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Abstract
A fully automated, fast method to detect the fovea and the optic disc in digital color photographs of
the retina is presented. The method makes few assumptions about the location of both structures in
the image. We define the problem of localizing structures in a retinal image as a regression problem.
A kNN regressor is utilized to predict the distance in pixels in the image to the object of interest at
any given location in the image based on a set of features measured at that location. The method
combines cues measured directly in the image with cues derived from a segmentation of the retinal
vasculature. A distance prediction is made for a limited number of image locations and the point with
the lowest predicted distance to the optic disc is selected as the optic disc center. Based on this location
the search area for the fovea is defined. The location with the lowest predicted distance to the fovea
within the foveal search area is selected as the fovea location. The method is trained with 500 images
for which the optic disc and fovea locations are known. An extensive evaluation was done on 500
images from a diabetic retinopathy screening program and 100 specially selected images containing
gross abnormalities. The method found the optic disc in 99.4% and the fovea in 96.8% of regular
screening images and for the images with abnormalities these numbers were 93.0% and 89.0%
respectively.
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1 Introduction
Detection of the optic disc and fovea location in retinal images is an important aspect of the
automated detection of retinal disease in digital color photographs of the retina. Together with
the vasculature, the optic disc and the fovea are the most important anatomical landmarks on
the posterior pole of the retina. The optic disc is the area of the retina where the retinal
vasculature enters and leaves the eye and it marks the exit point of the optic nerve. The
appearance of the optic disc is different from the surrounding retinal tissue (see Figure 1) and
parts of the disc can potentially be classified as abnormal by disease detection algorithms,
detecting and masking the disc is the main motivation for this work. Examples of abnormalities
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that can be confounded with the optic disc are exudates, cottonwool spots and drusen [1].
Additionally, the optic disc location is useful in the automated tracking of glaucoma [2] and
the detection of neovascularisations on the optic disc, a rare but serious abnormality. The fovea
is responsible for sharp central vision and is located in the center of a darker area (see Figure
1). Because of its important function in vision, the distance at which lesions are located from
the fovea influences their clinical relevance [3].

This work is part of a larger project to develop an automated screening system for diabetic
retinopathy. Diabetic retinopathy is a common complication of diabetes and the largest cause
of blindness and vision loss in the working population of the western world [4]. We have
previously published the results of large scale evaluations of a comprehensive automated
screening system on 10,000 exams (40,000 images) [5] and 15,000 exams (60,000 images)
[6]. Analysis of the results of these evaluations indicated that the location of the optic disc and
especially location of the fovea may potentially be useful in improving the detection of subtle
cases of diabetic retinopathy. A number of exams missed by the automated screening system
contained only one or two lesions, however, these were located close to the fovea and were
thus marked as “suspect” by the screening program ophthalmologists. It is our expectation that
information about the location of lesions on the retina may help the system to detect these
cases.

A substantial number of publications have dealt with the detection of the location of just the
optic disc (see [7] for an overview). The state-of-the-art optic disc localization methods use
the orientation of the vasculature to detect the position of the optic disc [7–11]. Detection of
the fovea has received less attention, likely due to the fact the fovea is harder to detect and does
not feature any high contrast structures. Sinthanayothin et al. [12] used the increased
pigmentation around the fovea to detect its location using a template matching technique and
reported a performance of 80.4% on 100 images. Li et al. [13] used a similar cue to find the
fovea and additionally used the location of the vascular arch (see Figure 1) to constrain the
search area. A detection performance of 100% for the fovea is reported on 89 images.

Recently, we have presented an automated method [10] to detect the location of the optic disc
and fovea. The method used an optimization method to fit a point distribution model [14] to
the fundus image. After fitting, the points of the model indicated the location of the normal
anatomy. This method was able to find the fovea location in 94.4% and the optic disc in 98.4%
of 500 images. On a separate set of 100 heavily pathological images the system showed a
performance of 92.0% and 94.0% respectively. The method requires the vascular arch to be at
least partially visible but works on images centered on the fovea as well as centered on the
optic disc. Tobin et al. [9] presented an automatic method for detection of the optic disc and
the fovea. The method started by locating the optic disc and the vascular arch. Based on these
two anatomical landmarks the location of the fovea was inferred. The authors reported 90.4%
detection performance for the optic disc and 92.5% localization performance for the fovea in
345 images. The method requires that retinal images are approximately centered on the fovea
and that the vascular arch is visible. A similar method for fovea centered images was presented
by Fleming et al. [11]: after detection of the vascular arch the optic disc is found using a Hough
transform and the fovea is detected by template matching where the template was derived from
a set of training images. The optic disc was detected in 98.4% of cases and the fovea in 96.5%
of cases in 1056 images.

The main issue with the previous methods that use the vascular arch is that they require it to
be visible in the image and most methods are developed for fovea centered images only. The
screening data in typical screening programs is acquired at different sites, using different
cameras and operators. This leads to a substantial variability in the image quality as well as
imperfect adherence to the imaging protocol. The screening protocol used by the particular
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screening program [15] that provides the images used in this work requires the acquisition of
two images per eye, one centered on the optic disc and one centered on the fovea. Half of the
screening images in the program that supplied the data used in this study are therefore optic
disc centered. Methods that require the visibility of the complete vascular arch generally make
strong assumptions about the way in which an image is acquired and are less well suited for
application on the real world screening data. Screening programs can be structured in different
ways. In case of an on-line system where the patient receives almost immediate feedback, rapid
processing of the image data is key. In a program where the images are processed off-line,
speed may be less of an issue but due to the scale of population screening programs (e.g.
hundreds of thousands of patients) an in increase in processing speed will have a large impact
on the overall efficiency and throughput. Our own previously presented system [10] uses a
complex optimization procedure and will take approximately 10 minutes to find the anatomical
landmarks. The method by Fleming et al. [11] takes 2 minutes to process an image. Tobin et
al. [9] did not report the processing time of their algorithm. As these algorithms were not all
benchmarked on the same computer system, the runtime should only be used as an indication
and not to directly compare the different methods.

We propose to formulate the problem of finding a certain position in a retinal image as a
regression problem. A kNN regressor is trained to estimate the distance to a certain location
in a retinal image (i.e. the optic disc and the fovea) given a set of measurements obtained around
a circular template placed at a certain location in the image. By finding the position in the image
where the estimated distance is smallest, both the optic disc and fovea can be detected.

The main contribution of this work is a fast, robust method for the detection of the location of
the optic disc and the fovea. The method makes few assumptions about the way in which the
retinal image has been acquired (i.e. optic disc centered or fovea centered) but does require the
larger part of the optic disc and the fovea to be in the image in order to successfully detect their
location. The method integrates cues from both the local vasculature and the local image
intensities. The method is trained using 500 images and is evaluated on a separate, large dataset
of 600 images.

This paper is structured as follows. Section 2 describes the data used in this research. The
method itself is described in Section 3. The results of the algorithm are shown in Section 4.
The paper end with a discussion and conclusion in Section 5.

2 Materials
In this work 1100 digital color fundus photographs were used. They were sequentially selected
from a diabetic retinopathy screening program [15]. The images represent real world screening
data, acquired at twenty different sites using different cameras at different resolutions. In all
cases JPEG image compression was applied. Each of the images was acquired according to a
screening imaging protocol. From each eye two digital color photographs were obtained, one
approximately centered on the optic disc and one approximately centered on the fovea. Three
different camera types were used; the Topcon NW 100, the Topcon NW 200 and the Canon
CR5-45NM.

1000 of the 1100 images were randomly selected from our source screening image set of 40,000
images to represent typical screening data. The characteristics of the randomly selected image
data is shown in Table 1. Typical screening data does not contain much serious pathology and
the presence of heavy pathology makes detecting the optic disc and fovea more difficult.
Therefore, an additional set of 100 images were selected, using our automated screening system
[6], to represent the most pathological images in the source screening set. The following types
of abnormalities were present in this set of images: microaneurysms (59%), hemorrhages
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(72%), exudates (50%), cottonwool spots (29%) and neovasculariza-tions (6%). Other
abnormalities found in the set are: drusen (14%), scarring (10%) and preretinal hemorrhage
(1%). Fourteen images with laser treatment scarring were also included, as laser treatment
severely disturbs the background appearance of the retina. Acceptable quality, as judged by
the screening program ophthalmologists, was a selection criterion in all cases. The screening
ophthalmologists find the quality acceptable if it does not prevent them from assessing the
presence of diabetic retinopathy. The set of 1000 typical screening images was split into a
training set of 500 images and a test set of 500 images. A single human observer segmented
all images. To enable comparison with the automated method a second observer segmented
the 500 images in the test set as well as the 100 images in the pathological set. Both human
observers were medical students who received training in the analysis of retinal images.
Observers marked the optic disc center and four points on the optic disc border as well as a
single point in the center of the fovea location. The four points on the optic disc border were
used to determine a rough segmentation of the optic disc. By interpreting the distance of each
of the four points to the optic disc center point as local optic disc radii, the optic disc radius at
any angle can be estimated using linear interpolation which allows us to generate a rough
segmentation of the complete optic disc from the four marked border points.

3 Methods
3.1 Pre-processing

Each of the images is pre-processed before the localization of the optic disc and the fovea
commences. First the FOV is detected by calculating the gradient magnitude of the red plane
of the image. Several different FOV masks are then fitted to this gradient magnitude image
and the best fitting mask is chosen. The template-masks have been previously manually
segmented, when a new camera is added to the screening program pool its FOV mask image
is segmented and stored. This template based method is used because some of the images are
locally underexposed, a common issue in non-mydriatic images, which would result in holes
in the FOV segmentation when just using a threshold to segment the FOV. Since there is a
wide variety in image sizes each image is scaled so that the width of its FOV is 630 pixels. The
FOV width is not a critical parameter and the described detection method will work with any
size FOV as long as all images are resized in the same way. Choosing a smaller size FOV does
have positive effect on the computational complexity. Do note that the resizing does not account
for differences in the number of degrees of the retina covered by the FOV. This is because the
amount of coverage is not stored with the images and as such unknown to us. We attempt to
compensate for this in the method by choosing the foveal search area relatively large. The large
gradient at the edge of the FOV can disturb feature extraction close to the border of the FOV.
To remove it, a mirroring operation is carried out in which the pixel values inside the FOV are
copied to the area outside the FOV as follows. For each pixel position o outside the FOV a line
is projected to the closest point b on the border of the FOV at distance d from o. From b the
line is then extended into the FOV and the pixel value at distance d from b is then copied to o.

The presented optic disc and fovea localization method uses only the green plane of the color
image. To remove any low frequency gradients over the image, the green plane of the image
is blurred using a Gaussian filter with a large variance, i.e. σ = 70 pixels, and this blurred image
is subtracted from the original. The size of σ is not a critical parameter but should be sufficiently
large so that no retinal structures are visible in the blurred image. The most important
prerequisite of the method is the availability of a vessel segmentation. We have used a pixel
classification based method [16]. In this approach a kNN classifier is trained using example
pixels that have been labeled as either vessel or non-vessel. We used the 20, hand labeled
training images from the DRIVE database [17] for this purpose. A Gaussian filterbank that
contains Gaussian derivatives up to and including second order at five different variances (i.e.
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σ = 1, 2, 4, 8,16) provides the features for each of the pixels. The trained kNN classifier assigns
each pixel in the image a posterior probability p with p ∈ [0 … 1] that that pixel is inside a

vessel based on the filterbank outputs. The posterior probability is given by  where v is
the number of training samples that are vessel amongst the k nearest neighbors in the feature
space of the pixel under consideration.

3.2 Position Regression
We propose to define the problem of locating anatomical structures in retina images as a
regression problem. In regression, an empirical function is derived from a set of experimental
data [18]. In general, regression analysis considers pairs of measurements (d,x) where variable
x represents a set of measurements, the independent variables. The goal of regression is to find
a function f(•) that can be used to predict the dependent variable d from x.

(1)

Here p is a parameter vector that controls the behavior of f(•) and ε is the error in the prediction
of d by f(•). Naturally one would like to choose parameter vector p so as to minimize ε. The
problem of finding a certain location l in an image can be formulated as a regression problem
[19] by taking the distance in the image to l as the dependent variable d and taking an image
derived measurement as the independent variable x. The regression function can then be
determined using a set of examples for which the distance to l, d as well as x are known. To
find l in a new image, one only needs to find the location in which the estimated distance to l
in that image is minimal. We propose to use a k-Nearest Neighbor (kNN) regressor [20] as it
performed well in preliminary experiments and allows straightforward feature selection. The
regression function f(•), in this case parameter vector p only contains a single parameter, k, the
number of neighbors. The kNN regressor requires a training phase in which measurement pairs
(d, x) that are collected from various locations in a set of training images are put together in a
training set. The measurement vectors in the training set x span a higher dimensional space,
the feature space [21]. The estimated value of the dependent variable, d̂, for an independent
variable y measured somewhere in an image is determined by the values of d associated with
the k nearest neighbors in the feature space of y in the training set. By taking the average value
of d amongst the k nearest neighbors d̂ is determined.

3.3 Vessel Analysis
The local orientation and width of the retinal vasculature provide important clues to the position
on the retina. After pre-processing a posterior probability vessel map is available. To obtain a
binary vessel map a threshold should be applied. Selection of the threshold is not critical and,
for our vessel segmentation algorithm, independent of the used image database. It should be
chosen low enough to include some of the smaller vessels around the fovea in the binary vessel
map, we set it to 0.4. The binary map is thinned [22,23] until only the centerlines of the vessels
remain. All cross-over points and bifurcations are eliminated by removing those centerline
pixels that have more than two neighbors. This is necessary because vessel orientation is not
well defined in these points. The orientation of the vessels is measured for each vessel centerline
pixel by applying principal component analysis on its coordinates and those of its neighboring
centerline pixels to both sides. The direction of the largest eigenvector of the covariance matrix
of the set of 2D points, the first principal component, indicates the orientation of the vessel
around the centerline pixel under consideration. In this work three pixels to both sides were
used to determine the orientation. This is not a critical parameter, it was determined that this
value gave adequate results in preliminary experiments. Those pixels near to the end of a
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segment that do not have three pixels to both sides use only the available pixels to determine
the orientation. As it is not known in which direction the vessel flows, the local orientation α
is expressed in radians where α ∈ [0…π].

The local vessel width w is measured for each centerline pixel on a line perpendicular to α.
The distance from the centerline at which the posterior probability drops below half of the
posterior probability value under the centerline pixel is selected as the vessel edge. After the
distance to the left and right edge of the vessel has been determined their sum is taken as the
local vessel width. The ends of vessel segments can be near bifurcation points or vessel
crossings and these can distort the vessel width measurements leading to a width
overestimation. To compensate for this effect we replace the width measurements in the last 3
pixels on both sides of each segment with the average of the width of their neighboring 3 pixels.
In case a vessel segment is too short, less pixels are used. The absolute vessel width is dependent
on the number of degrees covered by the FOV and varies between subjects and in time due to
the cardiac cycle. Therefore the measured w are normalized by dividing them by the maximum
measured w in the image.

3.4 Template Based Feature Extraction
There are many different independent variables (i.e. features) that can be measured in a retinal
image and that may give information about the location in the image where one is measuring
them. From the literature (see [7] for an overview) two important cues that determine the
location in the image emerge, image intensity based cues and vasculature based cues. For both
the optic disc and the fovea, image intensity can be an important cue due to the fact that the
optic disc in general is brighter than the surrounding retinal tissue and the fovea tends to be in
a darker, more pigmented area of the retina. In this work, all image intensity based
measurements are obtained in the green plane of the RGB retinal image. The pattern of the
vasculature as it flows from and to the optic disc over the retina is similar in all images and the
width of the vasculature changes as one moves further away from the optic disc. As such the
local orientation and width of vessels provide important cues about the location in the image.

As both the optic disc and fovea are essentially circular objects we propose to define a set of
features measured under and around two circular templates. Figure 2 shows both the optic disc
and fovea templates. The main difference between the two templates is the presence of an inner
and outer section in the fovea template. This difference is to enable the template to measure
intensity differences between the inner and outer parts of the template. The fovea is a “blob-
like” structure with a lower intensity near its center and a progressively increasing intensity as
one moves away from the center. Both templates consist of four quadrants and for each quadrant
a set of features will be measured independently. The subdivision leads to more sensible
features because one expects the vessels around the optic disc and the fovea to have a specific
orientation at the border of each of the four quadrants when the templates are placed on the
optic disc and fovea in a retinal image. Figure 1 shows the outlines of both the templates at
their correct positions in a retinal image. Both of the templates have a radius, rOD and rfovea,
which are free parameters that are dependent on the size of the image as well as the number of
degrees of the retina shown in the FOV. The radius of the inner section of the fovea template

is defined as . As the number of degrees imaged in the FOV is unknown we performed
some preliminary experiments and set rOD = rfovea = 40 pixels, roughly the radius of the objects
of interest in our training set after pre-processing. The circles in Figure 1 show the size of the
template with respect to the size of the image.

The templates can now be used to extract features at a particular (x, y) location in the image.
The template is centered on the location under consideration (see Figure 3 for an example) and
the following set of features are measured for both the optic disc and fovea template:
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1. Number of vessels. A count of the number of unique vessel segments intersecting the
template border.

2. Average width of the vessels. The average value of w associated with the centerline
pixels on the template border of the unique vessel segments from feature 1.

3. Standard deviation of the vessel width. The standard deviation of the measurements
acquired in feature 2.

4. Average difference in orientation with either the x (quadrant I and III) or y-axis
(quadrant II and IV). The orientation difference for quadrants I and III was defined
as the |cos(α)| while for quadrant II and IV it was defined as sin(α).

5. Standard deviation of the orientation difference. The standard deviation of the
measurements acquired in feature 4.

6. Maximum vessel width. Maximum value of w measured when calculating feature 2.

7. Orientation of the vessel with the maximum width. The value of α for the vessel
segment with maximum w encountered while calculating feature 2.

8. Density of the vessels under the template. The total number of pixels under the
template divided by the number of pixels marked as vessel in the binary vessel map.

9. Average vessel width under the complete template. The number of pixels under the
template marked as vessel in the binary vessel map divided by the number centerline
pixels under the template. This is a different way of measuring this than using the
widths as determined at every centerline pixel.

The following features (10 and 11 of the optic disc template) are only calculated for
the optic disc template:

10. Average image intensity under the complete template. The average of all pixel
intensities of the pixels in the pre-processed green plane of the retinal image that are
under the template.

11. Standard deviation of the image intensity under the complete template. The standard
deviation of the measurements acquired in feature 10.

The following features (10 to 13 of the fovea template) are only calculated for the
fovea template:

12. (10) Average image intensity under the outer template. The average of all pixel
intensities of the pixels in the pre-processed green plane of the retinal image that are
under the outer part of the fovea template.

13. (11) Standard deviation of the image intensity under the outer template. Standard
deviation of the measurements acquired for feature 10.

14. (12) Average image intensity under the inner template. Same as feature 10 but under
the inner part of the fovea template.

15. (13) Standard deviation of the image intensity under the inner template. Same as
feature 11 but only under the inner part of the fovea template.

Features 1-7 are calculated independently for each quadrant bringing the total number of
extracted features for the optic disc template to 7 × 4 + 4 = 32 and for the fovea template to 7
× 4 + 6 = 34. In case a feature cannot be measured, e.g. because the template is partially outside
the field of view or there are no vessels under the template, the feature values are set to 0.
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The cues listed earlier in this Section form the inspiration for the choice of this initial featureset.
Features 1-9 attempt to characterize the local vessel pattern that is clearly different when the
template is positioned on the optic disc as opposed to when it is positioned on the fovea. At
the optic disc location one expects a large number (i.e. high density) of both very wide (i.e. the
widest in the image) and narrow vessels that are flowing in a distinct direction which is different
for every quadrant. The optic disc specific intensity features 10 and 11 simply characterize the
local image intensity and standard deviation which are both expected to have a high value on
top of the optic disc due to the bright appearance of the nerve tissue combined with the low
intensity of the vessels. For the fovea template specific features 10-13 characterize the intensity
and it's standard deviation in the central part of the template and in a ring around it. This should
allow the system to determine if the template is centered on a “blob-like” structure such as the
fovea.

3.5 Training Phase
3.5.1 Extraction of Training Samples—Before a regressor can be used to find a location
in a previously unseen image, a one-time training phase needs to be completed. The training
phase consists of the extraction of measurement pairs from a set of training images. To extract
the measurement pairs from the 500 training images a two step sampling process was employed.
In the first step the area around the known, correct object of interest within the radius of the
template, r, was sampled in a uniform grid spaced 8 pixels apart resulting in about 78
measurements per image. The spacing of the grid is not an important parameter as long as this
area is sampled densely enough. For each of the sampled locations the appropriate template
was used to extract all features which were stored in the training sample set together with the
distance d to the true center of the object of interest. It is unlikely that the features measured
around the template can provide accurate information for a robust estimation of d further away
from the object of interest. Therefore, all samples obtained further than r away from the object
of interest were assigned the value d = r. In a second step a substantial number (500) of
randomly selected locations (i.e. not on a grid) in the training image were sampled in a similar
fashion.

3.5.2 Selection of k—Both k and the feature set have an influence on the regression
performance. However, without assigning a value to k the wrapper based feature selection
procedure can not be performed. Therefore, the regressor parameter k is first determined on
the training data using the complete set of features. To accomplish this, the training image set
was randomly split into two sets of 250 images. For each of the images in both sets the procedure
as outlined above was applied and this meant that for both sets 144,500 measurement pairs
were extracted into two sample sets. All the extracted features were normalized to zero mean
and unit standard deviation. The value of parameter k was varied between 1 and 199 in steps
of 2. For each value of k the average prediction error given by

(2)

over the N measurement pairs in the second half of the training sample set was determined and
the value that minimized ε ̄ was chosen (see Figure 4). For the optic disc template this was k =
21 and for the fovea template this was k = 13.

3.5.3 Regression Feature Selection—A relatively large set of features has been defined.
This complete set of features does not necessarily provide the best regression results.
Application of a feature selection method may improve overall system performance and will
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decrease the computational complexity by reducing the dimensionality of the feature space.
We have applied a supervised wrapper based feature selection method, Sequential Floating
Feature Selection (SFFS) [24]. The algorithm adds and removes features to and from the
selected feature set when that improves the performance of the regressor. The performance in
this case is measured by the average ε, the prediction error, over the dataset. This feature
selection technique was applied separately to both the optic disc and the fovea training set.

To perform the feature selection the training set was randomly split into two sets of 250 images
(144,500 measurements pairs), the same sets that were used for determination of the optimal
value of k. All the extracted features were normalized to zero mean and unit standard deviation.
The SFFS algorithm would train the kNN regressor on the first set and then determine dˆ for
each of the measurement pairs in the second set for different combinations of features. The set
of features that minimized Equation 2 for the N measurement pairs in the second set was
selected as the final set of features. For the optic disc template 16 features were chosen in the
following order (more important to less important):

1. Average image intensity under the complete template.

2. Density of the vessels under the template.

3. Number of vessels (quadrant IV).

4. Number of vessels (quadrant I).

5. Average difference in orientation (quadrant III).

6. Average difference in orientation (quadrant I).

7. Standard deviation of the image intensity under the complete template.

8. Average width of the vessels (quadrant III).

9. Average width of the vessels (quadrant I).

10. Average width of the vessels (quadrant II).

11. Orientation of the vessel with the maximum width (quadrant III).

12. Average width of the vessels (quadrant IV).

13. Orientation of the vessel with the maximum width (quadrant I).

14. Average difference in orientation (quadrant IV).

15. Average difference in orientation (quadrant II).

16. Average vessel width under the complete template.

and for the fovea template these 10 were chosen in the following order:

1. Average image intensity under the inner template.

2. Average image intensity under the outer template.

3. Density of the vessels under the template.

4. Standard deviation of the image intensity under the inner template.

5. Maximum vessel width (quadrant I).

6. Average width of the vessels (quadrant I).

7. Average width of the vessels (quadrant III).

8. Maximum vessel width (quadrant III).
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9. Standard deviation of the vessel width (quadrant I).

10. Standard deviation of the vessel width (quadrant III).

3.6 Search Strategy
No assumptions about the position of the optic disc and fovea in the retinal image are made.
However, we do make a strong assumption about the location of the fovea with respect to the
optic disc. In previous work [12,13,25] researchers have used the fact that the fovea is located
roughly at twice the diameter of the optic disc to the left or right of the optic disc to constrain
the foveal search area. As no segmentation of the optic disc is made in our case we have opted
to measure the x and y differences between the optic disc and fovea that occur in the training
data and used that to define a foveal search area with respect to the location of the optic disc.

To locate the optic disc a two step search approach is used. First a rough estimate of the optic
disc position is found followed by a more detailed search to refine the result. The method starts
by determining dˆ for the optic disc for a set of pixels on a grid where the gridpoints are spaced
10 pixels apart in both the x and y direction and that is overlaid on top of the complete FOV
of the retinal image (see Figure 5a). The spacing of the grid is not a critical parameter, it should
be dense enough so that there are sufficient responses near the optic disc center. Choosing a
higher density of the grid leads to a greater computational complexity. For all pixels on the
grid the value of dˆ is determined and stored in a separate image, Iresult. All pixels that are part
of the FOV in Iresult for which no dˆ has been determined (i.e. that do not lie on the grid) are
set to rOD. To eliminate noisy estimates and determine the center of the optic disc Iresult is then
blurred using a large scale (σ = 15) Gaussian filter (see Figure 5c). The scale of the Gaussian
is not a critical parameter as long as it is sufficiently large. The rough location of the optic disc
is found at the pixel location in Iresult that has the lowest value. The search process is repeated
with a 5 × 5 pixel grid centered on the rough optic disc location but constrained to a rOD ×
rOD search area (see Figure 5d).

Based on the final optic disc location two foveal search areas are defined, one for the case the
image is obtained from the left eye and one for the right eye case. In the left eye fundus image
the fovea is located to the right of the optic disc and vice versa for the right eye fundus image.
As it is unknown a priori whether the method is being applied to a left or a right eye, both
search areas need to be processed. Parts of the search area outside the FOV are not processed
to save time. The search area has been defined as follows, we determined the location of the
fovea with respect to the optic disc in the 500 images in the training set. Based on this data we
defined a rectangular search area that encompasses all fovea locations in the training set. We
superimpose a 5 × 5 pixel grid over both search areas and determine dˆ for the fovea for each
location on the grid (see Figure 6a). The remaining processing is the same as for the optic disc
detection but without an additional refinement step and using rFovea instead of rOD (see Figure
6b).

4 Results
The method was applied to the pre-processed green plane image of all 600 test images. To
determine our evaluation criteria we have looked at the criteria used in the literature. Counting
optic disc detections inside the diameter of the optic disc as a true detection is an accepted
evaluation method used by several of the references provided in the introduction (e.g. [9–
11]). As far as the fovea is concerned, the border of the fovea region is not well defined and
most of the work in the literature has also used the distance to the fovea center as an evaluation
measure (e.g. [9–11]). For our application, diabetic retinopathy screening, knowing only the
approximate centerpoint of both structures is adequate as we are not interested in the exact
segmentation of the optic disc but simply want to mask it.
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For each image we determined whether the optic disc location found by the algorithm was
inside the border of the optic disc as indicated in the ground truth. For the fovea we determined
if it was indicated within 40 pixels of the true location. The results of the experiments are given
in Table 2. Several different splits of the data have been made. The “Set 1” section of the table
shows the result of the system on all 500 regular screening images. In the “Set 2” row the results
of the regular screening images in which the center of the fovea was inside the FOV are shown.
In 51 optic disc centered screening images the fovea center was not within the field of view
leaving 449 images in Set 2. The row marked “Set 3” contains the results on the 100 abnormal
images, in all these images the fovea was within the field of view. A second observer also
indicated the optic disc center and the fovea center in all test images. When the fovea center
was outside the FOV the observer estimated its position. The results of this second observer
are also included in Table 2. All positioning errors ε are given in pixels. To graphically show
the results, a boxplot was produced for those cases where the positioning error was smaller
than 50 pixels (see Figure 7). A comparison of the system performance with the second observer
is also included.

5 Discussion and Conclusion
An automatic system for the detection of the location of the optic disc and the fovea has been
presented. The system uses a kNN-regressor and a circular template to estimate the distance
to a location in the image. It first finds the optic disc and then searches for the fovea based on
the optic disc location. The performance of the system is good, in a heterogeneous set of regular
screening images it successfully detected the location of the optic disc and the fovea in 99.4%
and 93.4% of all 500 cases respectively. The set contained images from different cameras, with
different resolutions and different degrees of coverage of the retina. After exclusion of those
optic disc centered images in which the fovea itself is not visible, the detection performance
for the fovea increases to 96.8%. For the set of pathological images the performance was lower
but still good with a detection accuracy of 93.0% and 89.0% for the optic disc and fovea
respectively. These performance numbers are comparable to the state of the art (see Section
1). Some representative results are shown in Figure 8a-f.

When comparing the results of the computer system with those of the second human observer
on the ground truth, the most striking difference is in the positioning error of the fovea. This
indicates that detection of the fovea position is a more difficult task and this is illustrated by
the fact that the second human observer does not have a 100% detection performance in any
of the sets of test images. Due to the way in which the system is designed, fovea detection
failures tend to have large positioning errors. In all images two foveal search areas are defined,
one to the left and one to the right of the optic disc. When the fovea is found in the wrong
search area, the distance between the true fovea location and the found fovea location is large.
Fovea detection failure is more likely to happen in optic disc centered images: of the 15 images
in Set 2 in which fovea detection failed, 10 were optic disc centered images. This is likely due
to the fact that the foveal search area is up to twice as large as in macula centered images (i.e.
one search area to the left and one to the right of the optic disc) and the fovea can be located
on either side of the optic disc. Optic disc localization failure also often leads to fovea
localization failure: in Set 3 in all 7 cases where the optic disc was not successfully found, the
fovea was not correctly localized as well. For the optic disc the localization error in general is
low and comparable to that of the second human observer. In Set 1 and 2 the median localization
error, the first quartile and the third quartile for detection of the optic disc of the second human
observer and the algorithm are essentially the same. The mean is slightly higher for the
algorithm due to the fact the few errors the algorithm makes tend to be large as illustrated by
the maximum error of 150 pixels. The fact that the system obtains very similar results when
compared with the second observer instead of with the ground truth is also an indication that,
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even though the system was trained with the ground truth, it is not overtrained on the observer
who defined the ground truth in our experiment.

Since we have run the proposed algorithm on the same dataset as the system we previously
described in [10] we can do a direct comparison. That system found the optic disc in 98.4%
and the fovea in 94.4% in Set 1, 98.3% of the optic discs and 94.0% of the foveas in Set 2 and
in Set 3 it found the optic disc in 94.0% and the fovea in 92% of all cases. For detection of the
optic disc the proposed system has a better performance for Set 1 and 2 and performs slightly
worse on Set 3 although the difference is just a single image. After analysis these differences
proved not significant (where significant is defined as p <= 0.05). For the fovea in Set 1 the
system from [10] performs better although the difference is not significant (p < 0.30), for Set
2 the proposed system is significantly (p < 0.01) better than the method from [10] and for the
abnormal image data the system from [10] outperforms the proposed system but not
significantly (p < 0.31). Thus, in images where the fovea is visible and that do not contain
heavy pathology the proposed system is significantly better in detecting the fovea. This
illustrates that fovea localization can benefit from using global image information such as the
position of the vascular arch in cases where the fovea is completely obscured or is barely visible.
The vascular arch can then be used to infer the approximate location of the fovea, something
the proposed system does not do.

A large advantage of the proposed system is its speed. The proposed system demonstrates very
similar or better performance and runs substantially faster than the one described in [10]. The
average runtime on a single core of an Intel Core 2 Duo 2.83GHz is 7.6 seconds, the
implementation was in C++. This average runtime includes pre-processing but does not include
the time it takes to calculate the vessel segmentation. We expect to implement the proposed
technique in an existing automatic screening system for diabetic retinopathy and a
segmentation of the vasculature is given in this case as it is used for various purposes by the
screening system [6]. If the vessel segmentation we used is included, it adds approximately 20
seconds to the total runtime. Even including the vessel segmentation time, the proposed method
is faster than other methods reported in the literature (10 minutes for [10] and 2 minutes for
[11], note that these algorithms were not run on the same hardware).

The feature selection procedure offers a view on which features are the most important for
localizing the optic disc and the fovea. An interesting fact is that the selected features for both
the optic disc and the fovea templates are almost completely symmetrical. For the optic disc
the only non-symmetrical feature is the “number of vessels” feature which is selected in the
neighboring quadrants I and IV. Otherwise the features are either selected for all quadrants or
for opposing quadrants (i.e. the “Orientation of the vessel with maximum width”). For the
fovea template all vessel features are only selected in opposing quadrants I and III. This makes
intuitive sense because both left and right eyes are included in the training and testing sets. The
fact no vessel features were selected for quadrants II and IV is somewhat surprising. Even
though the fovea is in an area of the retina in which no visible vessels are present, to estimate
the distance to the fovea at some location away (i.e. up to rfovea pixels away) from its center
the use of vessel features should be beneficial. Perhaps the use of relatively low resolution
images (after pre-processing) as well as issues with the image quality (all images were acquired
without mydriasis) were preventing successful extraction of the vessel features from the small
vessels around the fovea. Nevertheless, the relatively low resolution does not seem to seriously
affect the detection performance of the fovea detector in our test data.

We have carefully examined the cases in which the optic disc detector did not find the optic
disc and the cases in which the fovea was not correctly localized but was visible in the image.
The majority of failed detections are caused by poor contrast, poor quality vessel segmentation,
imaging artifacts and the presence of pathology or a combination of these factors. When the
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contrast over the optic disc is low this not only affects the intensity features but also the vessel
segmentation result. This combination of factors prevents the system from extracting good
features for optic disc localization. In some cases the fovea detection fails when the fovea is
just barely visible at the edge of the image or when there are artifacts/pathology covering the
fovea (see Figure 8i). Figure 8g-i shows some examples of images on which the algorithm
failed to find the correct location of the optic disc and/or the fovea. An example of low contrast
over the optic disc causing complete failure of the method to find the optic disc and the fovea
is shown in Figure 8g. Figure 8h shows an example of a flash artifact to the left of the optic
disc, at the edge of the FOV (the bright band) causing an incorrect detection of the fovea.
Because the flash artifact is bright it disturbs the intensity measurements in a large area to the
left of the optic disc resulting in a large number of low distance estimates. The lowest predicted
distance to the fovea was at the correct position but after the blurring step the lowest estimate
was on the other side of the optic disc.

For our screening application, the main effect of a misdetected optic disc is that it will not be
masked out correctly. This will in turn lead the abnormality detection algorithms to detect
abnormalities on the optic disc location. This can cause an otherwise normal image to be
flagged as “potentially abnormal” which in turn would lead to more work for the screening
ophthalmologist who would have to look at the image. The result of a failed fovea detection
is hard to predict. One of the main reasons to detect the fovea is that the location of a lesion
with respect to the fovea plays a role in the determination of its severity. However, it is unlikely
the automated screening will miss lesions based purely on their location with respect to the
retina. The current performance of the optic disc and fovea detection system leads us to believe
it is ready to be applied in our automated diabetic retinopathy screening system.

As we have used a heterogeneous set of images from different cameras and different coverage
of the retina for training and testing the method has shown to be robust against different image
types. Also, the method does not have any parameters that need tuning in case of application
to other images. As long as the pre-processing step is done so that the FOV is resized to a
standard size, the images are digital color fundus photographs and the coverage of the FOV is
either 35 or 45 degrees, the system should not have to be retrained and the parameter settings
as described in the paper can be applied.

To summarize, a robust, fast method to detect the position of the optic disc and the fovea in
retinal images was presented. The method shows results comparable to state of the art methods,
does not make strong assumptions about the location of both anatomical landmarks in the image
and has an average runtime of around 20 seconds. This makes the system fit for employment
in an automated screening system for diabetic retinopathy.
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Fig. 1.
A digital color fundus photograph with a circle marking the optic disc (left) and another circle
in the center of which is the fovea. The vascular arch marked in the image is formed by the
major arteries and veins that leave the optic disc up- and downwards.
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Fig. 2.
a) The template used to extract features for localization of the optic disc. b) The template used
to extract feature for localization of the fovea.
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Fig. 3.
The optic disc template placed in a fundus image and two derived images. The points where
unique vessel segments cross the template border are indicated by the blue dots. a) The green
plane of the color fundus photograph. b) The vessel probability map. c) The skeletonized vessel
segmentation. The vessel centerline points that lie on the template border, marked by the dots,
are the locations where the local vessel width and orientation based features are measured.
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Fig. 4.
A graph plotting the average prediction error ε ̄ in pixels against the k parameter value of the
kNN regressor in part of the training set.
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Fig. 5.
The optic disc detection step intermediate results. In the distance maps the border of the FOV
is indicated by the dashed line. a) A color fundus photograph. b) The 10 × 10 optic disc search
grid, sampling points are represented by the bright pixels c) Blurred distance map, result of
rough grid search for the optic disc center (lower intensity equals lower distance). d) Blurred
distance map of fine grid search for the optic disc center.
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Fig. 6.
The fovea detection step intermediate results. In the distance maps the border of the FOV is
indicated by the dashed line. a) The foveal search area (within the rectangle) based on the
location of the optic disc, inside the search area each sampling position is indicated with a
single dot. In this example the search area to the left of the optic disc lies outside the FOV and
is therefore not processed or shown. b) After blurring, the pixel with the lowest value indicates
the fovea location. c) The color fundus image from Figure 5a with the results superimposed.
The circles are centered on the found locations.
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Fig. 7.
A boxplot for both the proposed method (PM) and second observer (2O), of the cases in which
ε was lower than 50 pixels. Indicated are the min, max, the median (white line), the mean (red
diamond), the first and third quartile. To derive a meaningful boxplot from the data, outliers
with a positioning error greater than 50 pixels were removed. From left to right 2, 2, 4, 0, 0, 0,
32, 15, 11, 7, 7 and 3 cases were removed.
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Fig. 8.
Example results, in each image the locations detected by the proposed method are shown by
the dot (optic disc) and the square (fovea). The two circular objects in the image, one around
the optic disc and one around the fovea, represent the areas of the image that are used for the
detection accuracy determination. That is, whenever the algorithm detects the appropriate
location anywhere within the indicated regions it is counted as a correct detection. The circles
around the optic disc indicate the border of the optic disc while the fovea circles have a standard
size (radius is 40 pixels). Differences in the apparent size of the fovea circles between images
are due to scaling for display. a-d) Representative, correct results from Set 2. e-f)
Representative, correct results from Set 3. g) No markers are shown due to complete failure of
the method. h) The optic disc was detected successfully but the algorithm failed to identify the
fovea position. i) Again the optic disc was found successfully but the fovea detection failed.
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Table 1
The characteristics of the set of images used in this research

Characteristics of the Image Set
Number of Images Size (pixels) Coverage

597 768 × 576 45
368 1792 × 1184 45
114 2048 × 1536 45
9 2160 × 1440 45
7 1536 × 1024 35
3 1280 × 960 45
2 768 × 576 35
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