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Abstract
In sample surveys where sampled units have unequal probabilities of inclusion, associations between
the inclusion probabilities and the statistic of interest can induce bias. Weights equal to the inverse
of the probability of inclusion are often used to counteract this bias. Highly disproportional sample
designs have highly variable weights, which can introduce undesirable variability in statistics such
as the population mean or linear regression estimates. Weight trimming reduces large weights to a
fixed maximum value, reducing variability but introducing bias. Most standard approaches are ad-
hoc in that they do not use the data to optimize bias-variance tradeoffs. This manuscript develops
variable selection models, termed “weight pooling” models, that extend weight trimming procedures
in a Bayesian model averaging framework to produce “data driven” weight trimming estimators. We
develop robust yet efficient models that approximate fully-weighted estimators when bias correction
is of greatest importance, and approximate unweighted estimators when variance reduction is critical.
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1 Introduction
Analysis of data from samples designed to have differential probabilities of inclusion typically
use case weights equal to the inverse of the probability of inclusion to provide reduce bias in
the estimators of population quantities of interest. An example is the Horvitz-Thompson

estimator (Horvitz and Thompson 1952) of a population mean  given by

, where wi = 1/πi, πi is the probability of inclusion and s is the subset of the
population units sampled. This fully-weighted estimator is unbiased for the population mean.
For the wide class of non-linear estimators such as ratio estimators or linear regression slopes
that are functions of linear statistics, bias can be reduced and consistent estimates of population
values obtained by replacing implicit means or totals with their weighted equivalents (Binder
1983).

There is little debate that sampling weights be utilized when considering descriptive statistics
such means and totals, although even here, highly variable probabilities of selection can give
rise to bias-variance tradeoffs and the desire to employ weight trimming (Little et. al 1997).
However, when estimating “analytical” models (Cochran 1977, p. 4) that focus on associations
between, e.g., risk factors and health outcomes estimated via linear and generalized linear
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models, the decision to use sampling weights is less definitive (c.f. Korn and Gaubard, 1999,
p. 180–182). Consider a population generated from

(1.1)

while the superpopulation model of interest is the conditional distribution of Yi given Xi
modeled by

(1.2)

the superpopulation model is correctly specified when C = 0 and misspecified when C ≠ 0. We
consider two sampling schemes; an ignorable sampling scheme that oversamples large values
of Xi, and a non-ignorable scheme that oversamples large values of Yi at a given value of Xi.
The sampling scheme is ignorable in the regression context when the sampling probability is
a function of Xi only and thus the inclusion indicator Ii is independent of Yi | Xi because our
goal is to determine the distribution of Y | X; non-ignorable designs in the regression setting
retain an association between Yi and Ii even conditional on Xi. Of course, designs in which Ii
depends on Xi are non-ignorable for parameters that describe the marginal distribution of Yi,
unless Yi ⊥ Xi (see Section 2). We assume that the goal of the modeler is to describe the
association between Y and X using the regression slope β from the superpopulation model. If
the superpopulation model is correctly specified, the target quantity of interest could be either

the superpopulation slope or the population slope defined by , where

 (the “corresponding descriptive
population quantity” in Pfeffermann [1993]). If the superpopulation model is misspecified,
then only the population slope makes sense as a target quantity. The unweighted ordinary least
squares (OLS) estimator and (case-)weighted least squares (WLS) estimator of α and β
respectively are given by

where the ith row of X, , is given by (1 Xi)T, S is a diagonal matrix of sample inclusion
indicators Si, and Sw replaces Si in S with Si/πi. Thus, the WLS estimator replaces the means
and totals in the unweighted estimator with the Horvitz-Thompson equivalents.

Table 1 shows the results from 500 simulations for equivalent populations of N = 10000, under
correctly specified and misspecified models and ignorable and non-ignorable sample designs,
for sample sizes of n = 50 and n = 500. When the sample design is ignorable (probability of
selection depends only on X) and the mean model correctly specified, both the unweighted and
fully-weighted estimators are essentially unbiased, and the larger variance of the weighted
estimator results in a larger mean square error (MSE). When the sampling is ignorable but the
mean model incorrectly specified (linear instead of quadratic), the weighted estimator provides
protection against model misspecificiation, but can introduce large variability into the estimator
(note the larger MSEs for the weighted estimator when n=50). When the sample design is non-
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ignorable for the population slope, the weighted population slope estimator β ̂w accounts for
the underrepresentation of smaller values of Y when X is small, reducing the negative bias in
the slope; in these simulations this bias in the unweighted estimator was a greater contributor
to MSE than variance from the weighted estimator.

The fully-weighted estimators (α̂w β̂w)T are sometimes termed “pseudo-maximum likelihood”
estimators (PMLEs) (Binder 1983, Pfeffermann 1993) because they are “design consistent”
for the MLEs that would solve the score equations under the sampling model defined in (1.2)
if we had observed data for the entire population:

(1.3)

In brief, design consistency implies that the difference between the population target quantity
and the estimate derived from the sample tends to zero as the sample size and population size
jointly increase, or that these difference will on average tend to 0 from repeated sampling of
the population, where samples are selected in an identical fashion from t → ∞ replicates of the
population: see Sarndal (1980) or Isaki and Fuller (1982).

1.1 Weight Trimming
While PMLEs are popular in practice for the reasons discussed above, their bias reduction
typically comes at the cost of increased variance. This increase can overwhelm the reduction
in bias, so that the mean square error (MSE) actually increases under a weighted analysis, as
in the example in Table 1. Even in cases where disproportional sample designs do reduce
variance, as in “optimal allocation” where strata with more variable outcomes are oversampled
(Kish 1965), designs that are optimal for one outcome may not be optimal for another, or for
examination of associations (e.g., regression models).

Perhaps the most common approach to dealing with this problem is weight trimming or
winsorization (Potter 1990, Kish 1992, Alexander et al. 1997), in which weights larger than
some value w0 are fixed as w0. Thus bias is introduced to reduce variance, with the goal of an
overall reduction in MSE. This manipulation of the weights reflects a traditional design-based
approach to survey inference.

Other design-based methods have been considered in the literature. Potter (1990) discusses
systematic methods for choosing w0, including the weight distribution and MSE trimming
procedures. The weight distribution technique assumes that the weights follow an inverted and
scaled beta distribution; the parameters of the inverse-beta distribution are estimated by
method-of-moment estimators, and weights from the upper tail of the distribution, say where
1− F (wi) < .01, are trimmed to w0 such that 1 − F (w0) = .01. The MSE trimming procedure
(Cox and McGrath 1981) determines the empirical MSE at a variety of trimming levels t = 1,
…, T under the assumption that the true population mean is given by the fully weighted

estimate: , where t = 1 corresponds to the unweighted data and t = T to
the fully-weighted data, and θ ̂t is the value of the statistic using the trimmed weights at level
t. The trimming level is then given by the level l minimized  over t.

In addition to adjusting for unequal probabilities of selection, case weights are also used to
calibrate sample elements to known control totals in the population (Deville and Sarndal
1992), either jointly (poststratification weights) or marginally (raking weights). In the
calibration literature, techniques have been developed that allow generalized poststratification
or raking adjustments to be bounded to prevent the construction of extreme weights (Folsom
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and Singh 2000). Beaumont and Alavi (2004) extend this idea to develop estimators that focus
on trimming large weights of highly influential or outlying observations. While these bounds
trim extreme weights to a fixed cutpoint value, the choice of this cutpoint remains arbitrary.
Another approach is to consider robust regression estimates (Hampel 1986) that downweight
highly influential observations, although applications which consider downweighting
influence statistics as an alternative to weight trimming in the context of survey designs are
limited (Zavlasky et al. 2001 considered their use with ratio estimators).

This manuscript develops an alternative approach to weight trimming that considers the case
weights as stratifying variables within strata defined by the probability of inclusion. These
“inclusion strata” may correspond to formal strata from a disproportional stratified sample
design, or may be “pseudo-strata” based on collapsed or pooled weights derived from selection,
poststratification, and/or non-response adjustments. Ordering these weight strata by the inverse
of the probability of selection and collapsing together the largest valued strata mimics weight
trimming by assuming the underlying data from these combined strata are exchangeable
(conditional on any covariates of interest). In a regression setting, this model can be posed as
a variable selection problem, where dummy variables for the inclusion strata interact with the
regression parameters; subtracting from or adding to the inclusion strata design matrix allows
for a greater or lesser degree of weight trimming. By averaging over all possible of these
“weight pooling” models, we can compute an estimator of the population parameter of interest
whose bias-variance tradeoff is data-driven. By allowing for all contiguous inclusion strata
(strata whose weights are closest in value) to be considered for pooling, we induce a high degree
of robustness into our model, protecting against ”over-pooling” that simpler models suffered
from (Elliott and Little 2000). We embed this model in a Bayesian framework, as we believe
it provides a natural setting for model averaging, as well as a proper framework for population
inference.

Section 2 reviews Bayesian finite population inference. Section 3 develops the weight pooling
models for linear regression models in a fully Bayesian setting. Section 4 provides simulation
results to determine the repeated sampling properties of the weight pooling estimators of linear
regression parameters in a disproportional-stratified sample design and compares them with
standard design-based estimators. Section 5 illustrates the use of the weight pooling estimator
using data from the National Health and Nutrition Examination Survey to consider evidence
for “Barker’s Hypothesis” that low birth weight babies are at greater risk for cardiovascular
disease later in life. Section 6 summarizes the results of the simulations and considers
extensions to generalized linear models.

2 Bayesian Finite Population Inference
Let the population data for a population with i = 1,…, N units be given by Y = (y1,…, yN), with
associated covariate vectors X = (x1,…, xN) and sampling indicator variable I = (I1,…, IN),
where Ii = 1 if the ith element is sampled and 0 otherwise. Similar to design-based population
inference, Bayesian population inference focuses on population quantities of interest Q(Y),
such as population means Q(Y) = Ȳ. In contrast to design-based inference, however, one posits
a model for the population data Y as a function of parameters θ: Y ~ f (Y |θ). Inference about
Q(Y) is made based on the posterior predictive distribution of p(Ynob | Yobs, I), where Ynob
consists of the elements of Yi for which Ii = 0:

(2.1)
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where ϕ models the inclusion indicator. If we assume that ϕ and θ are a priori independent and
if the distribution of sampling indicator I is independent of Y, the sampling design is said to be
“unconfounded” or “noninformative”; if the distribution of I depends only on Yobs, then the
sampling mechanism is said to be “ignorable” (Rubin 1987), equivalent to the standard missing
data terminology (the unobserved elements of the population can be thought of as missing by
design). Under ignorable sampling designs p(θ, ϕ) = p (θ)p(ϕ) and p (I | Y, θ, ϕ) = p (I | Yobs,
ϕ), and thus (2.1) reduces to

allowing inference about Q(Y) to be made without explicitly modeling the sampling inclusion
parameter I (Ericson 1969, Holt and Smith 1979, Little 1993, Rubin 1987, Skinner et al.
1989). In the regression setting, where inference is desired about parameters that govern the
distribution of Y conditional on fixed and known covariates X, (2.1) becomes

which reduces to

if and only if I depends only on (Yobs, X), of which dependence on X only is a special case.
Thus if inference is desired about a regression parameter Q(Y, X)|X, then a noninformative or
more generally ignorable sample design can allow inclusion to be a function of the fixed
covariates.

2.1 Accommodating Unequal Probabilities of Selection
Maintaining the ignorability assumption for the sampling mechanism often requires accounting
for the sample design in both the likelihood and prior model structure. In the case of the
disproportional probability-of-inclusion sample designs, this can be accomplished by
developing an index h = 1,…, H of the probability of inclusion (Little 1983, 1991); this could
either be a one-to-one mapping of the case weight order statistics to their rankings, or a
preliminary “pooling” of the case weights using, e.g., the 100/H percentiles of the case weights.
Let nh be the number of included units and Nh the population size in weight stratum h, so that
wh = Nh/nh for h = 1,…, H. We assume here that Nh is known, as when the weight strata come
from a stratified random sample. (If Nh is unknown, as would be the case when the weights
are constructed from estimated probabilities of inclusion via calibration or non-response
adjustments, it can be replaced with N̂h = nhwh. N̂h can be treated as known, or if the underlying
within-stratum samples are small, uncertainty in N̂h can be incorporated into the model by
treating n1, …, nH as a multinomial distribution of size n parameterized by unknown inclusion
stratum probabilities q1,…, qH with, e.g., a Dirichlet prior [Lu and Gelman 2003]. Draws of

 could then be obtained as , where  is drawn from the Dirichlet posterior for q. If
the weights within a stratum are not all equal, then wh can be approximated by the inverse of
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the mean probability of inclusion with the stratum given by .) The data are then
modeled by

for all elements in the hth inclusion stratum, where θh allows for an interaction between the
model parameter(s) θ and the inclusion stratum h. Putting a noninformative prior distribution
on θh then reproduces a fully-weighted analysis with respect to the expectation of the posterior
predictive distribution of Q(Y).

3 Weight Pooling Models
Weight trimming effectively pools units with high weights by assigning them a common,
trimmed weight. The untrimmed (design-based) weighted mean estimator in a

disproportionally stratified design is then , where N+ = Σh Nh, the total
population. Weight trimming typically proceeds by establishing an a priori cutpoint, say 3 for
the normalized weights, and multiplying the remaining weights by a normalizing constant γ =
(N+ − Σκiwo)/Σ(1 − κi)wi, where κi is an indicator variable for whether or not wi ≥ w0. The
trimmed mean estimator is thus given by

where  and . Choosing  yields γ = 1 and

, which corresponds to the estimate for a model that assumes distinct
stratum means for the smaller weight strata and a common mean for the larger weight strata,
that is:

(3.1)

Elliott and Little (2000) considered an extension of this model where we no longer assume the
cutpoint l is known:

where μ1 = β0,…, μl = β0 + βl−1. This “weight pooling” model averages the estimators obtained
from all possible weight trimming cutpoints, where each estimator contributes to the final
average based on the probability that the cutpoint is “correct”. This posterior probability is
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determined via Bayesian variable selection models that determine the posterior probability of
each cutpoint model conditional on the observed data.

3.1 Weight Pooling Models for Linear Regression
This manuscript extends Elliott and Little (2000) in two ways. First, we consider the linear
regression of Yi on fixed covariates xi. Thus the most general model must allow for interactions
between the probability of selection and the linear regression slopes; the full interaction model
(a different slope within each probability-of-selection stratum, equivalent to no pooling)
approximately reproduces the fully-weighted estimator, while the minimal model (a single
slope across all probability-of-selection strata, equivalent to full pooling) approximately
reproduces the unweighted estimator. Pooling of some, but not all, of the strata, reproduces the
trimmed estimator where the degree of trimming is determined by the degree to which the data
suggest that distinct probability-of-selection strata have similar linear regression slopes.
Second, we allow for the pooling of all conterminous inclusion strata. This increases the
robustness of the model, by permitting the lowest probability-of-selection strata to interact with
the linear regression slopes even when higher probability-of-selection strata are pooled. Thus

(3.2)

where Zli = Dhl ⊗ xhi and Dhl is a vector of dummy variables that pool the appropriate
conterminous inclusion strata based on the lth pooling pattern.

Table 2 shows the set of pooling patterns when H = 4. Under weak or non-informative priors,
the first four pooling strata mimic standard weight trimming estimators, with L = 1
corresponding to an unweighted analysis and L = 4 corresponding to a fully-weighted analysis.

Our population quantity of interest B = (B1,…, Bp)T is the slope that solves the population score
equation (1.3) where

or

Note that the quantity B such that U(B) = 0 is always a meaningful population quantity of
interest even if the model is misspecified (i.e., yi is not exactly linear with respect to the
covariates), since it is the linear approximation of xi to E(Yi | xi).

The posterior predictive distribution of B is then given by
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for (θl= (βl, σ2, L = l). Simulations from p(B | y, X) can be obtained by first obtaining a draw
from p(θl|y, X), and then computing

 where Wh = Nh/nh for the
population size Nh and sample size nh is the hth inclusion stratum. Note that this preserves the
distribution of the covariates under the sample design while allowing the slopes to still be fully-
modeled.

A direct draw from p(θl | y, X) = p(βl | σ2, L = l, y, X)p(σ2|L = l, y, X)p(L = l | y, X) is possible
if H is of modest size; otherwise a Metropolis step can be run to obtain an approximation to
the marginal posterior of p(L = l | y, X), and direct draws obtained accordingly. Details are
provided in the Appendix.

3.2 Fractional Bayes Factors
In the absence of strong prior information to define p(θl), the Bayes Factors comparing weight
pooling model l with weight pooling model l′

can be quite sensitive to the choice of p(θl) (Kass and Rafter 1995). We have a similar issue
in our weight pooling model, since our marginal pooling probabilities are simply Bayes Factors
converted from the odds to the probability scale. To counter this, we consider the “fractional
Bayes factor” approach proposed in O’Hagan (1995). The concept extends the training-sample
idea first proposed in Spiegelhalter and Smith (1982). A fraction b of the sample is set aside
as to provide a data-based proper prior for θl. O’Hagan (1995) shows that the resulting Bayes
factor for comparing model l with model l′ using the data-based prior, which he terms a

fractional Bayes factor (FBF), is of the form , where

Small values of b should be most efficient at choosing correct models, while larger values of
b are protective against outliers (data generated under a model not in the classes considered).
O’Hagan proposed n−1 log n and n−1/2 as increasingly “robust” choices of b. O’Hagan assumes
a non-informative prior h(θl) in contrast to our proper prior, but very weakly informative priors,
as we use in simulations and examples below, can be used as well. The Appendix provides
details describing the use of FBF in the weight pooling application.
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4 Simulation Results
4.1 Mean Models

We consider the repeated sampling properties of our proposed models for estimating population

means given by  (i.e,, xi = 1 for all i). We generated data under the following
model:

The population size of the H = 10 selection strata were as follows:

from which disproportional samples of size 500 and 100 were drawn:

(maximum normalized weight=13.9).

We consider two patterns for the means across 10 inclusion strata:

1. μC = (22.5, 14.4, 9.0, 4.8, 1.8, −1.2, −1.8, −2.16, −1.92, −1.8)′

2. μD = (−1.8, −1.92, −2.16, −1.8, −1.2, 1.8, 4.8, 9.0, 14.4, 22.5)′

and considered values of σ2 = 10l, l = −1, 0,…, 3; 200 simulations were generated for each
value of σ2. The mean pattern μC would generally be favorable for weight trimming, since the
means for the low probability-of-selection weight strata are approximately equal; μD would
generally be unfavorable for weight trimming, since the means for the low probability-of-
selection weight strata differ substantially. Generally, weight trimming should be more
favorable as σ2 → ∞ and the effect of the bias correction is minimized; the fully-weighted
estimator will generally be favored as σ2 → 0, and bias correction is paramount.

For priors, we considered μ0 = μ ̂ =(ȳ1, …, ȳH)′, , and a = s =
10−8 (see (3.2)). This is a “data-based” prior that centers all the inclusion means at their
unweighted sample values, with a variance scaled by the sample size n so that it is equivalent
to a variance estimate based on a single observation. We further scale this prior by a factor c
≥ 1 to allow for reduced informativeness; we consider c = 1000 in the simulations below,
making the prior effectively non-informative. We term the estimator of Ȳ obtained under this
model PWT. We also consider the Factional Bayes Factor data-based prior as well; PWTF1,
which uses a training fraction of log n/n, and PWTF2, which uses a larger training fraction of
n−1/2. O’Hagan suggests that PWTF1 will be more efficient at choosing the correct model when
the true model is among the models considered, whereas PWTF2 will be more robust (have
better repeated sampling properties when the true model is not among the models considered).

In addition to these three weight pooling models, we consider the standard designed-based
(fully weighted) estimator (FWT), as well as two trimmed weight (TWT3, TWT7) and
unweighted (UNWT) estimators. The TWT3 estimator is obtained by replacing the weights

whi with trimmed values  that set the maximum normalized value to 3: , where
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; this approximately corresponds to the weight pooling model (3.1) with
l = 6. The TWT7 estimator uses trimmed values that set the maximized values to 7,
approximately corresponds to the weight pooling model (3.1) with l = 8. The UNWT estimator
obtained by fixing whi = N/n for all h, i. We estimate their variance using the Taylor Series
(linearization) approximation (Binder 1983) that accounts for weighting and stratification.

Table 3 shows the root mean square error (RMSE) relative to the fully-weighted estimator and
nominal 95% coverage for the three design-based and three model-based estimators of the
population mean, as a function of the variance σ2, under μC, the structure that favors weight
trimming. Table 4 shows the equivalent measures under μD, the structure that is not consistent
with weight trimming.

Even when the mean structure is favorable for weight trimming, the unweighted estimator
(UNWT) and crude trimming estimators (TWT3, TWT7) behave poorly when σ2 is small, but
have better MSE properties than the fully weighted estimator and conservative coverage when
then within-stratum variance is considerably greater than the between-stratum variance. The
trimmed estimator requires a smaller residual variance to have better MSE properties that the
fully weighted estimator, but the unweighted estimator has the best MSE properties for the
largest residual variance. The fully weighted estimator is design-unbiased; coverage is
approximately correct for n = 500, but anti-conservative when n = 100 due to the poor
asymptotic approximation. The pooled weight estimator under the flat prior nearly dominates
the fully-weighted estimator with respect to MSE and has approximately correct coverage when
n = 100, since asymptotic assumption are not necessary for the Bayesian estimator. Similar
results are found for the pooled weight estimator using the fractional Bayes Factor priors,
except that the increase in efficiency is greater for larger σ2 (RMSE reductions of nearly 30%).

When the mean structure is not favorable for weight trimming, the UNWT and TWT estimators
both have larger MSE than the FWT estimator and very poor coverage except for very large
σ2. The pooled weight estimators are fairly robust, with slightly increased MSE relative to the
fully weighted estimator for intermediate values of σ2, and improved MSE relative to the fully
weighted estimator for large values of σ2. The true coverage of the pooled weight estimator is
somewhat less that the nominal coverage when n = 100 but is still better than that of the fully
weighted estimator, again reflecting the lack of need for asymptotic assumptions in the
Bayesian paradigm.

4.2 Linear Regression Models
For the linear regression model, we generated population data under a linear spline as follows:

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0. A noninformative, disproportionally stratified
sampling scheme sampled elements as a function of Xi (Ii equals 1 if sampled and 0 otherwise):
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This created 10 strata, defined by the integer portions of the Xi values. A total of n = 1000
elements were sampled without replacement for each simulation (maximum normalized weight

≈ 14.9). The object of the analysis is to obtain the population slope .

We considered three patterns for β:

1. βC = (0, 0, 0, 0, .5, .5, 1, 1, 2, 2, 4)′

2. βD = (0, 11, −4, −2, −2, −1, −1, −.5, −.5, 0, 0)′

3. βE = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0,)′

and considered values of σ2 = 10l, l = 1,…, 5; 200 simulations were generated for each value
of σ2. The effect of model misspecification increases as σ2 → 0 as the bias of the estimators
becomes larger relative to the variance, and conversely decreases as σ2 → ∞. Under βC, weight
trimming is likely to be a productive strategy under smaller values of σ2 than under βD, since
the low probability-of-selection slopes are equal. Under βE, the linear regression model for the
population is correctly specified, and the unweighted estimator should be most efficient.

We use priors equivalent to the “data-based” priors we used for population means, extended
to population slopes: β0 = β ̂ = (XT X)−1XTy, Σ0 = cnVar(β ̂) for Var(β ̂) = τ̂2(XT X)−1, τ̂2 = (n −
p)−1(y − Xβ ̂)T (y − Xβ ̂), a = s = 10−8, and c = 1000. We again consider Fractional Bayes Factor
with training fraction of log n/n and n−1/2.

As in the population mean evaluation, we consider the FWT, TWT3, TWT7 and UNWT
estimators, again estimating their variance using the Taylor Series (linearization)
approximation that accounts for weighting and stratification. As in the mean model TWT3
approximately corresponds to the weight pooling model (3.1) with l = 6, and TWT7
approximately corresponds to the weight pooling model (3.1) with l = 8.

Table 5 shows the root mean square error (RMSE) relative to the fully-weighted estimator and
nominal 95% coverage for the three design-based and three model-based estimators of the
population slope (second component of B̂) as a function of the variance σ2, under βC, the
structure that favors weight trimming for smaller values of σ2; Tables 6 and 7 show the
equivalent measures under βD and βE, the structures that respectively favor weight trimming
for only larger values of σ2, and the correctly specified linear model. Under all three models,
the nominal coverage of the 95% CI of fully weighted estimator is approximately correct.

The unweighted and trimmed estimators are always biased because of model misspecification,
although the reduction in variance overwhelms bias correction for large σ2, yielding
approximately correct nominal 95% CI coverage and smaller MSEs relative to the fully
weighted estimator. When the model is correctly specified, the unweighted and trimmed
estimators reduce RMSE by 35–45%, and nominal 95% CI coverage is correct.

The weight pooling estimator with non-informative prior generally tracks the fully weighted
estimator in the presence of model misspecification, although for large σ2 there is a 10%
reduction in RMSE. Nominal 95% coverage is correct except for small values of σ2 under
βD, the model least favorable to weight trimming. Under the correctly specified model, the
weight pooling estimator with non-informative prior has a 5–10% reduction in RMSE, with
correct nominal 95% PPI coverage.

The weight pooling estimator with the smaller training fraction FBF prior (PWTF1) has
equivalent RMSE to the fully-weighted estimator when σ2 is small under βC and weight
trimming is not warranted, but has equivalent RMSE to the unweighted estimator when σ2 is
large and weight trimming is appropriate. A similar pattern is seen under βD, except that
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PWTF1 “overpools” somewhat for intermediate levels of σ2, leading to slightly higher RMSE
that the fully-weighted estimator. Under the correctly specified model βE, PWTF1 has RMSE
properties similar to that of TWT3, with a 35–45% reduction in RMSE. There is modest
undercoverage of the nominal 95% PPI when σ2 is small and the model is misspecified.

The weight pooling estimator with the larger training fraction FBF prior (PWTF2) is more
robust that PWTF1, with little increase in RMSE over the fully-weighted estimator even when
the model is misspecified and σ2 is small, but retaining substantial RMSE reductions (over
30%) when bias correction is unimportant or the model is correctly specified. Coverage
properties of the 95% PPI are correct, except for modest undercoverage under the “worst case”
model (βD with small σ2).

5 Application: Consideration of the Barker Hypothesis using NHANES data
Barker et al. (1993) described an association between low birth weight, and adult
cardiovascular disease and type 2 diabetes. It was postulated that in face of a nutritionally
stressed fetal environment, the fetus adapts in a manner which predisposes to the development
of insulin resistance and increased CVD risk factors in later life. This hypothesis has been
evaluated by a number of others (Curhan et al. 1996, Rich-Edwards et al. 1997, among many),
but usually in convenience samples. A few analyses have considered whether evidence of the
“Barker Hypothesis” exists in children (Forrester et al. 1996, Matthes et al. 1994), again with
convenience samples and limited ethnic diversity.

To evaluate the Barker hypothesis in children using a population-based sample, we use the
National Health and Examination Nutrition Survey III (NHANES III). NHANES III (U.S.
Department of Health and Human Services 1997) is a US-wide survey designed to collect
information about the diet and health status of the US population. The survey was conducted
between 1988 and 1994 with 33,394 subjects, drawn from a probability sample of the US
population with a complex sample design construction. The primary sample units (PSUs)
consisting of standard metropolitan statistical areas (SMSAs), counties, or groups of counties
were collapsed into strata. Strata containing a single large SMSA had that PSU selected with
probability 1. Two PSUs were selected from the remaining strata using a “controlled selection”
process that selected PSUs proportional to population while assuring balance on key covariates
such as region, socioeconomic status, etc. Within each PSU clusters of dwelling units were
sampled using controlled selection as well, and a systematic sample of addresses were then
selected from each cluster. Oversamples of minorities (African- and Mexican-Americans) and
the young (<6) and old (60+) were also obtained. The NHANES III sampling weights are highly
variable: 215 ≤ wi ≤ 79, 382, where 8% of the weights have a normalized values greater than
3. The weights include a non-response adjustment as well as a post-stratification adjustment
to known Census age-sex-geographic-ethnicity (non-Hispanic Caucasian, non-Hispanic
African-American, Mexican-American, and other) totals that also account for the age-ethnicity
oversampling, and included crude trimming adjustments at each step. (No detail is provided
about the weight trimming procedures except that fewer than 1% of cases have trimmed weights
[Mohadjer et al., 1996]). In the analysis below, the weights were grouped into 10 strata for the
weight-pooling model.

To evaluate this hypothesis using the population-based estimates in NHANES, we regress non-
HDL cholesterol on birth weight and birth weight2 among 4–12 year olds, unadjusted and
adjusting for age, gender, age × gender, and current body-mass index (BMI). Table 8 shows
the unweighted, fully-weighted, weight trimming (to a maximum normalized value of 3),
pooled weight, and fractional Bayes factor pooled weight estimators along with estimates of
bias and mean squared error under the assumption that the fully weighted estimator is unbiased
for both the unadjusted and adjusted models. Because a fully-weighted regression estimator
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β ̂w is unbiased only in expectation, the estimated squared bias of a regression estimator β ̂* is
given by max((β ̂* − β ̂w)2 − V̂01, 0) where  (Kish 1992).
To account for the effects of clustering and stratification in the multi-stage sample design, the
variances of the regression estimators were calculated using a bootstrap (Davidson and
Hinckley 1997, p.92–102) where PSUs were resampled with replacement within strata. For
each resampled dataset, the unweighted and fully-weighted estimates were computed as Bu =
(X′X)−1X′y and Bw = (X′W X)−1X′W y respectively, where W is the n × n diagonal case weight
matrix. Point estimates under the weight pooling method were computed as

, where , for
 where Zl consists of the stacked vectors of Zli. To compute P(L = l | y, X) we

used a Factional Bayes Factor data-based prior with a training fraction of n−1/2 (PWTF2).

In this example, the unweighted estimator appears to have better RMSE properties than the
fully-weighted estimator, particularly for the linear term; the unweighted and weighted
quadratic terms are approximately equal under both models. The weight pooling estimator
compromises between the unweighted and fully-weighted estimator for the unadjusted linear
term, but tracks the unweighted estimator in the adjusted model. The weight pooling estimator
tracks the unweighted estimator in the unadjusted model and compromises between the
weighted and unweighted estimator in the adjusted model; the fractional Bayes factor weight
pooling estimator compromises between the unweighted and fully-weighted estimator for the
unadjusted linear term, but tracks the unweighted estimator in the adjusted model. The weight
pooling estimator has the best MSE properties, somewhat smaller than those of the unweighted
estimator; the variance of the fractional Bayes factor weight pooling estimator is somewhat
greater than that of the unweighted estimator. The crude trimming estimator has the next-best
MSE properties, with the fully-weighted estimator having the maximum MSE for both the
unadjusted and adjusted models.

Both the unadjusted and adjusted estimates suggest that a quadratic effect might be present,
with extremely underweight, and normal and above-normal weight children having lower
levels of non-HDL cholesterol than moderately underweight children. However, the trends
were not jointly significant using a Wald test with 2 degrees of freedom using either the
unweighted, fully-weighted, or weight-pooling estimators.

6 Discussion
In this manuscript we have developed a “weight smoothing” methodology that allows the data
to make a principled tradeoff between bias and variance – approximating the fully weighted
estimator when bias is of great importance, but moving toward the unweighted estimator when
variance overwhelms the square of the bias correction factor. This model generalizes the work
Elliott and Little (2000), where population inference was restricted to population means using
a weight pooling model that mimicked weight trimming. A shortcoming of the previous model
was lack of robustness: by considering submodels that pooled only the largest weight strata,
data structures that favored fully-weighted estimators were “overpooled” and the resulting bias
yielded MSEs that were larger than the fully-weighted estimators’ MSEs. Here we consider a
model that allows for the pooling of all conterminous inclusion strata. This yields weight
pooling estimators that are protected against overpooling, but have limited efficiency gains
over fully-weighted estimators. By considering the “Fractional Bayes Factors” of O’Hagan
(1995), in which a fraction b of the sample is set aside as to provide a data-based proper prior,
we showed our resulting estimators retained their robustness properties while gaining
considerable efficiencies over standard fully-weighted estimators. This manuscript also
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extends the weight pooling method to consider population linear regression slopes as well as
population means.

We also applied the methods to assess “Barker’s Hypothesis,” an association between low birth
weight, and adult cardiovascular disease and type 2 diabetes (Barker et al. 1993), using the
nationally-representative National Health and Examination Nutrition Survey III. In this
situation, the unweighted estimates of the quadratic effect of birth weight on non-HDL
cholesterol generally had the best RMSE properties; however the weight pooling estimators
outperformed the fully-weighted estimators.

When sampling weights are used to account for misspecification of the mean in a regression
setting, it could be argued that the correct approach is to correctly specify the mean to eliminate
discrepancies between the fully-weighted and unweighted estimates of the regression
parameters. However, perfect specification is an unattainable goal, and even good
approximations might be highly biased if case weights are ignored if the sampling probabilities
are highly variable, even if the sampling itself is noninformative. In the informative sampling
setting, it may be impossible to determine whether discrepancies between weighted and
unweighted estimates are due to model misspecification or to the sample design itself. Finally,
even misspecified regression models have the attractive feature in the finite population setting
of yielding a unique target population quantity. Consequently accounting for the probability
of inclusion in linear model settings continues to be advised, and methods that balance between
a low-bias, high variance fully-weighted analysis and a high bias, low variance unweighted
analysis remain useful.

The next logical extension of the weight pooling methods is into the generalized linear model
setting. The situation is complicated here by the lack of a closed form solution for p(y | L = l,
X) outside of the Gaussian special case, making it difficult to compute a Fraction Bayes Factor
to enhance efficiency. One possibility is to utilize Laplace approximations (Tierney and
Kadane 1986). In general, we have p(L = l | y) = Cl/Σl Cl, where Cl = ∫ f (y | θl)p(θl)dθl. By
approximating the posterior with a normal distribution, we estimate Cl with (2π)l/2 | Σ̂ |1/2 f (y
| θ̂l) p(θ ̂l), where θ ̂l is a value with high posterior probability (a median or mode). DiCiccio et
al. (1997) discuss improvements on this approximation that may be utilized as well.
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7 Appendix
From (3.2), we obtain a direct draw from the posterior of p(βl, σ2, L = l | y, X) as follows:

1.
, where  for

, and .

2.

3.
βl | σ2, L = l, y, X ~ N(Γl Al, σ2Γl), 

We derive these marginal and conditional distributions in reverse order to simplify computation
and notation.

3. is derived by noting that

for

and thus by standard results (Gelman et al., 2004, p. 85–86)
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where

and .

2. is derived by

Now

Thus

from the normalizing constant for a N (μ, Σ) distribution, and thus

which is the kernel of a scaled inverse chi-square distribution with n + a degrees of freedom
and scaling factor .

1. then follows from 2.:

where
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from the normalizing constant for the Inv − χ2(n, s2) distribution.

7.1 Fractional Bayes Factors
To implement O’Hagan’s (1995) Fractional Bayes Factors for the marginal weight pooling
selection probability, we replaced

with

where 0 < b < 1 represents a “training fraction” of the data set aside to provide prior information
for the parameters for the lth pooling model. From the derivation of 1. above we have

for for .
Thus using FBF, we have
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Table 1

% Bias (MSE in parentheses) for population slope for population generated under , i
= 1,…, 10000, and superpopulation model is given by Yi |Xi ~ N (α + βXi, σ2): correctly specified (A = 0, B = 2,
C = 0), misspecified (A = 0, B = 2, C = −1). Sampling design ignorable population slope (P(Si|Yi,Xi)∝Xi̇

75) or
non-ignorable for population slope (P (Si |Yi, Xi) ∝ exp(.5Yi/(Xi + .25) − 1)). Results from 500 simulations.

Sampling ignorable?
Yes No

Superpopulation model correctly specified?
Yes No Yes No

n=50
β ̂ −0.2(.168) −15.4(.203) −30.8(.511) −63.8(.518)
β ̂w 0.7(.264) −3.8(.274) −5.1(.239) −10.5(.303)
n=500
β ̂ −0.5(.015) −16.3(.040) −28.6(.339) −55.7(.321)
β ̂w −0.8(.033) −0.3(.032) −.7(.039) 0.0(.041)
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Table 2

The set of {Dhl} when 4 weight strata are present: all patterns of pooling coterminous strata.

Pooling pattern index Dummy variable pattern
Number of
pooled strata

L = 1 (complete pooling) Dhl= (1) for all h H* = 1

L = 2 (pool highest three weight
strata)

Dhl=(1 0) for h = 1
Dhl=(0 1) for h ≥ 2

H* = 2

L = 3 (pool highest two weight strata)Dhl=(1 0 0) for h = 1
Dhl=(0 1 0) for h = 2
Dhl=(0 0 1) for h ≥ 3

H* = 3

L = 4 (no pooling) Dhl=(1 0 0 0) for h = 1
Dhl=(0 1 0 0) for h = 2
Dhl=(0 0 1 0) for h = 3
Dhl=(0 0 0 1) for h = 4

H* = 4

L = 5 (pool all but highest weight
stratum)

Dhl=(1 0) for h ≤ 3
Dhl=(0 1) for h = 4

H* = 2

L = 6 (pool first and last two weight
strata)

Dhl=(1 0) for h ≤ 2
Dhl=(0 1) for h ≥ 3

H* = 2

L = 7 (pool middle two strata) Dhl=(1 0 0) for h = 1
Dhl=(0 1 0) for h = 2, 3
Dhl=(0 0 1) for h = 4

H* = 3

L = 8 (pool lowest two weight strata)Dhl=(1 0 0) for h ≤ 2
Dhl=(0 1 0) for h = 3
Dhl=(0 0 1) for h = 4

H* = 3
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Table 8

Change in non-HDL cholesterol (mg/dL) associated with each 1 lb. change in birth weight, among US 4–12 year-
olds, using unweighted (UNWT), fully-weighted (FWT), trimmed weight (TWT3), pooled weight (PWT), and
fractional Bayes factor pooled weight (PWFT2) estimators; unadjusted and adjusted for age, gender and age ×
gender interactions. Point estimates for PWT and PWTF2 models from posterior median; 95% CI or PPI in
subscript. RMSE=estimated root mean square error, treating fully-weighted estimator as unbiased in expectation.
Data from National Health and Nutrition Examination Survey III.

Unadjusted Adjusted
Birth weight Birth weight2 Birth weight Birth weight2

UNWT
Est.95%CI 0.25−0.41, 0.85 −0.19−0.42, 0.03 −0.08−0.84, 0.44 0.15−0.45, −0.01
Bias 0.38 0.02 0.42 0.06
RMSE 0.32 0.12 0.36 0.11

FWT
Est.95%CI −0.13−1.39, 1.04 −0.21−0.58, 0.08 −0.51−1.75, 0.40 −0.21−0.55, 0.00
Bias 0 0 0 0
RMSE 0.61 0.15 0.57 0.13

TWT3
Est.95%CI −0.06−1.00, 0.81 −0.19−0.48, 0.05 −0.35−1.06, 0.32 −0.24−0.63, 0.07
Bias 0.07 0.02 0.16 −0.03
RMSE 0.46 0.12 0.34 0.18

PWT
Est.95%CI 0.25−0.46, 0.81 −0.19−0.40, 0.01 −0.12−0.75, 0.39 −0.28−0.45, −0.00
Bias 0.38 0.02 0.40 −0.07
RMSE 0.31 0.11 0.29 0.11

PWFT2
Est.95%CI 0.18−1.24, 0.92 −0.19−.46, 0.03 −0.13−1.20, 0.39 −0.21−0.52, 0.02
Bias 0.31 0.02 0.38 0.00
RMSE 0.50 0.13 0.40 0.12
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