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Abstract
We describe a novel experiment that we conducted with the Drug Interaction Knowledge-base
(DIKB) to determine which combinations of evidence enable a rule-based theory of metabolic drug-
drug interactions to make the most optimal set of predictions. The focus of the experiment was a
group of 16 drugs including six members of the HMG-CoA-reductase inhibitor family (statins). The
experiment helped identify evidence-use strategies that enabled the DIKB to predict significantly
more interactions present in a validation set than the most rigorous strategy developed by drug experts
with no loss of accuracy. The best-performing strategies included evidence types that would normally
be of lesser predictive value but that are often more accessible than more rigorous types. Our
experimental methods represent a new approach to leveraging the available scientific evidence within
a domain where important evidence is often missing or of questionable value for supporting important
assertions.
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1 Introduction
Our research focuses on how to best utilize drug-mechanism knowledge to help drug-
interaction knowledge-bases expand their coverage beyond what has been tested in clinical
trials while avoiding prediction errors that occur when individual drug differences are not
recognized. Drug mechanism knowledge presents difficult informatics challenges because it
is often dynamic, frequently uncertain, and sometimes missing. A previous publication by our
group describes a novel evidential knowledge-representation approach that we designed to
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address these issues [1]. We have implemented the approach in a system called the Drug
Interaction Knowledge Base (DIKB) and have used the system to represent drug-mechanism
evidence for 16 drugs including six members of the HMG-CoA-reductase inhibitor family
(statins) [2].

An intriguing feature of the DIKB’s knowledge-representation approach is that it enables
exploration of the empirical prediction accuracy of a rule-based theory using many sub-sets of
a given body of evidence. We tested the usefulness of this feature for integrating information
from basic science, clinical research, and authoritative statements for the purpose of making
drug-drug interaction (DDI) predictions. This paper briefly reviews the knowledge-
representation approach implemented in the DIKB, details the methods and results of our novel
experiment, and then discusses its implications for informatics and drug safety.

1.1 The DIKB’s Evidential Knowledge-representation Approach
The DIKB is a knowledge representation system designed to predict DDIs using drug
mechanisms. A key component of the system is a rule-based theory of how drugs interact by
metabolic inhibition. The system’s knowledge-base contains assertions about specific entities
such as drugs, drug metabolites, and enzymes whose relationships with each other are more
generally modeled in the rule-based theory. DIKB maintainers place evidence for, or against,
each assertion in the system’s knowledge-base in an evidence-base that is kept current by an
editorial board. Before each evidence item is entered into the system, maintainers identify its
type from a biomedical evidence taxonomy designed to have sufficient coverage of the kinds
of evidence relevant for supporting or refuting drug mechanism assertions [2]. They then
confirm that the evidence item meets explicitly defined inclusion criteria that apply to all
evidence of its type.

The DIKB distinguishes between assertion instances and assertion types. An assertion instance
is a clear statement of some property or relationship belonging to one or more entities while
an assertion type is the general form of all such instances. For example, the generic (X substrate-
of Y) is an assertion type describing a general relationship between an abstract drug and an
abstract enzyme. Instances of this assertion type might include assertions such as
(carbamazepine substrate-of CYP3A4) and (s-warfarin substrate-of CYP2C9). Expert users
map their confidence in drug-mechanism assertions by first defining combinations of
evidence types from the system’s evidence taxonomy that might support or refute instances of
each assertion type. They then rank the evidence-type combinations by the relative amount of
confidence that they would have in an assertion instance of the given assertion type if it were
supported by the types of evidence present in the definition. We call such rank-ordered
combinations of evidence types levels-of-evidence (LOEs).

For each assertion type in the system, expert users define two, possibly identical, sets of LOEs;
one for the types of evidence that can support an assertion type, the other for the types of
evidence that refute it. They then select one LOE from each set of LOEs as a belief criterion.
Evidence against an assertion dominates evidence for it hence, a query of the DIKB’s
knowledge-base for valid drug-mechanism assertions will return only those assertions whose
body of evidence for satisfies the belief criterion for supporting evidence and whose body of
evidence against does not satisfy the belief criterion for refuting evidence. In this way, the
system makes DDI predictions using only those assertions considered current by the system’s
maintainers and believable by users.

1.2 The Objective of an Experiment with Belief Criteria
When drug experts define and rank LOEs or choose belief criteria, they are making subjective
judgements about the inferential force of an abstract body of evidence. An important question

Boyce et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is whether the experts’ choices have any relationship to empirical measures of the system’s
performance. Figure 1 defines four metrics relevant to evaluating the DIKB — sensitivity,
specificity, coverage, and accuracy. Our hypothesis was that the system would have poorer
coverage but greater accuracy when using belief criteria that inspire complete confidence in a
drug expert than when using criteria that the expert believes to be less trustworthy. We based
this hypothesis on our intuition that the evidence types that experts consider less trustworthy
are more readily available in the literature, but often contain less generalizable scientific
findings, than types that the same experts view as more trustworthy.

We conducted an experiment to characterize the effect of varying belief criteria on the system’s
accuracy and coverage of DDIs present in a reference set of interactions and non-interactions.
The experiment was designed to answer the following research questions:

1. What is the DIKB’s accuracy and coverage of reference set interactions and non-
interactions when using expert-defined belief criteria?

2. Does changing the LOEs that are selected as belief criteria alter the system’s
prediction accuracy or coverage?

3. Do computational experiments imply a particular belief criteria strategy that
optimizes the system’s prediction performance?

2 Methods
2.1 Creation of the Drug Mechanism Knowledge-base

We collected sufficient evidence on the pharmacokinetic drug properties of 16 drugs and 19
drug metabolites to perform this experiment. Figure 2 lists the specific drugs and drug
metabolites that we chose to represent in the DIKB. The methods used to collect, classify, and
enter evidence into the DIKB are described in part I of this two part series [2].

2.2 Creation of the Experiment’s Validation Set
Once the evidence-base was complete except for minor revisions, we attempted to identify all
known pairwise metabolic inhibition interactions and non-interactions between the 35
pharmaceutical entities in the DIKB’s evidence-base. Our intent was to use the interactions
and non-interactions that we found as a validation set for determining the accuracy and
coverage of the DIKB’s DDI predictions. The DIKB predicts interactions using knowledge of
drug mechanisms and a rule-based theory of how interactions occur by metabolic inhibition.
The method that we used to confirm interactions and non-interactions approximated an
independent reference standard because it relied on quantitative observations and did not
consider underlying mechanisms.

We considered a metabolic inhibition interaction to be independently confirmed if any one of
following criteria was satisfied:

1. A pharmacokinetic DDI study provided data showing a statistically significant
(defined below) increase in the Area Under the concentration-time Curve (AUC) of
the study’s object drug or drug metabolite in the presence of the precipitant drug or
drug metabolite.

2. An observation-based case report provided data showing a measurable increase in the
systemic concentration of a drug or drug metabolite in the presence of another drug
or drug metabolite and the evidence board could find no viable alternate explanation
for the observed increase.
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We considered a metabolic inhibition non-interaction to be independently confirmed if all the
following criteria were satisfied:

1. A pharmacokinetic DDI study provided data showing no statistically significant
(defined below) increase in the AUC of the study’s object drug or drug metabolite in
the presence of the study’s precipitant drug or drug metabolite.

2. None of the criteria listed above as independently confirming a metabolic inhibition
interaction was met.

If neither a metabolic inhibition interaction or non-interaction could be confirmed for any pair
of pharmaceutical entities in the DIKB then, we labeled the pair as having no known interaction
or non-interaction.

2.2.1 AUC Ratios and Statistical Significance—We defined a statistically significant
increase in AUC to be:

(1)

Where AUC is the baseline AUC for a DDI study’s object drug or drug metabolite and AUCi
is the AUC for the object drug in the presence of the study’s precipitant drug or drug metabolite.
Often studies do not provide p-values, in such cases we judged an AUC increase statistically
significant if the study provided 95% confidence intervals for the AUC ratio ( ) that did not
include 1.0. If the study’s results did not satisfy Equation 1, and/or the 95% confidence intervals
for the AUC ratio (if available) included 1.0 then, we defined the metabolic inhibition
interaction to not be statistically significant.

2.2.2 Inclusion Criteria for Validation Set Data—We sought evidence for confirming
interactions and non-interactions from three sources of pharmacokinetic data — published
research articles, drug product labeling, and published observation-based case reports. If the
data came from a research article then, the study must have satisfied the definition and inclusion
criteria of the evidence type A DDI clinical trial or any of its sub-types in the DIKB evidence
taxonomy (Appendices A and B, supplementary material). If we found the data in drug product
labeling then it must have met the inclusion criteria for the DIKB evidence type A non-traceable
drug-label statement (Appendix B, supplementary material). Finally, case reports needed to
meet the inclusion criteria for evidence of their type listed in Appendix B (supplementary
material) and provide quantitative measurements of the systemic concentration of the purported
object drug before and after administration of the purported precipitant drug.

2.2.3 The Collection of Pharmacokinetic Data—We designed criteria for confirming
or refuting a metabolic-inhibition DDI before we began collecting evidence. Once the DIKB’s
evidence-base was complete, we began building the validation set. We started by enumerating
all ordered pairwise combinations of the 35 drugs and drug metabolites in the DIKB’s final
evidence-base. We used a single label in the validation set to represent both possible ways that
an interaction might occur between a drug or drug metabolite pair. For example, assuming two
drugs X and Y, we used a single label X - Y to represent two possible interactions — that X
effects a change in the systemic concentration of Y and vice versa. This resulted in a total of
595 labels (Equation 2) excluding same-compound combinations (e.g. simvastatin-
simvastatin). Appendix C (supplementary material) lists 595 labels representing all 1190
potential pairwise interaction and non-interactions between the drugs and drug metabolites in
the DIKB.
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(2)

2.2.4 Avoiding Biased Measures of the DIKB’s Accuracy—Throughout the evidence
collection process we often found clinical trials providing data that were relevant to both
establishing the validity of an assertion about some metabolic property and confirming a
metabolic interaction or non-interaction. To avoid biasing the validation set, we first entered
evidence items that could be applied to both the DIKB’s evidence-base and the validation set
in both places. Then, before assessing the system’s accuracy, we identified any evidence item
that supported a claim made by the validation set and was also used to support a DIKB assertion
that could lead to the same conclusion. We dropped from further analysis the interaction or
non-interaction that such evidence supported. In total, seven pairs were dropped from further
analysis for this reason. These seven drug/drug or drug/drug-metabolite pairs are shown in
Table 1 (supplementary material) along with two other pairs that were accidentally excluded
from the experiment described in this paper due to a transcription error. Excluding these nine
pairs brought the total number of drug/drug and drug/drug-metabolite pairs used for
characterizing the DIKB’s accuracy down to 586.

2.2.5 Searching for Validation-set DDIs in the primary literature and Drug-
product Labeling—We searched the primary literature for clinical trials involving any of
the 586 drug/drug and drug/metabolite pairs in Appendix C (supplementary material) by
querying PubMed 1 and the proprietary University of Washington Metabolism and Transport
Drug Interaction Database 2 After completing an intensive search for all relevant clinical trials,
we conducted a search in drug product labeling for statements mentioning a pharmacokinetic
interaction or non-interaction involving any of the 586 pairs. We searched all labels written
for each drug product whose only active pharmaceutical ingredient was a drug in the DIKB.
The number of qualifying product labels for each drug ranged from one (atorvastatin,
fluvastatin, and rosuvastatin) to 18 (diltiazem) but a large proportion of the statements in one
product label were repeated in all of the other available labels. All identified statements were
noted and then filtered so that only statements providing quantitative data were used to support
validation-set interactions. All searches were done using product labeling in the NLM’s
DailyMed database. 3

In total, we found 65 drug-product labeling statements that mentioned a pharmacokinetic
interaction or non-interaction between the members of some drug or drug-metabolite pair
included in our study. A small sample of these 65 statements is shown in Table 2
(supplementary material). Only 21 statements (31%) reported the quantitative results of a
pharmacokinetic clinical trial. We approved these 21 for use in the validation set; the remaining
44 statements were retained so that drug-product labeling, clinical trial literature, and case
reports could be compared for their agreement on validation set interactions and non-
interactions at a later time.

2.2.6 Searching for Validation-set DDIs in Case Report Literature—Having
completed searches within clinical trial literature and drug-product labeling, we then did an
intensive search of the University of Washington Metabolism and Transport Drug Interaction
Database and PubMed for published case reports claiming the occurrence of a DDI between
any pair of the active ingredients or metabolites in our study. This search resulted in 35 relevant
case reports. We evaluated the full-text article for each of the 35 reports to see if it met the pre-

1http://www.ncbi.nlm.nih.gov/PubMed/
2http://www.druginteractioninfo.org/
3http://www.dailymed.nlm.nih.gov
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defined inclusion criteria. Unfortunately, none of the 35 reports was accepted for use in the
validation set. We rejected most case reports because they did not provide quantitative
measurements of the systemic concentration of the purported object drug before and after
administration of the purported precipitant drug. Three case reports provided adequate
measurements of systemic concentration but failed to meet inclusion criteria by not receiving
a causation rating of at least “probable” when co-investigator JH assessed the report using Drug
Interaction Probability Scale [3]. Table 3 (supplementary material) cites the reports and
provides an explanation for their low causation score.

2.2.7 The Final Validation Set—The interactions and non-interactions in the final
validation set are shown in Tables 4 and 5. The validation set claims that some DDI will occur
by metabolic inhibition for 41 drug/drug and drug/drug-metabolite pairs and that no DDI will
occur by metabolic inhibition for seven pairs. No interaction or non-interaction could be
identified for 538 pairs in the validation set (Appendix C, supplementary material). It is
important to stress that many of these pairs might have clinically-relevant DDIs that were
missed by our evidence collection process or that have not been reported in the sources we
searched.

2.3 The Creation of Prediction Sets for the Experiment
2.3.1 Expert-defined Belief Criteria—Once work on the evidence-base and validation set
was complete, the two drug experts in our group (CC and JH) then defined one or more LOEs
for each assertion type. This was a two step process; co-investigator RB (an informaticist) first
identified all evidence types from the DIKB’s evidence taxonomy (Appendix A, supplementary
material) that were applicable to each assertion type. He then helped the two drug experts
decide the degree of certainty they would have in an assertion instance whose evidence support
consisted of the evidence items represented by each evidence type or combination of evidence
types. 4

2.3.2 The Drug Experts’ Levels-of-evidence and Ranking Categories—Table 6
shows the set of labels, or ranking categories, that the drug experts used define LOEs. Some
labels in Table 6 represent multiple evidence types that the drug experts believed would confer
roughly the same degree of justification for drug mechanism assertions. The experts felt that
several evidence types would not be useful for supporting or refuting particular assertion types.
These evidence types were grouped into a special “not applicable” ranking category and
inserted as the lowest-ranking level-of-evidence for the assertion type’s LOE.

While LOEs were designed separately for each assertion type, many of the resulting LOEs
were alike. As a result, only 15 LOEs were defined for the 22 assertion types in the DIKB’s
rule-based theory of metabolic drug-drug interactions. Table 7 enumerates the assertion types
that share the same LOEs. The symbols for each LOE in Table 7 are used in Table 8 to show
a concise overview of the ranking categories used for all LOEs. An explicit definition of each
LOE is given in Table 9 (supplementary material).

2.3.3 The Drug Experts’ Belief Criteria Strategy—Once they had defined a complete
set of LOEs, the drug experts selected two LOEs for each assertion type as its belief criteria;
one for evidence supporting an assertion and the other for evidence refuting an assertion (see
Table 10). The experts’ belief criteria strategy used the top level-of-evidence from every LOE
definition and, therefore, was the most stringent one tested.

4The questionnaire shown in Appendix G (supplementary material) was used to help the experts reach consensus on the inductive strength
of each evidence-type combination.
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2.3.4 Automatically-generated Belief Criteria Strategies—We expanded the DIKB
so that it could make interaction and non-interaction predictions using every belief criteria
strategy possible with the expert-defined LOEs. We were now able to characterize the effect
of varying belief criteria on the system’s accuracy and coverage.

A default assumption is a special kind of assertion that is considered justified with no evidence
support and that can be asserted or retracted either manually by curators or automatically by
the system as it proceeds with inference. Initially, we were going to generate all belief criteria
strategies by varying the LOEs chosen as belief criteria for every assertion type that was not
labeled as a default assumption. We excluded default assumptions because varying their belief
criteria has no effect on the DIKB’s predictions. Table 11 lists the set of assertion types not
labeled as default assumptions along with the number of LOEs that the evidence-board defined
for each of them. As Equation 3 shows, the total number of belief criteria strategies that the
DIKB would have generated for these assertion types is 576,000.

(3)

However, inspection of the DIKB’s evidence-base revealed that there were six assertion types
for which all of the evidence items, for or against, belonged to the highest-ranked LOE for the
type. This meant that varying the LOE chosen as a belief criterion for any of these types (see
Table 11) would have no effect on the DIKB’s prediction performance. Excluding these six
assertion types and the eight assertion types labeled as default assumptions meant that there
were eight assertion types for which varying the LOE chosen as a belief criterion would have
an effect on prediction performance. The DIKB generated all 36,000 different belief criteria
strategies possible for the remaining eight assertion types by altering the LOEs chosen as belief
criteria. The 14 remaining assertion types used the highest-ranking LOEs defined for their types
as belief criteria.

2.4 Statistical Analysis and Programming
We used the R statistical language [4] to calculate all descriptive and performance statistics.
Bruno Falissard’s psy package [5] was used to calculate a three-valued Cohen’s kappa score
as a measure of the degree over random chance to which the DIKB and validation set agreed
on interactions, non-interactions, and unknowns. Both R and the Python programming
language 5 were used extensively to write various programs that aided our analysis.

3 Results
3.1 Predictions Made Using the Drug-expert’s Belief Criteria Strategy

We began the experiment by testing the accuracy and coverage of the DIKB using the drug
experts’ belief criteria strategy (Section 2.3.3). Using this strategy, the DIKB predicted that 15
drug/drug or drug/drug-metabolite pairs would interact by metabolic inhibition and that two
would not (see Table 12). Fourteen interaction predictions were present in the validation set
and so were considered true positives. The remaining interaction prediction and the two non-
interaction predictions were classified as “unknown” because they were neither confirmed nor
refuted by the validation set.

The predicted pharmacokinetic magnitude of all 14 confirmed predictions corresponded with
levels observed in clinical trial data. While the system’s predictions and magnitude estimates

5www.python.org
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using the drug experts’ strategy had perfect accuracy, its coverage of known interactions was
poor. Only 14 (34%) of the 41 pairs known in the validation set to interact by metabolic
inhibition were predicted to interact by the DIKB. Also, the system failed to predict any of the
seven pairs known in the validation set to not interact by the same mechanism. The system’s
poor coverage using the experts’ belief criteria strategy was expected since it was the most
stringent strategy tested.

3.2 Predictions Made Using the Computer-generated Belief Criteria Strategies
We then analyzed the computer-generated belief criteria strategies to see what influence they
had on the accuracy and coverage DIKB’s predictions. The DIKB failed to make any
predictions using one computer-generated strategy due to some unknown error that occurred
during the experiment. The results from this strategy were not used in further analysis. We
analyzed the remaining 35,999 different strategies for accuracy, coverage, and agreement with
the validation set. Table 13 shows summary statistics for each performance parameter we
analyzed over all prediction sets.

The DIKB’s sensitivity ranged from 0.88 to 1.0 with 19,583 (54%) of the belief criteria
strategies causing the system to operate at maximum sensitivity. The systems specificity ranged
from 0.0 to 1.0 with 6,912 (19%) of the belief criteria strategies causing the system to operate
at maximum specificity. The system had excellent positive predictive value (range: 0.94 to 1)
across all belief criteria strategies. However, we could not characterize the system’s negative
predictive value in a meaningful way because the DIKB never predicted more than two of the
seven validation set non-interactions using any belief criteria strategy. We also calculated
three-valued kappa scores for every prediction set using Cohen’s kappa to see how the
agreement between the DIKB and the validation set compared with agreement expected by
random chance. The DIKB’s predictions across all prediction sets had moderate agreement
(0.4 to 0.5) with the validation set and never reached levels typically considered indicative of
significant agreement (≥ 0.7).

It would be informative to show the trade-off in the true-positive and false-positive rate of the
DIKB over all belief criteria strategies using a receiver operating characteristic (ROC) curve.
However, there is no way to create an ROC curve for the DIKB’s prediction sets because LOEs
are rank-ordered. Another issue is that the false-positive rate of the system can not be calculated
for 28,511 strategies for which the system made no true negative or false positive predictions.
Figure 3 shows a scatter-plot of the DIKB’s true-positive rate versus its false-positive rate over
the 7,488 belief criteria strategies for which a false-positive rate can be calculated. The plot
shows that a number of strategies cause the system to make no false-positives predictions with
high, or nearly perfect, sensitivity.

Figure 4 shows the accuracy and coverage of the DIKB as the proportion of higher-ranking
LOEs present in a belief criteria strategy increases. To create the x axis for this plot, we first
assigned an integer rank to each level-of-evidence in the LOEs for the eight assertion types for
which varying belief criteria had an effect on prediction performance (see Section 2.3.4). The
integer ranks were assigned such that the highest-ranking level-of-evidence was assigned a
one, the next a two, and so-on. Then, for all 35,999 belief criteria strategies possible with the
selected LOEs, the average integer-rank of each level-of-evidence used in the strategy was
divided into 1.0. The resulting metric has a range of 0.26 (least stringent) to 1.0 (most stringent)
for the set of strategies used in the current study. Figure 4 indicates that the most stringent
belief criteria strategy resulted in very accurate predictions but that a large number of less-
stringent strategies produced the same accuracy while covering a greater proportion of
validation set interactions. Figure 5 shows this finding more clearly by plotting, at four
different stringency levels, the proportion of belief criteria strategies that matched the most
stringent strategy’s accuracy but had better coverage.
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A notable result of this experiment is that 8,351 (23%) of the 35,599 tested strategies caused
the DIKB to have equal or better performance in terms of sensitivity, positive predictive value,
and agreement with the validation set than the most stringent strategy. Table 14 shows the
performance characteristics for 1,152 (3%) strategies that performed at the top level in these
three performance categories. It is important to note that neither the most stringent strategy nor
any of these “best-performing” strategies predicted non-interactions that were confirmed or
refuted by the validation set. This meant that we could not calculate the specificity of the DIKB
using either expert or computer-generated strategies.

All of the “best-performing” strategies caused the DIKB to make the same set of 65 interaction
and non-interaction predictions. These strategies predicted a metabolic inhibition interaction
for 34 (83%) of the 41 interacting pairs in the validation set while making no false positive and
no false negative predictions. The system’s coverage of the validation set using any of these
“best-performing” strategies was incomplete — it made no predictions for seven interactions
and seven non-interactions listed in the validation set. As Table 15 shows, the pharmacokinetic
magnitude of 30 of the 34 confirmed (88%) predictions made using the best performing belief
criteria strategies matched levels observed in clinical trial data.

3.3 Evaluation of the DIKB’s Novel DDI Predictions Made Using the Best-performing Belief
Criteria Strategies

The system also predicted 31 metabolic inhibition interactions and nine non-interactions using
the 1,152 “best-performing” belief criteria strategies whose validity was unknown by the
validation set. These novel interaction predictions (Table 16, supplementary material) represent
potentially interacting drug combinations that our review of the literature indicate have not
been studied. We searched PubMed for clinical trials involving these pairs and could only find
one clinical trial that was not already included in the validation set [6] unfortunately, this study
did not meet the inclusion criteria for its evidence type and so could not be used as evidence
for, or against, any interactions.

Fifteen of the published case reports we had collected while constructing the validation set
claimed the occurrence of a DDI that matched one of the 31 novel predictions. Each report was
reviewed using the Drug Interaction Probability Scale (DIPS) [3] by clinician co-investigator
JH. The DIPS defines four qualitative levels (Doubtful, Possible, Probable, and Highly
Probable) representing the degree to which the information provided by the report supports
the proposition that a specific drug combination effected an adverse event or events. Six novel
predictions were matched with case reports that met the DIPS Probable level; meaning that
the predicted interactions were the likely cause of an adverse event occurring in a patient. Seven
novel predictions were matched with reports that met the DIPS Possible level; meaning that
the predicted interactions could not be excluded from consideration as the cause of an adverse
event in a patient.

3.4 Comparing the DIKB Predictions to Labeling Statements
We could not do a quantitative comparison of the system’s predictions with drug-drug
interaction statements from product labeling because a significant proportion of the validation
set was constructed from labeling statements. We examined the 44 statements that were not
used in the validation set and found that two of the seven novel predictions that were matched
with reports meeting the DIPS Possible level could not be inferred from any of the product
labeling statements (see Table 17). We believe that the combination of evidence from the case
report literature supporting these interactions and the lack of discussion in drug product labeling
makes these interactions especially important to investigate further.
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We also found one product label statement declaring an interaction that is refuted by clinical
trial data present in the validation set. This statement extrapolated an interaction observed
between erythromycin and one or more HMG-CoA reductase inhibitors to all drugs in that
class:

Erythromycin has been reported to increase concentrations of HMG-CoA reductase
inhibitors (e.g., lovastatin and simvastatin). Rare reports of rhabdomyolysis have been
reported in patients taking these drugs concomitantly [7].

The active ingredient rosuvastatin is among the HMG-CoA reductase inhibitors included in
our study. The labeling statement indirectly declares a potential pharmacokinetic interaction
between erythromycin and rosuvastatin that is refuted by a randomized clinical trial in the
validation set [8]. None of the interaction predictions made by the DIKB using the evidence
board or the best performing belief criteria strategies were refuted by the validation set (i.e.
false positives or false negatives). While the system made no prediction involving
erythromycin and rosuvastatin with these strategies, it correctly predicted a non-interaction
between erythromycin and rosuvastatin using other, lower specificity, belief criteria strategies.
These results indicate that, depending on belief criteria strategies, DDI prediction using drug-
mechanism knowledge can be accurate while avoiding the kinds of false predictions that occur
when individual drug differences are not recognized.

4 Discussion
Changing the LOEs selected as belief criteria altered the system’s prediction accuracy and
coverage in the way that we had hypothesized. We found for this data set that, as the criteria
for including assertions were relaxed, the DIKB predicted a larger number of true interactions;
sometimes at the expense of also making more false predictions. By having the computer iterate
through a large set of possible belief criteria strategies we found that a significant proportion
(23%) of them caused the DIKB to have equal or better performance in terms of sensitivity,
positive predictive value, and agreement with the validation set than the most stringent strategy
designed by drug experts.

4.1 Further Analysis of the “Best-performing” Strategies
The experiment also found a particular family of belief criteria strategies that optimized the
system’s prediction accuracy and coverage. Table 18 shows the range of LOEs used by the
1,152 “best performing” belief criteria strategies. To better understand the information in Table
18, it is useful to note the situations where a level-of-evidence can be selected as a belief
criterion for an assertion type without having any effect on the system’s predictions.

Any level-of-evidence can be chosen as a belief criterion for an assertion type
that is not relevant for the predictions-of-interest—In the current study, the types
substrate-of and inhibits were key to making all interaction predictions. In contrast, one
assertion type, primary-metabolic-clearance-enzyme, was used exclusively to predict the
magnitude of an interaction. Varying this assertion’s belief criteria could not affect the system’s
non-magnitude predictions and, therefore, had no effect on the study’s performance metrics.
Indeed, Table 18 shows that all four of this assertion type’s LOEs were used by the “best-
performing” strategies.

Any level-of-evidence can be chosen as a belief criterion for an assertion type
when there is no evidence that supports or refutes its instances—Table 18 shows
that there were multiple cases where no evidence items were mapped to a particular level-of-
evidence for an assertion type. For example, since none of the 17 evidence items that were
linked to controls-formation instances map to the assertion type’s top two ranking LOEs (D:
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LOE-1 and D: LOE-2), the system’s predictions were not affected when either was chosen as
a belief criterion. Similar situations held for the is-not-substrate-of, and primary-metabolic-
clearance-enzyme assertion types.

Choosing a lower-ranking level-of-evidence as a belief criterion has no effect
on predictions if all instances of an assertion type are justified by a higher-
ranking level-of-evidence—While the inhibits assertion type was relevant for making DDI
predictions, Table 18 shows that both of its LOEs (I: LOE-1 and I: LOE-2) were used by the
“best-performing” belief criteria strategies. This was because there was only one evidence item
that mapped to LOE-2; an item supporting the assertion (ketoconazole inhibits CYP3A4). The
same assertion had two other evidence items that mapped to LOE-1. As a result, the assertion
was justified no matter which LOE the system chose as a belief criterion for the inhibits
assertion type.

These observations suggest that the experiment’s “best-performing” belief criteria strategies
are quite likely unique to the set of drugs and evidence items used in the current experiment.
For example, further work on the evidence-base might identify new evidence items that map
to LOE-2 for the inhibits assertion and that cause the system to make false predictions.
Similarly, the effect of evidence items that map to LOE-1 or LOE-2 for the controls--formation
assertion type are unknown because such evidence was not present in the current evidence
base. We intend to explore if the “best-performing” strategies perform as well for a different
set of drugs and evidence items in future work.

4.2 Prediction Sets that Produced Invalid Predictions
So far in our discussion we have focused only on the performance of the DIKB using the “best-
performing” strategies. However, 27,648 (77%) of the strategies that we tested caused the
DIKB to predict at least one interaction or non-interaction considered invalid by the validation
set. The maximum number of interaction or non-interaction predictions refuted by the
validation set for any single strategy was three and included either two invalid interactions and
one invalid non-interaction or vice versa. Table 19 shows the four invalid predictions that
appeared in various combinations among the predictions made using a wide range of strategies.
We now briefly discuss the conditions under which each of these predictions were made.

4.2.1 Invalid Predictions Caused by Low-ranking Evidence
itraconazole-fluvastatin: The itraconazole-fluvastatin interaction prediction occurred when
the system used strategies that accept drug labeling statements as belief criteria because 1) the
assertion (itraconazole inhibits CYP3A4) was a default assumption and 2) the evidence-base
recorded one labeling statement (based on a non-cited in vitro study) proposing that CYP3A4
is a minor elimination pathway for fluvastatin (<20% of total clearance) [9]. This prediction
was refuted in the validation set by a randomized controlled trial involving 10 healthy
volunteers that showed no significant increase in the systemic concentration of fluvastatin in
the presence of itraconazole [10].

fluconazole-rosuvastatin: The DIKB predicted the fluconazole-rosuvastatin interaction using
strategies that allow statements in product labeling to justify the controls-formation and has-
metabolite assertion types and non-randomized clinical trial data to justify the inhibits assertion
type. In this case, the system inferred that rosuvastatin is a substrate of CYP2C9 because the
two assertions (rosuvastatin has-metabolite N-desmethylrosuvastatin) and (CYP2C9 controls-
formation-of N-desmethylrosuvastatin) were each supported by evidence items based on
labeling information [11] and the assertion (fluconazole inhibits CYP2C9) was supported by
a non-randomized clinical trial [12]. This prediction was refuted in the validation set by a
randomized controlled trial involving 14 healthy volunteers that found no statistically
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significant increase in the systemic concentration of rosuvastatin in the presence of fluconazole
[13].

itraconazole-rosuvastatin: The DIKB predicted a non-interaction between itraconazole and
rosuvastatin via CYP3A4 inhibition using strategies that allow statements in product labeling
to justify the is-not-substrate-of assertion type. This was because the evidence-base contained
one evidence item, based on a labeling statement, declaring CYP3A4 to not have a role in the
metabolic clearance of rosuvastatin [11]. The validation set contained a randomized clinical
trial that found a small, but statistically significant, increase in the systemic concentration of
rosuvastatin in the presence of itraconazole during [14].

4.2.2 An Invalid Prediction Caused by Using More Stringent LOEs
fluconazole-clarithromycin: The system predicted a non-interaction between fluconazole and
clarithromycin using strategies that considered 1) inhibits type justified by non-randomized
clinical trial data, 2) the is-not-substrate-of assertion type justified by in vitro metabolism
identification studies using human microsomes and chemical inhibitors, and 3) the substrate-
of assertion type justified by any of the clinical trial types. These strategies caused the system
to apply one evidence item [12] to justify the assertion (fluconazole inhibits CYP2C9) and
another item [15] to justify the assertion (clarithromycin is-not--substrate-of CYP2C9).

This case is interesting because the invalid prediction was overruled when using a less
stringent levels-of-evidence for the substrate-of assertion type. The first two LOEs for the
substrate-of assertion type are defined by various clinical trial types. Strategies that used the
assertion type’s third-ranking LOE, in vitro metabolism identification experiments, as belief
criterion predicted a validated interaction between fluconazole and clarithromycin via
CYP3A4 inhibition. We think that this case shows the value of examining the performance of
the system at all possible belief criteria strategies.

4.3 Why was the DIKB’s Coverage of Validation-set Interactions Always Incomplete?
Table 20 shows six interactions and four non-interactions present in the validation set that were
never predicted by the DIKB using any belief criteria strategy. We now briefly examine why
the system missed these interactions and non-interactions.

Missing non-interaction involving pravastatin—The system missed the non-
interactions involving pravastatin because its evidence-base was incomplete in regards to the
pravastatin’s metabolic properties. Although pravastatin’s drug product label states that it is
not metabolized by CYP3A4 “to any significant extent” [16], this evidence was never entered
into the DIKB. Doing so would have caused the system to predict the three missing non-
interactions involving pravastatin using some belief criteria strategies. This case shows that
missing interactions and non-interaction can help identify errors made while building the
DIKB’s evidence-base. We think that an analysis of missing interactions and non-interactions
should be done as quality assurance every time a set of “best-performing” strategies is created
for a new set of drugs. Once errors are corrected, the process of identifying “best-performing”
strategies can be repeated.

Missing interactions involving pravastatin—It is important to note that entering the
aforementioned product label evidence would have caused the system to predict non-
interactions for the two missing interactions involving pravastatin (Table 20). If the non-
interaction predictions are incorrect then, the interactions likely occur by mechanisms other
than those modeled by the DIKB’s current DDI theory. If these mechanisms are known then,
the DDI theory and evidence-base should be expanded to include them. Another possible
explanation is that non-interaction predictions are correct, but that the studies that support the
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interactions contain some limitation. In this situation, it would be important to identify the
limitation and integrate it into the inclusion criteria used to collect evidence.

Missing interactions involving three drug metabolites—Three missing interactions
and one non-interaction are accounted for by the fact that were no assertions in the system
indicating which enzymes do or do not metabolize 1′-OH-midazolam, ortho-OH-atorvastatin,
4-OH-alprazolam, 14-OH-clarithromycin. Neither are there assertions indicating that these
metabolites inhibit a drug-metabolizing enzyme present in the system. The DIKB’s rule-based
theory is capable of predicting when inhibition of the parent compound will or will not affect
the formation of these metabolites made but we did not include these kinds of predictions in
the study

The missing interaction between itraconazole and erythromycin—There were two
evidence items in the system that supported the assertion (erythromycin inhibits CYP3A4)
[17,18] but no assertion or evidence in the system claiming that itraconazole is a substrate of
that enzyme. Hence, The system did not predict an interaction between erythromycin and
itraconazole with itraconazole as the effected drug.

Conversely, the system had three default assumptions that separately established itraconazole
to be both an in vivo and in vitro selective inhibitor of CYP3A4 and erythromycin to be an in
vitro probe substrate. However, the system did not predict that itraconazole would interact with
erythromycin because it does not assume that all properties established in vitro will hold in
vivo. We think that the decision to accept in vitro knowledge as sufficient for inferring an in
vivo result should occur within the evidence-model, not the rule-base.

4.4 Limitations
It’s important to note that our experiment only looked at binary performance criteria —
predictions were classified as “true” or “false” according to the validation set and the goal was
to maximize “true” predictions and minimize “false” predictions. It is likely that a different set
of best-performing strategies would be found if our goal was to optimize the accuracy of the
system’s magnitude predictions. This could be a worthwhile experiment because the system
is capable of order-of-magnitude predictions for some drug combinations. As is shown in
Section 3, the DIKB’s magnitude estimates for 14 interactions using the drug experts’ belief
criteria strategy corresponded with levels reported in clinical trial data present in the validation
set. A set of belief criteria strategies that focused on optimizing magnitude would seek to
expand the DIKB’s coverage of known interactions past these 14 while still making correct
magnitude predictions. However, this kind of analysis should also examine if there are some
features of the rule-based theory of metabolic inhibition interactions used by the DIKB that
could limit its ability to make accurate magnitude predictions. The DIKB’s current method for
magnitude estimation makes a number of assumptions about many of the factors that can
sometimes contribute to an increase in the AUC of an object drug in pharmacokinetic DDI
study. It might be desirable to apply a more sophisticated approach that makes fewer
assumptions such as that described by Ohno et al [19].

If a clinical trial is applied as support for an interaction or non-interaction in the validation set
while a labeling statement echoing, but not citing, the study supports an assertion that the DIKB
uses to predict the same interaction, an assessment of the system’s accuracy will be somewhat
biased in favor of the system. The same bias will exist if a validation set interaction or non-
interaction rests on only a single non-traceable statement and there are assertions in the DIKB
used to predict the interaction or non-interaction that depend on the study that inspired the
statement Both situations have the same remedy — exclude the “dual-use” validation set
interaction or non-interaction from calculations of the systems accuracy. Unfortunately, we
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did not implement any strategy to avoid this kind of bias so it is possible that some labeling
data was used to support mechanistic assertions that led to predictions validated by the same
data but appearing in a different source. Future work will examine if this bias was present and,
if so, what effect removing the affected interactions or non-interactions has on the calculations
of DIKB accuracy.

Another limitation is that all case report evaluations were conducted using a causality
assessment tool (DIPS [3]) whose validity and reproducibility has not yet been formally
evaluated. Furthermore, the reviewer (co-investigator JH) was both the developer of DIPS and
a member of the DIKB evidence board. Future work should involve a more rigorous evaluation
of the DIKB’s novel interactions designed to overcome any potential bias not addressed in this
study.

5 Related Work
Mechanism-based DDI prediction is currently part of pre-clinical drug development where it
used to identify potential interactions between a new drug candidate and drugs currently on
the market [20]. These early-phase modeling efforts are geared towards identifying interactions
between a new drug and drugs with which it might be co-administered early on, before much
time and money is invested [21,22]. The predictions made using drug-mechanisms in this
context are generally qualitative; they indicate that two drugs might interact via a mechanism
but offer no estimate of the magnitude of the interaction. Scientists can use qualitative
predictions to select the set of clinical trials necessary to establish a new drug’s safety profile
[23].

Considerable effort has been invested in both industry and academia researching how to make
quantitative estimates of in vivo DDIs from in vitro evidence. Unfortunately, there is currently
no general method for making accurate quantitative estimates of the magnitude of a metabolic
inhibition DDI using in vitro data [23]. In spite of its difficulties, software tools have been
developed that combine in vitro and in vivo findings to help clinicians reason about potential
metabolic DDIs [24,25]. These systems rely heavily on mathematical models to make
quantitative estimates of the magnitude of their DDI predictions. In contrast, the DIKB’s theory
of metabolic DDIs makes simple magnitude estimates based on qualitative assertions about
the degree to which inhibition of an enzyme would affect the clearance of some drug. A
comparison of the DIKB’s ability to accurately predict magnitude with that of other systems
would be worthwhile and should be the topic of future work.

To the best of our knowledge the DIKB’s computational model of evidence provides features
that are unique among all current system’s that represent drug-mechanism knowledge. While
other drug knowledge-bases and knowledge-based systems have linked evidence to their drug
facts (e.g. DRUGDEX ® 6, Q-DIPS [24], PharmGKB [26], and BioCyc [27]), only the DIKB
classifies all evidence entered into the system using a biomedical evidence ontology oriented
toward confidence assignment. This enables the system to provide customized views of a body
of drug-mechanism knowledge to users who do not agree about the inferential value of
particular evidence types. This feature also allowed us to develop the novel approach to
identifying the optimal use of available evidence that we have presented in this paper.

6 Conclusions
The results of the experiment discussed in this paper suggest that the DIKB’s unique approach
to representing evidence provides two advantages over the representation methods used in

6http://www.micromedex.com/products/drugdex/
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current drug knowledge-bases. One advantage of the method is that experts can prospectively
map their confidence in each assertion type to some arrangement of one or more abstract
evidence types rather than having to review every relevant evidence item in the system. The
experts can then define belief criteria that will influence the prediction accuracy of the system
in a predictable way. Relaxing belief criteria causes the system to predict a larger number of
true interactions, sometimes at the expense of making more false predictions.

Another advantage of the method is that researchers can characterize the prediction accuracy
of a DDI theory using many different sub-sets of a specific body of evidence. This process can
identify which evidence-use strategies optimize the system’s prediction accuracy and coverage
of known DDIs. While the resulting evidence-use strategies might be unique to the set of drugs
and evidence items used to create them, it is reasonable that the clinical relevance of any novel
DDIs predicted using such “best-performing” strategies will be within the range present for
the known interactions. This would have important implications for drug safety and is an area
we intend to explore in future work.

The experiment has also helped to identify an opportunity for research into new computational
methods to help support analysis of belief criteria strategies. Currently, the task is difficult
because of the complex interplay between the kinds of evidence present in the knowledge-base,
how it is linked to each assertion instance, and the relationship between each assertion type
and the variables chosen for scoring the system’s prediction performance. In future work we
hope to explore this research area as well as validate the DIKB’s approach to a broader range
of drugs and drug-interaction mechanisms. We also hope to explore methods for quantifying
the amount of confidence that expert users should have in DDI predictions the system makes
using LOEs that don’t meet belief criteria. Progress on this topic might allow DIKB predictions
to be interpreted in terms of a normative decision-theoretic frame-work such as expected utility
theory. Understanding the relationship between the DIKB’s rank-ordered LOEs and
quantitative measures of evidential support such as those reviewed by Tentori et al [28] might
be an important first step in this direction.

We envision that, over the next decade, a new generation of highly accurate tools will become
available that use pharmacologic theory, drug mechanism knowledge, and patient-specific data
to help clinicians assess the combined effect of multiple drugs, the effect of removing a drug
from a patients drug regimen, and individual response to therapy due to enzyme
polymorphisms. These tools will be a significant advance in medicine and a radical change
from the functionality that current prescribing software offers. Our research on how to best
represent drug mechanism knowledge for the purpose of making clinically relevant DDI
predictions is a small, through important step, toward understanding how to build and deploy
the highly accurate tools that we envision.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The formulas in this figure define four of the metrics that were used to characterize the
performance of the DIKB using various belief criteria.
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Fig. 2.
The 16 drugs and 19 drug metabolites chosen for DIKB experiments
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Fig. 3.
The set of predictions that the DIKB makes is influenced by varying the LOEs chosen as belief
criteria for each assertion type. Since LOEs are rank-ordered there is no way to create a
continuous receiver operating characteristic (ROC) curve. This figure shows a scatter plot of
the true-positive rate (sensitivity) versus the false-positive rate (1.0 — specificity) over the
7,488 belief criteria strategies for which both values could be calculated. The system made no
“true negative” or “false positive” predictions using the strategy chosen by the drug experts
so, its performance using that strategy cannot be shown in the scatter-plot.
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Fig. 4.
A scatterplot of the accuracy and coverage of the DIKB as the proportion of higher-ranking
LOEs present in a belief criteria strategy increases. The vertical line intersecting 1.0 on the x
axis indicates the accuracy and coverage of the most stringent belief criteria strategy that was
defined by the drug experts. The numerical metric for stringency used in this plot (1.0 / average
LOE level) was developed as follows: 1) An integer rank was assigned to each level-of-
evidence in the LOEs for the eight assertion types for which varying belief criteria had an effect
on prediction performance. This was done such that the highest-ranking level-of-evidence was
assigned a one, the next a two, and so-on. 2) For all 35,999 belief criteria strategies, the average
integer-rank of each level-of-evidence used in the strategy was divided into 1.0. The resulting
metric has a range of 0.26 (least stringent) to 1.0 (most stringent) for the set of strategies used
in the current study.
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Fig. 5.
A barplot of the proportion of belief criteria strategies at four different stringency levels that
matched the accuracy but had better coverage than the most stringent strategy. Figure 4 explains
the numerical metric for stringency that is used in this plot. The plot makes it clear that less
stringent strategies often result in a greater coverage of known interactions with no loss of
accuracy.

Boyce et al. Page 24

J Biomed Inform. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Boyce et al. Page 25

Table 4

The 41 validation set interactions that were used to characterize the DIKB’s prediction performance.
Pair Source
alprazolam* - erythromycin [29]
alprazolam* - itraconazole [30]
alprazolam* - ketoconazole [31], [32]
alprazolam* - nefazodone [33], [34]
atorvastatin* - erythromycin [35]
atorvastatin* - nefazodone [36]
clarithromycin - atorvastatin* [37], [38]
clarithromycin* - fluconazole [39]
clarithromycin - pravastatin* [38]
diltiazem - beta-OH-lovastatin* [40]
diltiazem - lovastatin* [41]
diltiazem - midazolam* [42]
diltiazem - simvastatin* [43]
diltiazem - triazolam* [44]
erythromycin - beta-OH-simvastatin* [45]
erythromycin - simvastatin* [45]
fluconazole - 1′-OH-midazolam*† [46]
fluconazole - fluvastatin* [47]
itraconazole - atorvastatin* [48]
itraconazole - beta-OH-lovastatin* [10]
itraconazole* - erythromycin [49]
itraconazole - lovastatin* [10]
itraconazole - ortho-OH-atorvastatin* † [48]
itraconazole - pravastatin* [48]
itraconazole - rosuvastatin* [14]
ketoconazole - simvastatin* [50]
midazolam* - clarithromycin [51], [52]
midazolam* - erythromycin [53]
midazolam* - fluconazole [46], [54]
midazolam* - itraconazole [55]
midazolam* - ketoconazole [55]
midazolam* - nefazodone [56]
nefazodone - 4-OH-alprazolam* † [34]
nefazodone - beta-OH-simvastatin* [36]
nefazodone - simvastatin* [36]
triazolam* - clarithromycin [17]
triazolam* - erythromycin [57]
triazolam* - fluconazole [58]
triazolam* - itraconazole [59], [60]
triazolam* - ketoconazole [60], [61]
triazolam* - nefazodone [62]
Asterisks indicate the object of a metabolic inhibition interaction occurring between the pair.

†
The noted interaction occurs by inhibition of the metabolic clearance of a parent compound.
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Table 5

The seven validation set non-interactions that we used to characterize the DIKB’s prediction performance.
Pair Source
diltiazem - pravastatin* [41]
erythromycin - rosuvastatin* [8]
fluconazole - 14-OH-clarithromycin* [39]
fluconazole - pravastatin* [47]
fluconazole - rosuvastatin* [13]
itraconazole - fluvastatin* [10]
nefazodone - pravastatin* [36]
Asterisks indicate which drug or drug metabolite should not be affected by a metabolic inhibition interaction involving the other drug in the pair.
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Table 6

This table shows the set of labels, or ranking categories, that the drug experts used define LOEs.
Ranking category Evidence types
 in vitro categories
iv-met-enz-id-Cyp-450-with-inh A CYP450, recombinant, drug metabolism identification

experiment using chemical inhibitors
A CYP450, human microsome, drug metabolism identifi-
cation experiment using chemical inhibitors
A CYP450, recombinant, drug metabolism identification
experiment using antibody inhibitors
A CYP450, human microsome, drug metabolism identifi-
cation experiment using antibody inhibitors

iv-met-enz-id-Cyp-450-recombinant A CYP450, recombinant, drug metabolism identification
experiment with possibly NO probe enzyme inhibitor(s)

iv-met-enz-id-Cyp-450-microsomal A CYP450, human microsome, drug metabolism identifi-
cation experiment

iv-met-inh-recombinant A CYP450, recombinant, metabolic enzyme inhibition ex-
periment

iv-met-inh-microsomal A CYP450, human microsome, metabolic enzyme inhibi-
tion experiment

 Clinical Trial categories
pk-ct-pk A randomized DDI clinical trial

A genotyped pharmacokinetic clinical trial
A phenotyped pharmacokinetic clinical trial

pk-ct-pk-genotype A genotyped pharmacokinetic clinical trial
pk-ct-pk-phenotype A phenotyped pharmacokinetic clinical trial
pk-ddi-non-rndm A non-randomized DDI clinical trial:

A parallel groups DDI clinical trial
pk-ddi-rndm A randomized DDI clinical trial
 Statement categories
label-statement A non-traceable drug-label statement
nt-statement A non-traceable, but possibly authoritative, statement
 Observation-based categories
obs-eval A published and evaluated observation-based ADE report
 “not applicable” categories
na-primary-total-clearance-enz † A non-traceable, but possibly authoritative, statement
na-primary-metabolic-clearance-enzyme †A CYP450, human microsome, drug metabolism identifi-

cation experiment using chemical inhibitors
na-substrate-of † A CYP450, recombinant, drug metabolism identification

experiment with possibly NO probe enzyme inhibitor(s)
Note: multiple evidence types that the drug experts thought would confer roughly the same degree of justification for drug mechanism assertions are
represented by a single label.

†
A ranking category created to represent evidence types that the drug experts felt would not be applicable to supporting or refuting particular assertions.
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Table 7

While LOEs were designed separately for each assertion type, many of the resulting LOEs were alike. As a result,
only 15 LOEs were defined for the 22 assertion types in the DIKB’s rule-based theory of metabolic drug-drug
interactions. This table enumerates the assertion types that share the same LOEs.

LOE IDApplies to
A bioavailability

maximum-concentration
B first-pass-effect

fraction-absorbed
C primary-total-clearance-mechanism
D controls-formation-of

substrate-of
is-not-substrate-of

E primary-total-clearance-enzyme
F primary-metabolic-clearance-enzyme
G has-metabolite
H inhibition-constant
I inhibits
J does-not-inhibit
K does-not-permanently-deactivate-catalytic-function

permanently-deactivates-catalytic-function
in-vitro-probe-substrate-of-enzyme

L in-vitro-selective-inhibitor-of-enzyme
M in-viVo-selective-inhibitor-of-enzyme

sole-PK-effect-alter-metabolic-clearance
N pceut-entity-of-concern
O polymorphic-enzyme
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Table 10

This table shows the evidence board’s belief criteria strategy. The columns next to each assertion type indicate
the LOE group and specific LOE that the evidence-board chose as the type’s belief criteria. There are two columns
because the DIKB allows the belief criterion for supporting evidence to be different than the belief criterion for
refuting evidence. Note that the belief criterion for supporting evidence is the same as the belief criterion for
refuting evidence for all but the inhibits and does-not-inhibit assertion types. Assertion types indicated as default
assumptions are noted separately because the system uses them for inference even if their evidence does not meet
belief criteria

Assertion types not used as default assumptions
Assertion type Evidence forEvidence against
bioavailability A, LOE-1 A, LOE-1
maximum-concentration A, LOE-1 A, LOE-1
first-pass-effect B, LOE-1 B, LOE-1
fraction-absorbed B, LOE-1 B, LOE-1
primary-total-clearance-mechanism C, LOE-1 C, LOE-1
controls-formation-of D, LOE-1 D, LOE-1
substrate-of D, LOE-1 D, LOE-1
is-not-substrate-of D, LOE-1 D, LOE-1
primary-total-clearance-enzyme E, LOE-1 E, LOE-1
primary-metabolic-clearance-enzyme F, LOE-1 F, LOE-1
has-metabolite G, LOE-1 G, LOE-1
inhibition-constant H, LOE-1 H, LOE-1
inhibits I, LOE-1 J, LOE-1
does-not-inhibit J, LOE-1 I, LOE-1
Assertion types used as default assumptions
permanently-deactivates-catalytic-function K, LOE-1 K, LOE-1
does-not-permanently-deactivate-catalytic-functionK, LOE-1 K, LOE-1
in-vitro-probe-substrate-of-enzyme K, LOE-1 K, LOE-1
in-vitro-selective-inhibitor-of-enzyme L, LOE-1 L, LOE-1
in-viVo-selective-inhibitor-of-enzyme M, LOE-1M, LOE-1
sole-PK-effect-alter-metabolic-clearance M, LOE-1M, LOE-1
pceut-entity-of-concern N, LOE-1 N, LOE-1
polymorphic-enzyme O, LOE-1 O, LOE-1
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Table 11

The set of assertion types whose validity in the DIKB’s knowledge-base is based on evidence assessment. The
assertion types are shown in decreasing order based on the number of LOEs that we defined for each of them.

Assertion type LOE count
controls-formation-of 5
substrate-of 5
is-not-substrate-of 5
has-metabolite 4
primary-metabolic-clearance-enzyme 4
primary-total-clearance-enzyme 3
primary-total-clearance-mechanism 3
does-not-inhibit † 2
first-pass-effect † 2
fraction-absorbed † 2
inhibition-constant † 2
inhibits 2
maximum-concentration † 1
bioavailability † 1
†
An assertion type for which varying the LOE chosen as a belief criterion would have no effect on the DIKB’s prediction performance because all of the

associated evidence was of a type belonging to the highest ranking LOE.
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Table 12

Seventeen interaction and non-interaction predictions made by the DIKB using the evidence-board’s belief
criteria strategy.

Pair Prediction AUCi/AUC‡

diltiazem - midazolam*
AUCi
AUC > 2 ≥ 3

diltiazem - triazolam*
AUCi
AUC > 2 2.83

midazolam* - clarithromycin
AUCi
AUC > 2 ≥ 7

midazolam* - erythromycin
AUCi
AUC > 2 4.4

midazolam* - fluconazole
AUCi
AUC > 2 ≥ 2.6

midazolam* - itraconazole
AUCi
AUC > 2 10.8

midazolam* - ketoconazole
AUCi
AUC > 2 15.9

midazolam* - nefazodone
AUCi
AUC > 2 4.6

triazolam* - clarithromycin
AUCi
AUC > 2 5.3

triazolam* - erythromycin
AUCi
AUC > 2 2.1

triazolam* - fluconazole
AUCi
AUC > 2 2.5

triazolam* - itraconazole
AUCi
AUC > 2 ≥ 3.1

triazolam* - ketoconazole
AUCi
AUC > 2 ≥ 9.2

triazolam* - nefazodone
AUCi
AUC > 2 ≥ 3.9

triazolam* - atorvastatin †
AUCi
AUC > 2 n/a

triazolam - simvastatin † no interaction n/a
triazolam - β-OH-simvastatin †no interaction n/a
Asterisks indicate the drug or drug metabolite that the system predicts will be the object of the interaction. The DIKB makes interaction predictions at
three levels representing the anticipated AUC ratio of the DDI’s object drug: , , and .

†
a pair classified as “unknown” in the validation set.

‡
AUC ratios present in at least one evidence item in the validation set that supports the interaction.
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Table 14

1,152 (3%) belief criteria strategies caused the DIKB to perform optimally in terms of sensitivity, positive
predictive value, and agreement with the validation set as measured by Cohen’s kappa. This table shows all
measured performance characteristics for these “best-performing” strategies.

statistic valuestatistic value
true positives 34 false positives 0
true negatives 0 false negatives 0
sensitivity 1 specificity n/a
positive predictive value 1 kappa 0.52
DIKB-only unknown 14 validation-set-only unknown 40
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Table 15

Each of the 1,152 strategies that caused the DIKB to perform optimally in terms of sensitivity, positive predictive
value, and agreement with the validation set caused the system to make the same 34 interaction predictions that
were confirmed by the validation set.

pair DIKB
AUCi
AUC

AUCi/AUC

alprazolam* - erythromycin (0, 1.3) 1.61
alprazolam* - itraconazole (0, 1.3) † 2.7
alprazolam* - ketoconazole (0, 1.3) † 3.98
alprazolam* - nefazodone (0, 1.3) 1.98
atorvastatin* - erythromycin > 2† 1.4
atorvastatin* - nefazodone > 2 3-4
clarithromycin - atorvastatin* ‡ > 2 ≥ 1.8, max 5.4
clarithromycin* - fluconazole > 0 ≥ 1.18, max 1.33
diltiazem - lovastatin* > 2 ≥ 3
diltiazem - beta-OH-lovastatin* > 2 3.57
diltiazem - midazolam* > 2 3.75
diltiazem - simvastatin* > 2 4.8
diltiazem - triazolam* > 2 2.83
erythromycin - simvastatin* > 2 6.3
erythromycin - beta-OH-simvastatin* > 2 3.9
fluconazole - fluvastatin* > 2 † 1.83
itraconazole - atorvastatin* > 2 2.5
itraconazole - lovastatin* > 2 14.8
itraconazole - beta-OH-lovastatin* > 2 8.56
ketoconazole - simvastatin* > 2 12.55
midazolam* - clarithromycin > 2 ≥ 7
midazolam* - erythromycin > 2 4.4
midazolam* - fluconazole > 2 ≥ 2.6
midazolam* - itraconazole > 2 10.8
midazolam* - ketoconazole > 2 15.9
midazolam* - nefazodone > 2 4.6
nefazodone - simvastatin* > 2 20
nefazodone - beta-OH-simvastatin* > 2 20
triazolam* - clarithromycin > 2 5.3
triazolam* - erythromycin > 2 2.1
triazolam* - fluconazole > 2 2.5
triazolam* - itraconazole > 2 ≥ 3.1
triazolam* - ketoconazole > 2 ≥ 9.2
triazolam* - nefazodone > 2 ≥ 3.9
Asterisks indicate the drug or drug metabolite that the system predicts will be the object of the interaction.

†
The DIKB’s magnitude estimate did not correspond with validation set data

‡
The DIKB also predicted a metabolic inhibition interaction at the  level with clarithromycin as the object drug.
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Table 17

The two novel interaction predictions shown in this table were supported by case reports but were not present in
any of the 65 drug-drug interaction statements from product labeling that we had collected while building the
validation set.

Predicted interaction DIKB
AUCi
AUC

report and DIPS score

diltiazem - atorvastatin* > 2 [63]:possible
fluconazole - simvastatin* > 2 [64]:possible
Asterisks indicate the interaction’s predicted object drug.
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Table 18

This table shows the range of LOEs used by 1,152 belief criteria strategies that had perfect sensitivity and positive
predictive value and optimized the DIKB’s coverage and agreement with the validation set. The LOEs that were
chosen as belief criteria for supporting and refuting evidence were always the same for the assertions shown in
the table. The columns Evidence for and Evidence against show the distribution of evidence items across the
LOEs. Not shown are the assertion types for which varying the LOEs chosen as belief criteria would have no
effect on the DIKB’s prediction performance (Section 2.3.4).

Assertion type Belief criteria Evidence for Evidence against
inhibits I: LOE-1, LOE-2 n=11 ∼ LOE-1(91%), LOE-2(9%) n=4 ∼ LOE-1(50%), LOE-2(50%)

substrate-of D: LOE-3
n=29 ∼ LOE-1(10%), LOE-2(21%)
   LOE-3(17%), LOE-4(21%)
   LOE-5(31%)

n=11 ∼ LOE-1(0%), LOE-2(0%)
   LOE-3(36%), LOE-4(9%)
   LOE-5(55%)

is-not-substrate-of D: LOE-1 → LOE-3
n=11 ∼ LOE-1(0%), LOE-2(0%)
   LOE-3(36%), LOE-4(9%)
   LOE-5(55%)

primary-total-clearance-mechanism C: LOE-1 → LOE-3 n=14 ∼ LOE-1(21%), LOE-2(64%),
   LOE-3(14%)

primary-total-clearance-enzyme E: LOE-3 n=8 ∼ LOE-1(25%), LOE-2(62%)
   LOE-3(13%)

primary-metabolic-clearance-enzymeF: LOE-1 → LOE-4 n=3 ∼ LOE-1(0%), LOE-2(0%)
   LOE-3(67%), LOE-4(33%)

n=1 ∼ LOE-1(100%), LOE-2(0%)
   LOE-3(0%), LOE-4(0%)

controls-formation-of 6 D: LOE-1 → LOE-3,
LOE-4, LOE-5

n=17 ∼ LOE-1(0%), LOE-2(0%),
   LOE-3(12%), LOE-4(6%),
   LOE-5(82%)

has-metabolite6 G: LOE-1 → LOE-2
LOE-3, LOE-4

n=27 ∼ LOE-1(19%), LOE-2(0%)
   LOE-3(44%), LOE-4(37%)

6
No belief criteria strategy in the set of 1,152 used LOE-4 or any lower-ranking LOE for the controls-formation-of assertion type and LOE-3 or any lower-

ranking LOE for the has-metabolite assertion type.
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Table 19

27,648 strategies led the DIKB to predict one or more of the interactions or non-interactions shown in this table
that were refuted by the validation set. For refuted interactions, asterisks indicate the drug that the DIKB considers
the object of a metabolic inhibition interaction via the enzyme shown in parentheses. For refuted non-interactions,
they indicate the drug that should not be affected by inhibition of the enzyme shown in parentheses.

Refuted interactions

itraconazole - fluvastatin* (CYP3A4)
fluconazole - rosuvastatin* (CYP2C9)

Refuted non-interactions

itraconazole - rosuvastatin* (CYP3A4)
clarithromycin* - fluconazole (CYP2C9)
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Table 20

Pairs in the validation set (Tables 4 and 5) for which the DIKB made no prediction using any the 35,599 belief
criteria strategies.

missing interactions missing non-interactions
clarithromycin - pravastatin diltiazem - pravastatin
fluconazole - 1′-OH-midazolam fluconazole - pravastatin
itraconazole - pravastatin nefazodone - pravastatin
itraconazole - erythromycin fluconazole - 14-OH-clarithromycin
itraconazole - ortho-OH-atorvastatin
nefazodone - 4-OH-alprazolam
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