including age, gender, body mass index, and smoking
status, as well as glycosylated hemoglobin levels (HbA1c) and a full periodontal
examination were obtained for all study participants. Patient recruitment and additional
study details are available elsewhere [22,23,24,25]. The work described in this paper was
initiated with a pilot sample of 43 subjects to investigate the effects of measurement error in
periodontal pocket depth readings on analyses of the association with GCF cytokine levels.

2.1. Oral examination and examiner calibration
A full periodontal examination was performed on all study participants. Three oral
examiners were trained by a standard examiner for measurements of probed pocket depth
(PPD) and the distance from the cemento-enamel junction to the gingival margin (CEJ-GM).
PPD was recorded in whole millimeters (mm) as the floor of the value observed on the
probe up to a maximum of 15 mm. A subsequent calibration study established the degree of
agreement between the study examiners and the standard examiner. The calibration study
was designed to achieve estimates of agreement between study and standard examiners with
high precision; additional details, including the rationale behind its design, are described by
Hill et al. [26]. The results for agreement within one mm in PPD were 97% with 95%
confidence interval (CI) (96%, 99%), 96% with CI (95%, 98%) and 99% with CI (98%,
99%), for the three study examiners. Exact agreement between the three study examiners
and the standard examiner was 55% (48%, 61%), 52% (45%, 59%), and 55% (50%, 61%),
respectively. Thus, relative to the standard examiner, there is measurement error in the PPD
recorded by the study examiners. Although this measurement error is often within one mm,
the simulation in Section 4 demonstrates that such measurement error nonetheless may
impact conclusions regarding association of PPD with other variables such as the cytokine
concentration levels considered here.

2.2. Determination of cytokine levels
The inflammatory markers of interest were cytokines previously linked to diabetes and/or
periodontal disease. Prior to the periodontal examination, gingival crevicular fluid (GCF)
samples were collected from up to 17 sites (periodontal pockets) in each participant's mouth,
as described in [22]. These samples were assayed in duplicate with a SearchLight™
multiplex sandwich ELISA (enzyme-linked immunosorbent assay) [27]. For each GCF
sample, the assay simultaneously yields chemiluminescent signals for all cytokines studied.
These signals are recorded as an image and then quantified (using software [28]) into an
optical density reading for each cytokine.

The optical density (OD) is related to the cytokine concentration through the four-parameter
logistic ELISA function:

(1)

where x is the cytokine concentration in pg/ml, A is the asymptote as x → 0 for B > 0, D is
the asymptote as x → ∞, C is the concentration at 50% inhibition, and B is a slope related
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parameter. The parameters A, B, C and D are determined separately for each cytokine and
for each run of the multiplex assay; details are given in [22]. When plotted after performing
log-transformations on both the concentration and optical density, the function has an S
shape with horizontal asymptotes at log A and log D.

Investigators seek a dilution of the patient samples such that the majority of OD readings
will fall on the linear part of the standard curve. OD values near the asymptotes are not well
determined and may be marked as falling below the detection limit or above the
quantification limit of the assay. Because there is only enough GCF available for one assay
(in duplicate) from each site from each patient, further dilution is not possible, leading to the
need to accommodate censoring due to the detection and/or quantification limits in analyses.

3. STATISTICAL MODEL
Consider a single cytokine of interest and let Yij, i = 1, 2, . . . , n, j = 1, 2, . . . , mi be the
(natural) logarithm of the cytokine concentration obtained for the jth periodontal site for the
ith study subject. Although the study protocol called for GCF to be collected from 17
designated periodontal sites, not all subjects provided samples from all sites due to missing
teeth or other reasons, hence the number of GCF samples collected varies from subject to
subject. In part because cytokine concentrations must be nonnegative, they exhibit right
skewness, and the log transformation serves to pull in the right tail and stabilize the
variance. On this scale, a plausible model is based on a Gaussian distribution for {Yij} with
random effects {αi} serving to induce correlation among the cytokine concentrations
obtained from the same subject:

(2)

In equations (2), Xij represents all covariates other than PPD, including potentially site-level
covariates such as whether the GCF was obtained from a molar, premolar or incisal tooth,
and subject-level covariates such as gender, age and smoking status. With the iid errors {εij}
in equations (2), the random effects {αi} induce the compound symmetry correlation
structure on the marginal distribution of the cytokine concentrations. Thus, Corr(Yij, Yij′) is

the same value  for all j, j′, and cytokine measurements from different
subjects are independent.

3.1. Limit of detection for cytokine concentration
Because the quantity of GCF obtained from a periodontal site was often low, it was
important to accommodate censoring of the cytokine level at the lower limit of detection.
The lower limit of detection advertised by the manufacturer of the SearchLight™ ELISA
was determined for analyses of serum, urine, or other situations where abundant sample is
available and hence potentially not appropriate for the low quantities of GCF available in
our study. In other work [22], we investigated a number of approaches to determining the
appropriate lower limit of detection, including the manufacturer's recommendation and
multiple methods derived from statistical modeling. For this manuscript, we use the
minimum detectable concentration (MDC) [29], defined as the minimum concentration,
xMDC, such that the predicted OD, ODMDC = OD(xMDC), is statistically significantly greater
than the OD at cytokine concentration zero. To determine xMDC, the variation in the fitted
standard curve is used to form a 95% confidence interval for the predicted average of two
OD replicates (because our samples were run in duplicate) at concentration x = 0 pg/ml. The
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upper limit of this confidence interval is then back transformed through the fitted standard
curve to obtain xMDC.

GCF samples producing a cytokine concentration less than the MDC are treated as censored
in our analyses. Note that, because the standard curve, and correspondingly the MDC, is
determined for each cytokine for each assay run, a GCF sample that yields a censored value
for one cytokine may produce detectable quantities for other cytokines. Moreover, the same
OD reading may yield a censored cytokine concentration for one subject, but a well-
determined concentration for another.

3.2. Quantitation limit for cytokine concentration
Though rare for our data, cytokine concentration determinations were also subject to
censoring above due to the quantitation limit of the ELISA procedure. The quantitation limit
was determined as follows: On the log-log scale, the S-shape of the fitted standard curve
implies an inflection point, which is a function of the 50% inhibition parameter C for the
assay. The tangent to the fitted curve through this inflection point will intersect the upper
asymptote (log A). The quantitation limit is determined by the point on the fitted standard
curve (on the log-log scale) nearest (in Euclidean distance) to this point of intersection.

3.3. Measurement error in PPD

Let  and  be the true and observed (error-prone) PPD values for the jth site from

the ith subject. The classical measurement error model, for which  is a perturbed

version of , is appropriate; we further assume that the measurement error is

nondifferential [1, §2.5], so that the distribution of {Yij} given { , , Xij} does not

depend on { }, i.e. given the true unobserved values { }, the observed values

{ } contain no additional information about {Yij}. This assumption is consistent with

work addressing measurement error in caries determination [16].  is recorded to the
largest whole mm in the range {0, 1, . . . , 15} less than what the examiners observe on the
probe. Thus, PPD is discrete and the measurement error may be conceptualized as
misclassification error. Suppose that subject i was seen by examiner E, and let πE be the K ×
K (K = 16) misclassification matrix associated with the examiner E, then

.

The desired relationship is that between the response Yij and , so that the first line of
equations (2) becomes

where  quantifies the effect of the true (i.e. error-free) value of PPD on the transformed

cytokine level. Naive estimation substitutes  for  as predictor and yields the naive

estimator , which, for linear models, is attenuated relative to . The values of the

remaining parameters in the model, e.g. β0, β2, σ, are also a ected by substitution of 

for , but this has been notationally suppressed since interest focuses on β1.
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To see that measurement error among examiners with even a relatively high degree of
agreement in PPD readings can lead to substantial effects on inferences, consider the
simplified model Yij = 0.5 PPDij+αi+εij, i = 1, 2, . . . , 40, j = 1, 2, . . . , 20 with σ2 = 0.25 and
correlation among responses within a subject of 0.6 (i.e.  = 0.375). Data were simulated as
described in Section 4 with each of the 40 subjects randomly assigned to one of three
examiners whose misclassification was such that the recorded PPD values exhibited overall
exact agreement with the true PPD as 85.6% and agreement within one mm of 88.8%.

Regression on the simulated true PPD yields a slope estimate of  (se = 0.01),
however regression on the misclassified PPD gives the naive slope estimate

. Correction using the MC-SIMEX method as described below in

Section 3.4 yields an estimate of  (se = 0.03) – certainly an improvement over
the naive estimator, but nonetheless attenuated relative to the true slope of 0.5.

3.4. Application of MC-SIMEX
Let π be the misclassification matrix associated with PPD and define the mapping G(λ) : λ
→ β1(λ), where β1(λ) is the coefficient of interest when the predictor is PPDλ, a further
perturbation of the error-prone predictor (PPDO) according to the misclassification matrix
πλ. Thus λ ≥ 0 quantifies the degree of misclassification error so that π0 = IK×K and,
correspondingly, . Analogous to SIMEX, MC-SIMEX empirically determines the
form of G(·) though a simulation step followed by an extrapolation step. Briefly, for a fixed
grid 0 = λ0 < λ1 < λ2 < . . . < λm, the simulation step consists of generating, for each λk, k =
1, 2, . . . , m, B new pseudo data sets with {PPDλk,b} a πλk-misclassified version of {PPDO},
b = 1, 2, . . . , B. The estimate  is obtained by naively fitting the model of interest

with {PPDλk,b} as predictor, and β1(λk) is estimated using , k = 1,

2, . . . , m. Note that with λ0 = 0, .

The extrapolation step then consists of fitting a parametric model  to the points

 and extrapolating this fit back to λ = –1. Because λ = 0
corresponds to the amount of misclassification error in the observed data {PPDO}, λ = –1

corresponds to the error-free situation. The MC-SIMEX estimator of  is .
Küchenhoff et al. [16] investigated linear, quadratic and log-linear forms for the extrapolant
function , and found that while linear is clearly inadequate, both quadratic and log-linear
performed well.

An asymptotic estimate of the variance  has been derived by [18]. The simex R
package [20,21] additionally implements a jackknife variance estimate based on the work of
Cook and Stefanski [17].

3.5. Implementation
Model (2) with {PPDO} or a perturbed version {PPDλk,b} as primary predictor of interest,
together with censoring of the response either below or above, is fit using maximum
likelihood estimation using the survreg function in the survival [30] package for R [19]. In
this framework, the cytokine concentration is viewed as a clustered duration outcome
subject to censoring. The function survreg fits the fully parametric log-normal model with
the random effects {αi} handled as frailties, yielding the naive estimator  for each
error-inflated realization of {PPDλk,b}.
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Implementation of the MC-SIMEX algorithm requires the misclassification matrix πE for
each of the three oral examiners, E ∊ {A, B, C}. Estimates of these matrices are readily
available from the examiner calibration study described in Section 2.1, where the recordings
from the standard examiner are regarded as truth. As described by Küchenhoff et al. [16],
estimated misclassification matrices may not satisfy the conditions needed so that πλ exists
for each λ > 0. In these situations, the approach of Israel et al. [31] can produce a matrix
close to the estimated misclassification matrix for which powers do exist.

The implementation of the MC-SIMEX algorithm in the R package simex [20] was used

with the quadratic extrapolant , the jackknife estimate of the variance of  (ignoring
the variability in the estimates of the misclassification matrices πA, πB and πC), and B = 100
generated perturbed data sets at each value of λ ∊ {.25, .5, 1, 1.5, 2}.

4. SIMULATION
The illustration in Section 3.3 showed that MC-SIMEX has the potential to at least partially
correct for the attenuation due to misclassification error in the context of our model. A more
extensive simulation study was performed to investigate the ability of MC-SIMEX to
recover the underlying true association parameter in situations that reflect the realities of
periodontal research. The sample size was fixed at 40 subjects, each having 20 periodontal
sites from which PPD and GCF were obtained (similar to our data). Primary interest focused
on the effect of the degree of misclassification error.

True PPD values were generated such that  with γi ~ N(0, 0.152) iid
and εij ~ N(0, 0.302) iid and independently of {γi}, inducing a correlation among log PPDT

from the same subject of 0.2. After setting any generated log PPDT less than zero to 0.1 and
then exponentiating, values were floored to the largest integer among {0, 1, . . . , 15} to yield

the simulated { }.

Three examiners, E = A, B, and C, were modeled as having the same misclassification
probabilities. Hence one misclassification matrix π was used for each of the three examiners,
created as follows: for a specified value of exact agreement with truth, pexact = Pr(PPDO = j |
PPDT = j), assumed constant for j = 0, 1, . . . , 15, the jth column of π was first computed as
πij pexact · ρ|i–j|, i = 0, 1, . . . , 15, and then the entries excluding the jth were renormalized so
that all entries in the column summed to one. The value of ρ was set to 0.8, and pexact ∊ {.
95, .90, .80, .70, .60, .50}.

Cytokine levels were generated as Gaussian on the log scale according to (2),

, j = 1, 2, . . . , 20, with ,  and σ2 = 0.25,
inducing a within-subject correlation of 0.6, and then subject to censoring below. The Yij
were censored below at log(6.25), which resulted in a censoring rate of about 50%.

For each value of pexact, M = 50 replications were run, acknowledging the computationally
intensive nature of the MC-SIMEX algorithm. For each replication, the estimated slope

coefficients , , and  were obtained from the regressions on PPDT, PPDO, and via
the MC-SIMEX correction, respectively. The MC-SIMEX algorithm was used as described
in Section 3.5. The empirical bias and mean squared error of the coefficient estimates were
determined as
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for each of the estimators , and . The empirical bias and MSE were also
computed for the estimates of the regression intercept and error standard deviation σ using
each of the three approaches.

Figure 1 shows plots of Y versus PPDT and PPDO for pexact = 0.95, 0.50. The influence of
the degree of misclassification error on the observed association is apparent. Figure 2 shows
the empirical bias and MSE for each of the estimators as a function of pexact when the
censoring rate in the response is 50%. As the misclassification error decreases, i.e. pexact
increases, the bias and MSE of both the naive and MC-SIMEX estimators decrease. In
particular, the bias associated with the naive estimator of the slope decreases from –0.32 (or
60% of ) to –0.07 (14% of ), and the MSE drops from 0.11 to 0.01 as pexact
increases from 0.50 to 0.95. For this same increase in pexact, the bias of the MC-SIMEX
estimate of the slope decreases from –0.21 (40% of ) to –0.003 (0.7% of ), and the
MSE decreases from 0.05 to 0.0007. This pattern of decreasing bias and MSE also holds for
the estimates of the intercept and error standard deviation parameters. Note that the naive
estimate of the standard error is inflated compared to the MC-SIMEX estimate and the true
value. Although the MC-SIMEX corrected estimators exhibit less bias than the naive
estimators, it is apparent that unless the agreement among examiners is extremely good (i.e.
pexact = 0.95) considerable bias remains.

The simulation was repeated with no censoring of the response and also with approximately
75% censoring below. Table I reports the bias and MSE of the parameter estimates,
including also the estimates of the frailty standard deviation σα, when pexact = 0.50, 0.95 for
the three censoring rates. At higher levels of censoring and with less misclassification error
(pexact = 0.95), the bias in the regression parameters β0 and β1 increases moderately and the
estimates become less precise. From Table I, it is also apparent that MC-SIMEX provides
only a small adjustment to the estimate of σα.

5. APPLICATION
As described in Section 2, the pilot data were obtained from n = 43 African American
subjects with diabetes, each undergoing a full periodontal examination with GCF collected
from up to 17 periodontal sites per subject. Among these 43 subjects, GCF was collected
from a total of 412 periodontal sites. Table II summarizes information on subjects’ PPD,
gender, age, HbA1c and smoking status.

The periodontal exams and GCF collection were performed by three trained study
examiners, A, B and C, who examined 21, 17 and 5 subjects, respectively. Prior to
recruitment of subjects, the calibration study described in Section 2.1 provided estimates of
the misclassification matrices for each examiner. Although each of the estimated
misclassification matrices Π was a valid transition probability matrix, Πλ did not exist for
some λ used in the MC-SIMEX fits (i.e. λ ∊ {.25, .5, 1, 1.5, 2}), hence the method of Israel
et al. [31] was used to obtain misclassification matrices similar to those from the calibration
study for which the desired powers did exist. These misclassification matrices, used in the
analyses, are shown in Appendix I.
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The GCF samples from each periodontal site from a subject were analyzed for the
concentrations of 13 cytokines of interest. The purpose of this analysis was to examine the
effect of misclassification error on assessment of the association between PPD and cytokine
levels in a pilot dataset. Biological conclusions were not to be drawn, pending analyses of
the full periodontal study data. Hence the identity of the cytokines was masked in these
results. Table III gives the percentages of readings censored below and above for each of the
13 cytokines. Cytokines 2, 3, 4, and 8 have over 10% of readings censored below, with
cytokine 4 having 37%, and cytokine 10 has over 10% censored above. Hence it is important
to accommodate this censoring so as to utilize all information available in the data. Figure 3
shows a scatter plot of the log concentration levels for cytokine 2 versus the measured PPD
with simple linear regression fits for each subject overlaid. There is considerable variation in
the trends, similar to the behavior of the simulated data as shown in Figure 1.

Analyses were performed both with and without adjustment for the covariates age, gender,
HbA1c and smoking status. Figure 4 shows the naive and MC-SIMEX estimates of the
coefficient associated with PPD, together with approximate 95% confidence intervals. The
cytokines are sorted according to the MC-SIMEX esimator in the adjusted analyses. The
attenuation of the naive estimators is apparent in that all naive point estimates are nearer to
zero than the bias-corrected estimates. Consistent with the notion of variance-bias tradeoff,
the confidence intervals are wider for the MC-SIMEX estimates. Substantive conclusions
regarding the statistical significance of the association between PPD and cytokine
concentrations are the same for both naive and MC-SIMEX estimates, however, with the
exception of cytokine 13, especially in the covariate-adjusted analysis, for which the bias
correction leads to a confidence interval that does not cover zero, despite its greater width.

6. DISCUSSION
The model that we have described accommodates a clustered Gaussian response that may be
censored either below or above and a discrete covariate subject to misclassification error.
Although the Gaussian assumption suggests adaptation of the measurement error methods of
Wang et. al [10] for generalized linear mixed models to accommodate censoring and
misclassification error, a survival analysis perspective permits application of the simex
package for R, which incorporates the MC-SIMEX algorithm of Küchenhoff et al. [16].
Periodically evaluating and recalibrating examiners is standard practice in oral health
research and provides information about the distribution of misclassification error in
periodontal assessments.

The simulation study in Section 4 was designed to mimic the sample size and level of
agreement among examiners in our pilot periodontal study data. The results indicate that
even with the adjustment for bias afforded by the MC-SIMEX algorithm, considerable bias
remains unless examiner agreement is extremely good. Hence the magnitude of the effect of
PPD on the log cytokine levels is likely substantially underestimated in our pilot data. It
would be desirable to provide, for a given amount of misclassification and noise variation,
the sample size required for a specified reduction in relative bias of the MC-SIMEX
estimator relative to the naive estimator. Such guidance may be derived from asymptotic
bias and variance expressions such as those in [13,14,18].

In computing the standard errors associated with the parameter estimates for the pilot
periodontal study data, we have ignored the variance associated with estimation of the
misclassification matrices from the examiner calibration study. Hence our reported standard
errors are low. A bootstrap procedure could be used to incorporate this variability, though
this would be quite computationally intensive on top of the considerable demands of the
MC-SIMEX approach. Alternatively, a model and inference stemming from full
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specification of the joint distribution of the error-prone covariate and its associated
underlying true value permits the propagation of variability from the examiner calibration
data directly. Such a model was developed by Mwalili et al. [32] for an ordinal caries
outcome influenced by misclassification; inference in the Bayesian framework seamlessly
incorporated uncertainty in the distributions of examiner misclassification. The model (2)
can be made more flexible by adopting a semiparametric approach – the survival analysis
perspective easily accommodates an unspecified baseline hazard function for the log
cytokine readings. In addition to handling the correlation among response values from the
same subject, inferences potentially could be strengthened by analyzing the panel of
cytokine levels from a periodontal site as a multivariate response.

Our work demonstrates that measurement error in periodontal assessments can influence the
interpretation of analyses using these assessments. Taken together with the work of
Küchenhoff et al. [16] who drew attention to measurement error in caries determination,
there is ample justification for considering measurement error in the design and analysis of
oral health studies and for diligently maintaining the established practice of on-going
examiner training and calibration.
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APPENDIX

I. Misclassification matrices
The examiner misclassification matrices used for application of the MC-SIMEX method to
the pilot periodontal study data are given in Table IV. These matrices resulted from
application of the method of Israel et al. [31] to the estimated misclassification matrices
obtained from the examiner calibration study described in Section 2.1. Given an estimated
misclassification matrix, this method generates an approximately equal transition probability
matrix for which powers exist using a series approximation (see their Theorem 2.1) and
then, if needed, applying numerically stabilizing corrections.
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Figure 1.
Behavior of the simulated data when pexact = 0.95 (left panel) and 0.50 (right panel). In each

panel, the first graph shows {Yij} plotted versus { } with simple linear regression fits
for each subject overlaid. The right graph is similar, except that {PPDij}O is predictor.
Censored values have been omitted in these plots.
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Figure 2.
Empirical bias and MSE for intercept, slope and error standard deviation estimates from
simulation study. The true values of these parameters were β0 = 0,  and σ = 0.5.
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Figure 3.
Scatter plot of concentration levels for cytokine 2 versus measured PPD values. Simple
linear regression fits for each subject have been overlaid. Censored values have been
omitted.
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Figure 4.
Naive (dashed) and MC-SIMEX (solid) estimates and 95% confidence intervals for the
coefficient associated with PPD in the cytokine analyses. Left panel is without adjustment
for covariates, while right panel is with adjustment.
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Table II

Characteristics of the n = 43 subjects for analysis.

Variable Summary

mean median min max

Perio sites (count) 9.6 9.0 1.0 17.0

PPD (mm) 2.6 2.0 1.0 8.0

Age (yrs) 54.5 56.0 36.0 73.0

HbA1c (%) 8.0 8.0 6.0 11.6

Gender 32 female, 11 male

Smoking 6 current, 6 past, 31 never
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Table III

Percentage of the 412 observations censored among the cytokine concentrations.

Cyotkine Censored Above Not Censored Censored Below

1 0.7 98.8 0.5

2 0.0 82.8 17.2

3 1.0 84.2 14.8

4 0.0 62.9 37.1

5 0.0 98.8 1.2

6 3.2 95.4 1.5

7 0.0 98.5 1.5

8 0.0 80.6 19.4

9 3.6 96.4 0.0

10 13.6 86.4 0.0

11 0.0 99.3 0.7

12 1.0 99.0 0.0

13 0.0 94.7 5.3
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