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Abstract
We present a new evidence taxonomy that, when combined with a set of inclusion criteria, enable
drug experts to specify what their confidence in a drug mechanism assertion would be if it were
supported by a specific set of evidence. We discuss our experience applying the taxonomy to
representing drug-mechanism evidence for 16 active pharmaceutical ingredients including six
members of the HMG-CoA-reductase inhibitor family (statins). All evidence was collected and
entered into the Drug Interaction Knowledge Base (DIKB); a system that can provide customized
views of a body of drug-mechanism knowledge to users who do not agree about the inferential value
of particular evidence types. We provide specific examples of how the DIKB’s evidence model can
flag when a particular use of evidence should be re-evaluated because its related conjectures are no
longer valid. We also present the algorithm that the DIKB uses to identify patterns of evidence support
that are indicative of fallacious reasoning by the evidence-base curators.
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1 Introduction
A 2006 report from the US Institute of Medicine estimates that over 1.5 million preventable
adverse drug events (ADEs) occur each year in America [1]. Preventable ADEs include
situations where a patient is harmed because a clinician fails to avoid, or properly manage, an
interacting drug combination. Multiple studies indicate that these drug-drug interactions DDIs
are a significant source of preventable ADEs [2,3].

Factors contributing to the occurrence of preventable DDIs include a lack of knowledge of the
patient’s concurrent medications and inaccurate or inadequate knowledge of drug interactions
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by health care providers [4,5]. Information technology, especially electronic prescribing
systems with clinical decision support features, can help address each of these factors to varying
degrees and there is currently a great deal of interest from both government and private
organizations in expanding the use of information technology during medication prescribing
and dispensing [1,6]. Unfortunately, studies have found the DDI components of a wide variety
of clinical decision-support tools to be sub-optimal in both the accuracy of their predictions
and the timeliness of their knowledge [7–9].

What all of the systems in these studies have in common is that they rely upon some
representation of drug knowledge to infer DDIs; what we refer to in this paper as a “drug-
interaction knowledge base” (KB). Currently, a handful of large drug information databases
are used as drug-interaction KBs in a large range of drug interaction alerting products and
electronic prescribing tools [6]. The basic service most drug-interaction KBs provide is to
catalog drug pairs found to interact in clinical trials or reported as such in clinician-submitted
case reports. One major limitation of this approach is that it constrains drug-interaction KBs,
and the tools that utilize them, to covering only interacting drug pairs that KB maintainers find
in the literature and think important to include. Clinicians often must infer the potential risk of
an adverse event between medication combinations that have not been studied together in a
clinical trial [5]. Systems that only catalog DDI studies involving drug pairs can offer little or
no support in these situations.

Some contemporary drug interaction KBs supplement their DDI knowledge by generalizing
interactions involving some drug to all other drugs within its therapeutic class [10]. While
clinically relevant class-based interactions exist (for example, the SSRIs and NSAIDs), this
approach has been criticized for leading to some DDI predictions that are either false or are
likely to have little clinical relevance [11,12]. The main reason class-based prediction can lead
to false alerts is because drugs within a therapeutic class do not necessarily share the same
pharmacokinetic properties. False predictions can have a negative effect on electronic
prescribing systems by triggering false or irrelevant DDI alerts that can markedly impede the
work-flow of care providers [13]. A high rate of irrelevant alerting is a potential barrier to
widespread adoption of Computerized Physician Order Entry systems with clinical decision
support [14] and stands as a major obstacle to improving patient safety.

Part of pre-clinical drug development is the use of mechanism-based DDI prediction to predict
interactions between a new drug candidate and drugs currently on the market [15]. The same
knowledge that is useful for predicting DDIs in the premarket setting can help clinicians in the
post-market setting assess the possibility of a DDI occurring between two drugs that have never
been studied together in clinical trials [11]. However, little research has been done on how to
best represent and synthesize drug-mechanism knowledge to support clinical decision making.
Our research attempts to fill this knowledge gap by focusing on how to best utilize drug-
mechanism knowledge to help drug-interaction KBs expand their coverage beyond what has
been tested in clinical trials while avoiding prediction errors that occur when individual drug
differences are not recognized.

A pilot experiment that we conducted helped identify three major challenges to representing
drug-mechanism knowledge [16]. First, there is often considerable uncertainty behind claims
about a drug’s properties and this uncertainty affects the confidence that someone
knowledgeable about drugs places on mechanism-based DDI predictions. Another challenge
is that mechanism knowledge is sometimes missing; a fact that can make it diffcult to assess
the validity of some claims about a drug’s mechanisms. Finally, mechanism knowledge is
dynamic and any repository for drug-mechanism knowledge is faced with the non-trivial task
of staying up to date with science’s rapid advances.
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We have previously reported on the design and implementation of a novel knowledge-
representation approach that we hypothesized could overcome these challenges [17]. The
approach was implemented in a new system called the Drug Interaction Knowledge Base
(DIKB); a system that enables knowledge-base curators to link each assertion about a drug
property to both supporting and refuting evidence. DIKB maintainers place evidence for, or
against, each assertion about a drug’s mechanistic properties in an evidence-base that is kept
current through an editorial board approach. Maintainers attach to each evidence item entered
into the evidence base a label describing its source and study type. Users of the system can
define specific belief criteria for each assertion in the evidence-base using combinations of
these evidence-type labels. The system has a separate knowledge-base that contains only those
assertions in the evidence-base that meet belief criteria. The DIKB’s reasoning system uses
assertions in this knowledge-base and so only makes DDI predictions using those facts
considered current by the system’s maintainers and believable by users.

An intriguing feature of this evidential approach to knowledge representation is that the system
can provide customized views of a comprehensive body of drug-mechanism knowledge to
expert users who have differing opinions about what combination of evidence justifies belief
in a biomedical assertion. Another intriguing feature is that researchers can test the empirical
prediction accuracy of a rule-based theory using many sub-sets of a given body of evidence.
The results of such tests can suggest which combination of evidence enables the theory to make
the most optimal set of predictions in terms of accuracy and coverage of a validation set. We
have found this feature useful for integrating basic science and clinical research for the purpose
of predicting DDIs and discuss it in more detail in Part II of this two-paper series.

A key component of the DIKB is a new evidence taxonomy that, when combined with a set of
inclusion criteria, enables drug experts to specify what their confidence in a drug mechanism
assertion would be if it were supported by a specific set of evidence. The primary focus of this
paper is the design and application of the new evidence taxonomy. The next section summarizes
the requirements that the new taxonomy was designed to meet and contrasts them with other
biomedical evidence taxonomies. The section after presents the current version of the
taxonomy and details on its implementation. Then follows a discussion of our experience
applying the taxonomy to representing drug-mechanism evidence for 16 active pharmaceutical
ingredients including six members of the HMG-CoA-reductase inhibitor family (statins). This
discussion includes mention of extensions to our previously reported work on the DIKB’s
evidence model [17] including a new algorithm that the DIKB uses to identify patterns of
evidence support that are indicative of fallacious reasoning by the evidence-base curators.

2 Considerations for an evidence taxonomy oriented toward confidence
assignment

The DIKB’s method for modeling and computing with evidence depends on an evidence
taxonomy oriented toward confidence assignment. The evidence taxonomy must have suffi-
cient coverage of all the kinds of evidence that might be relevant including various kinds of
experiments, clinical trials, observation-based reports, and statements in product labeling or
other resources. Another important requirement for the taxonomy is that users must be able to
assess their confidence in each type either by itself or in combination with other types. Only a
handful of biomedical informatics systems exist that attempt to label or categorize evidence;
these include the PharmGKB’s categories of pharmacogenetics evidence [18], Medical Subject
Headings’ Publication Types [19], Gene Ontology’s evidence codes [20], and Pathway Tools’
evidence ontology [21]. The next few sections summarize these biomedical evidence
taxonomies and contrast them with the DIKB’s requirements.

Boyce et al. Page 3

J Biomed Inform. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1 PharmGKB’s “Categories of pharmacogenetics evidence”
The PharmGKB is a Web-based knowledge repository for pharmacogenetics and pharma-
cogenomics research. Scientists upload into the system data supporting phenotype relationships
among drugs, diseases, and genes. All data in the PharmGKB is tagged with labels from one
or more of five non-hierarchical categories called categories of pharmacogenetics evidence
[18]. The categories of pharmacogenetics evidence are different from the DIKB’s evidence
types because the latter represent specific sources of scientific inference such as experiments
and clinical trials while the former are designed to differentiate the various kinds
pharmacogenetic gene-drug findings by the specific phenotypes they cover (e.g. clinical,
pharmacokinetic, pharmacodynamic, genetic, etc). In other words, the categories are oriented
toward data integration rather than confidence assignment. The designers of the PharmGKB
used this approach because they hypothesized that it would be capable of coalescing the results
of a range of methods and study types within the field of pharmacogenetics into a single data
repository that would be useful to all researchers in the field [22].

2.2 Medical Subject Headings “Publication Types”
One of the most used biomedical evidence taxonomies is the publication-type taxonomy that
is a component of the Medical Subject Headings (MeSH) controlled vocabulary [23]. The
MeSH controlled vocabulary is a set of over 20,000 terms used to index a very broad spectrum
of medical literature for the National Library of Medicine’s PubMed database (formerly
MEDLINE). Each article in PubMed is manually indexed with several MeSH terms and
additional descriptors including the article’s publication type. The MeSH publication type
taxonomy is designed to provide a general classification for the very wide range of articles
indexed in PubMed. Hence, the taxonomy is very broad but relatively shallow. For example,
publication types in the 2008 MeSH taxonomy [19] include types as varied as Controlled
Clinical Trial and Sermons but only one type, In Vitro, that represents all kinds of in vitro
studies including those using non-human tissue.

In knowledge representation terms, the coverage by MeSH publication types of the evidence
types relevant for validating drug-mechanism knowledge is too coarse-grained. This is because
the design of some in vitro experiments makes them better suited for supporting some drug-
mechanism assertions more than others. For example, a recent FDA guidance to industry on
drug interaction studies distinguishes three different in vitro experimental methods for
identifying which, if any, specific Cytochrome P-450 enzymes metabolize a drug [15]. The
three experiment types are different from the in vitro experiment type that the FDA suggests
is appropriate for identifying if a drug inhibits a drug metabolizing enzyme. The next two
sections will discuss two systems whose coverage of in vitro evidence is less coarse than MeSH
publication types – the Gene Ontology evidence codes [20] and the Pathway Tools’ evidence
ontology [21].

2.3 Gene Ontology “Evidence Codes” and the need for inclusion criteria
The Gene Ontology (GO) is a system of three separate ontologies defining relationships
between biological objects in micro- and cellular biology [24]. GO is a consortium-based effort
that has gained wide acceptance in the bioinformatics community because it supports consistent
descriptions of the cellular location of a gene product, the biological process it participates in,
and its molecular function. Authors of GO annotations are expected to specify an evidence
code that indicates how a particular annotation is supported. GO evidence codes [20] are labels
representing the kinds of support that a biologist might use to annotate the molecular function,
cellular component, or biological process (s)he is assigning to a gene or gene product. GO has
over a dozen evidence codes including codes that indicate that a biological inference is
supported by experimental evidence, computational analysis, traceable and non-traceable
author statements, or the curators’ judgement based on other GO annotations.
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In the DIKB, the user’s confidence in an assertion rests on some arrangement of one or more
evidence types. This means that the user must trust the validity of each instance of evidence
that the system uses to meet the belief criteria without necessarily reviewing the evidence for
his or herself. In contrast with these requirements, the authors of the GO evidence codes are
very clear that the codes cannot be used as a measure of the validity of a GO annotation:

Evidence codes are not statements of the quality of the annotation. Within each
evidence code classification, some methods produce annotations of higher confidence
or greater specificity than other methods, in addition the way in which a technique
has been applied or interpreted in a paper will also affect the quality of the resulting
annotation [20].

This quote from GO evidence code documentation mentions two possible characteristics of
GO evidence codes that preclude them from serving as a measure of the justification for
biological annotations. First, GO evidence codes seem to represent evidence types that vary in
terms of their appropriateness for justifying hypotheses. Like MeSH publication types, GO
evidence codes are too coarse-grained for use as a tool for confidence assignment. Second, GO
evidence codes do not address the fact that there are many possible problems with studies,
experiments, author statements, and other types of evidence that can effect their validity. In
other words, even if GO evidence codes were granular enough for decision support, the user
would have to assess the quality of each evidence item directly or else place faith in the
annotator’s judgment.

According to the The Agency for Healthcare Research and Quality, there are three components
of a study that contribute or detract from its quality - its design, how it is conducted, and how
its results are analyzed ([25], p.1). While it is possible to create meta-data labels that accurately
reflect a study’s design, it is intractable to abstract the full range of issues that affect a study’s
conduct and analysis. Our approach to ensuring user confidence in abstract evidence types is
to develop and consistently apply inclusion criteria for each type of evidence in the DIKB.
Inclusion criteria help ensure that all evidence within a collection meet some minimum standard
in terms of quality. They are complimentary to evidence type definitions which should
represent evidence classes that are fairly homogeneous in terms of their appropriateness for
justifying hypotheses. The criteria are designed to help answer the kinds of methodology
questions that expert users have when told that an evidence item is of a certain type.

2.4 The Pathway Tools’ “Evidence Ontology” and confirmation bias
One other currently used biomedical evidence taxonomy is found in the Pathway Tools system
of pathway/genome databases (PGDBs) [21]. The Pathway Tools evidence ontology is both a
computable evidence taxonomy and a set of data-structures designed so that PGDB maintainers
can attach 1) the types of evidence that support an assertion in the PGDB, 2) the source of each
evidence item, and 3) a numerical representation of the degree of confidence a scientist has in
an assertion. The taxonomy component of the evidence ontology shares several of the types
defined in GO evidence codes (Section 2.3) but adds a number of subtypes that define more
specific kinds of experiments and assays than GO. The data-structure component of the
“evidence ontology” enables PGDB maintainers to record the source of an evidence item, the
accuracy of a given method for predicting specific hypotheses, and the scientist’s confidence
in a PGDB assertion given the full complement of evidence supporting an assertion.

PGDB users are presented with a visual summary of the kinds of evidence support for a given
assertion in the form of icons representing top-level evidence-types from the Pathway Tools’
evidence taxonomy (e.g. “computational” or “experimental”). Users can click on the icons to
view more detailed information of the specific evidence items represented by the top-level
icons including the sources of each item and its specific evidence type. This approach enables
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Pathway Tools to provide an overview of the kinds of evidence support for an assertion so that
users might make their own judgements on the amount of confidence they should have in a
PGDB assertion.

While Pathway Tools’ evidence types serve a similar function as DIKB evidence types by
helping users assess their confidence in knowledge-base assertions, PGDB maintainers use
them to represent only supporting evidence. We hypothesize that this approach could
contribute to a form of bias called confirmation bias that can undermine attempts by users of
a knowledge-base to assess the validity of its assertions.

Griffin in his review of research in the domain probability judgement calibration [26] lists
several robust findings from a considerable body of research exploring biases people have
when estimating the likelihood of uncertain hypotheses. Among them is the finding that people
tend to exhibit various forms of over-confidence when estimating the probability that some
hypothesis is true. One possible explanation for this tendency is that over-confidence is a result
of confirmation bias – “…people tend to search for evidence that supports their chosen
hypothesis” [26]. Under this model, confidence estimations should be more accurate when
people consider situations where their hypotheses might not be true. Griffin reports that the
results of some research studies are consistent with this model but that confirmation bias does
not seem to be the sole cause of over-confidence during probability judgement.

We applied these results to the DIKB by requiring that maintainers seek both supporting and
refuting evidence for each drug-mechanism assertion. The intent of this arrangement is to help
maintainers avoid any tendency to collect evidence that only supports knowledge-base
assertions and to help expert users create unbiased criteria for judging their confidence in the
system’s assertions.

2.5 Curator inferences and default assumptions
In both GO evidence codes and the Pathways Tools’ evidence ontology there is an evidence
type called Inferred by Curator that curators use for knowledge they infer from other assertions
or annotations in the respective systems [20,21]. Inferred by Curator is not really an evidence
type; rather it is a label indicating that a particular assertion exists within a knowledge-base as
a result of judgement of some curator. An evidence code of this type will not work in the DIKB
because its users must map their confidence in the system’s assertions to combinations of
evidence codes. A user viewing an assertion tagged with Inferred by Curator might apply the
level of trust that they have for the knowledge source based on previous experiences.
Unfortunately, whatever judgement the user makes will be more about the knowledge-curation
system rather than the specific scientific proposition in question. Alternatively, the expert might
attempt to explicitly trace the curators’ judgement so as to decide for themselves if the inference
was reasonable. This process might be straightforward or confusing depending on the
complexity of the logic used by the curator when making the inference in question.

In constructing the DIKB we have also found situations where it was desirable to assert some
knowledge element based on our knowledge of other assertions in the system. As a trivial
example, when evidence in the DIKB supports the assertion that some enzyme, E, is responsible
for 50% or more of some drug or drug metabolite’s total clearance from the body, then the
system should also contain an assertion that more than 50% of a drug’s clearance is by
metabolism. A more complex example can be found in the rules that the DIKB uses to infer a
drug or drug metabolite’s metabolic clearance pathway (Appendix E, supplementary material).
In such cases, new rules are added to the DIKB so that it will automatically add the needed
assertions to its knowledge-base. The system’s links each automatically-inferred assertion to
the assertions and rules from which it was inferred. A programmer can write code that leverages
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the data structures used to create the DIKB’s evidence-base to generate a report showing the
logic and evidence support for any automatically inferred assertions.1

The advantage of the DIKB’s approach becomes apparent when one considers that the
construction and maintenance of a large knowledge-base is a collaborative effort. GO and the
PGDBs in the Pathway Tools system require curation by many domain experts and we think
it reasonable to expect that, in spite of the best of intentions, curators will sometimes make
mistakes or not be entirely consistent in how they enter knowledge or assign evidence.
Furthermore, as a knowledge-based system grows it becomes less tractable for curators to know
all of the inferences supported directly by other knowledge in the system. In contrast, once a
rule is added to the DIKB that makes an assertion based on other assertions present in the
system, it will always be applied consistently and across all possible instances where it is
applicable.

It turns out that there are other occasions where an evidence type like Inferred by Curator might
seem applicable within the DIKB. The system’s curators sometimes face situations where they
are justified in entering an assertion without linking it to evidence. Such an event can occur
when the curator is unable to find evidence for an assertion or when (s)he decides that an
assertion does not need to be justified by evidence. In both cases the DIKB curator can decide
to enter it as a default assumption. A default assumptions is a special kind of assertion
considered justified by default but retractable either manually by curators or automatically by
the system as it proceeds with inference.

2.6 Summary of Considerations
In summary, none of the evidence taxonomies that we reviewed have sufficient coverage of
all the kinds of evidence that might be relevant for representing drug mechanism knowledge.
Also, none are designed so that users can assess their confidence in each type either by itself
or in combination with other types. The next section discusses the new evidence taxonomy that
meets these requirements.

3 The DIKB Evidence Taxonomy and Inclusion Criteria
The current DIKB evidence taxonomy (shown in Table 3) contains 36 evidence types arranged
under seven groupings representing evidence from retrospective studies, clinical trials,
metabolic inhibition identification, metabolic catalysis identification, statements, reviews, and
observational reports.

We developed the taxonomy iteratively by collecting evidence for the drugs and drug metabo-
lites shown in Figure 1, identifying the attributes of each evidence item, and deciding on
evidence-type definitions. We were able to incorporate some definitions from WordNet [27],
MeSH [23], and NCI Thesaurus [28] but the majority of the taxonomy consists of new
definitions. The structure of the taxonomy and granularity of its definitions is similar to the
Pathway Tools’ evidence ontology [21] though the only definitions that the two resources share
are for traceable and non-traceable author statements. Also, we deliberately excluded the
“Inferred by Curator” evidence type present in the Pathway Tools’ evidence ontology [21] and
Gene Ontology’s evidence codes [20] for the reasons discussed in Section 2.5.

We implemented the taxonomy in the OWL-DL language [29]; a description logic that provides
a formal semantics for representing taxonomic relationships in a manner that can be

1More specifically, the DIKB uses declarative rules and Truth Maintenance System (TMS) jus-tifications to automatically add the needed
assertions to knowledge-base [17]. The system’s TMS links each automatically-inferred assertion to the assertions and rules from which
it was inferred.
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automatically checked to ensure consistent classification. We used the Prot’eg’e ontology
editor2 to create the taxonomy and the RACER inference engine [30] to test it for consistent
type definitions. The evidence taxonomy is integrated into the structured vocabulary used by
DIKB and is available on the Web [31].

We designed the set of seven inclusion criteria shown in Appendix B (supplementary material)
to compliment a sub-set of evidence type definitions from the DIKB’s evidence taxonomy.
Like the evidence taxonomy, we developed the inclusion criteria iteratively during the early
stages of collecting evidence for the drugs and drug metabolites shown in Figure 1. This meant
that changes to inclusion criteria would sometimes require that evidence previously thought
acceptable be discarded. The criteria became stable after making progress collecting evidence
on several drugs. In their current form, the seven criteria define the minimum quality standards
for 21 evidence types in the taxonomy.

There were a total of 12 evidence types for which we did not define inclusion criteria. Seven
of these are general evidence types: Statement, Non-traceable Statement, An observation-
based report, An observation-based ADE report, A clinical trial, A DDI clinical trial, and A
retrospective study. We used more specific evidence types within the taxonomic sub-
hierarchies that these five types resided in and so defined inclusion criteria accordingly.

The other five evidence types with no inclusion criteria represent classes of evidence that we
decided not to include for this study. We excluded the two types of author statements in the
taxonomy (A traceable author statement and A traceable drug-label statement) because our
evidence collection policy requires that curators retrieve and evaluate the evidence source that
an author’s statement refers to rather than rely strictly on the author’s interpretation of that
evidence source. We excluded the type A retrospective population pharmacokinetic study
because we thought evidence of this class would be difficult to acquire and interpret. We also
neglected to define inclusion criteria for the type A retrospective DDI study because we did
not come across evidence of this type while defining inclusion criteria. Finally, the evidence
collection process that we describe in Section 4.1 did not include public adverse-event reporting
databases so we did not define inclusion criteria for the type An observation-based adverse-
drug event report in a public reporting database.

4 Using the DIKB’s evidence taxonomy to represent a body of drug-mechanism evidence
We applied the novel evidence taxonomy to the task of representing drug-mechanism evidence
for six members of a family of drugs called HMG-CoA reductase inhibitors (statins) and ten
drugs with which they are sometimes co-prescribed. Members of the statin drug family are
very commonly used to help treat dyslipidemia. While statins have a relatively wide therapeutic
range, patients taking a drug from this class are at a higher risk for a muscle disorder called
myopathy if they take another drug that reduces the statin’s clearance [32]. The sixteen drugs
we chose are all currently sold on the US market, popularly prescribed by physicians, and have
been the subject of numerous in vivo and in vitro pharmacokinetic studies. Many of them are
known to be cleared, at least partly, by drug metabolizing enzymes that are susceptible to
inhibition.

DDIs that occur by metabolic inhibition can affect the concentration of active or toxic drug
metabolites in clinically relevant ways. For example, both lovastatin and simvastatin are
administered in lactone forms that have little or no HMG-CoA reductase inhibition activity but
that are readily converted by the body to pharmacodynamically active metabolites [33,34].
Clinical trial data indicates that metabolism by CYP3A4 is a clinically relevant clearance

2http://protege.stanford.edu/
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pathway for these metabolites [35,36]. Similarly, in vitro evidence indicates that CYP3A4 is
the primary catalyst for the conversion of the HMG-CoA reductase inhibitor atorvastatin into
its two active metabolites [37]. For this reason, we also collected and entered drug-mechanism
evidence for 19 active metabolites of the drugs we had chosen. Figure 1 lists the 16 drugs and
19 drug metabolites we chose to represent in the DIKB.

4.1 The Evidence Collection Process
The quality and coverage of the DIKB’s drug-mechanism knowledge depends a great deal on
the process used to collect and maintain evidence. We attempted to apply a process geared
toward building a coherent body of knowledge that has minimal bias and is up-to-date. One
informaticist (RB) and two drug-experts (CC and JH) formed an evidence board that was
responsible for collecting and entering all evidence into the DIKB.3 The evidence-collection
process was iterative for the first few months while evidence types and inclusion criteria were
being developed. The board would choose a particular drug to model then collect a set of journal
articles, drug labels, and authoritative statements that seemed relevant to each of the various
drug-mechanism assertions in the DIKB’s rule-based theory of drug-drug interactions. The
evidence board would then meet together and discuss each evidence item and the issues that
affected its use in the DIKB. By the time all members of the evidence board committed to using
the evidence types (Table 3) and inclusion criteria (Appendix B, supplementary material) the
following evidence collection process had become routine:

1. The evidence board chose a particular drug to model.

2. The informaticist then received from each drug expert references to specific evidence
sources that they thought would support or rebut one or more drug-mechanism
assertions.

3. The informaticist did his own search of the literature that included seeking information
from primary research articles in PubMed, statements in drug product labeling or FDA
guidances, and various drug information references including Goodman & Gilman’s
[38]. One of the drug experts was affliated with the proprietary University of
Washington Metabolism and Transport Drug Interaction Database4 and performed
searches of that resource then forwarded the results to the informaticist.

4. The informaticist would then summarize all evidence items from each source, classify
their evidence types, and check if they met inclusion criteria. The evidence board
would then meet and decide as a group whether each evidence item should enter the
DIKB’s evidence-base or be rejected as support or rebuttal for a specific assertion.

5. The informaticist would enter accepted evidence items into the DIKB using the
DIKB’s Web interface. He also entered rejected evidence items into a simple database
used by the DIKB during evidence validation tests.

The DIKB performed several validation tests on each new evidence entry before it was stored
in the system’s evidence-base. These included checking if an evidence entry was redundant or
had previously been rejected by DIKB curators as support or rebuttal for the assertion it was
being linked to. The system also checked if a new evidence item would create an evidence
pattern that was indicative of circular reasoning by evidence-base curators. This last test was
possible because we made sure to explicitly represent any conjectures behind a specific
application of evidence. The next section describes the motivation for representing conjectures
and the novel algorithm used to identify circular reasoning.

3The professional role of each co-investigator during the evidence collection process is mentioned throughout this section to convey to
the reader the interdisciplinary approach used to construct the evidence base.
4http://www.druginteractioninfo.org/
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4.2 Conjectures and knowledge-base maintenance
Interpreting the results of a scientific investigation as support for a particular assertion can
sometimes require making conjectures that scientific advance might later prove to be invalid.
If such conjectures are later shown to be false, it is important to re-consider how much support
the scientific investigation lends to any assertion it was once thought to support. One unique
feature of the DIKB is that it can represent the conjectures behind a specific application of
evidence. These representations are called evidence-use assumptions and they facilitate
keeping knowledge in the system both current and consistent.

4.2.1 Evidence-use assumptions help keep knowledge current—To illustrate how
evidence-use assumptions help keep knowledge current suppose that a pharmacokinetic
clinical trial involving healthy patients finds a significant increase in the systemic concentration
of drug-A in the presence of drug-B. If the study meets inclusion criteria, and it is thought that
that drug-B is a selective inhibitor of the ENZ enzyme in humans, then an evidence-base curator
might apply this evidence as support for the assertion (drug-A substrate-of ENZ). This
particular application of the hypothetical study would depend on the conjecture that drug-B is
an in vivo selective inhibitor of the ENZ. Otherwise, alternative explanations for the observed
increase in the systemic concentration of drug-A remain quite feasible. In this situation it will
be important to reconsider this use of evidence if future work reveals that drug-B increases
patient exposure to drug-A by some other mechanism than reducing ENZ’s catalytic function
such as modulation of the function of an alternate drug-metabolizing enzyme or an efflux
transport protein.

Unlike systems that just cite evidence, the DIKB’s formal model of evidence enables it to flag
when a conjecture has become invalid and alert knowledge-base curators to the need to reassess
their original interpretation of what assertions a piece of evidence supports. Currently, DIKB
curators make an evidence-use assumption known to the DIKB by first identifying the label
of an assertion in the knowledge-base that represents the evidence-use assumption. They then
add the label to a list of assumptions that is contained in the data structure used to represent
the specific evidence item that they are viewing.

In our experience, evidence-use assumptions are an attribute of a particular type of evidence.
For example, pharmacokinetic DDI studies, like the one mentioned in the previous hypothetical
example, often depend on the assumption that the precipitant has no measurable effect on any
other clearance route of the object drug. This is an evidence-use assumption that applies to all
pharmacokinetic drug-drug interaction studies using selective inhibitors. Based on this
observation, we have attempted to define evidence-use assumptions for each new evidence
type that is added to the DIKB’s evidence taxonomy. These assumptions are written as general
statements that apply to one or more evidence types and are added to inclusion criteria
documentation so that curators will know what specific assumption(s) to declare when adding
an item of evidence to the system. After curators have approved an evidence item, they identify
assertions within the DIKB that match each specific evidence-use assumption. In many cases,
a suitable assertion will not be present in the DIKB. If so, curators must add the new assertion
to the DIKB then link it as an evidence-use assumption for the evidence item.

4.2.2 Evidence-use assumptions help keep knowledge consistent—Evidence-use
assumptions can also help identify a pattern, called a circular line of evidence support, that is
indicative of fallacious reasoning by evidence-base curators. A hypothetical example should
help clarify the kind of situation we are describing and its implications.

Assume some evidence item, E, exists in the evidence-base as support for the assertion (drug-
B inhibits ENZ) and that (drug-A primary-clearance-enzyme ENZ) is an evidence-use
assumption for this application of E. In addition, assume that E also acts as support for (drug-
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A primary-clearance-enzyme ENZ) and that this other use of E depends on the validity of the
assertion (drug-B inhibits ENZ). If there is no evidence against either assertion and E meets
both assertions’ supporting belief criteria, then the system will consider both assertions to be
valid.

Figure 2 makes apparent the dilemma – the conjecture, (drug-A primary-clearance--enzyme
ENZ), is necessary for evidence item E to act as support for the assertion (drug-B inhibits ENZ)
but is being justified by the same evidence item, E, that assumes the same proposition E is
supposed to justify. Intriguingly, the same unsound reasoning would be present even if evidence
item E is being used to refute the assertion (drug-B inhibits ENZ). Neither kind of circular
reasoning should be allowed in the DIKB’s evidence-base.

We have designed and implemented the following algorithm in the DIKB for detecting when
an new evidence item would cause a circular line of evidence support:

Let E be an evidence item that is being considered as evidence for or against some
assertion, A. Assume that the use of E as evidence for or against A is contingent on
the validity of one or more other assertions in the set AL = as1, as2, …, asn. The set
of assertions in AL are the evidence-use assumptions for E. If E is currently being used
as evidence for or against some assertion, asi, in AL and the use of E to support or
refute asi depends on assuming A, then the use of E to support or refute A would
create a circular line of evidence support.

The DIKB will not allow a curator to enter an evidence item that passes this test into itsevidence
base.

Circular reasoning might be present in the evidence-base anytime an evidence-use
assumption is supported by the same evidence item that the assumption is linked to. We can
create an algorithm to identify when this form of circular evidence support is present in the
knowledge-base by simplifying the previous algorithm.

Let E be an evidence item and let the set AL = as1, as2, …, asn be the set of evidence-
use assumptions for E. If E is currently being used as evidence for or against some
assertion, asi, in AL, then circular reasoning might be present in the evidence-base.

The DIKB does not currently implement this algorithm in its validation tests but will in future
versions.

5 Results
Work on the evidence-base stopped in January 2008. In its present state it consists of 257
evidence items from 102 unique sources applied as evidence for or against 207 drug-
mechanism assertions.

5.1 The Classification of Evidence within the Evidence-base
The evidence board used only one-third of the 36 types in the evidence taxonomy to classify
all the 257 evidence items. Some evidence types were not used because of specific evidence
collection policies while other types were not used because no acceptable evidence in their
class could be found. For example, even though the evidence board collected numerous case
reports describing adverse drug events in patients taking two or more of the drugs in our study,
none of the five observation-based evidence types were entered into the system. This was
because none of the reports that were found measured the systemic concentrations of the
purported object drug in a way that satisfied the inclusion criteria for supporting or refuting an
assertion about a drug’s metabolic properties.
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The 12 evidence types that were used to classify evidence items are shown in Table 1 along
with the number of supporting or refuting evidence items each type was assigned to. It is clear
from Table 1 that some evidence types are present in the evidence-base much more often than
other types even though the experiments they represent have relatively similar purposes. For
example, the evidence-base has almost eight-fold more evidence items of the type A CYP450,
human microsome, metabolic enzyme inhibition experiment then the type A CYP450,
recombinant, metabolic enzyme inhibition experiment even though the purpose of both kinds
of experiments is to test a drug or drug metabolite’s ability to inhibit some enzyme in vitro.
Similarly, the system has three-fold more items of the type A CYP450, recombinant, drug
metabolism identification experiment with possibly NO probe enzyme inhibitor(s) than the type
A CYP450, human microsome, drug metabolism identification experiment using chemical
inhibitors even though both experiments attempt to identify the CYP450 enzymes capable of
metabolizing a drug or drug metabolite in vitro.

Generally-defined evidence types were often used when an evidence item did not fit one of the
more specific evidence-types within a particular sub-hierarchy. Eleven of the twelve types
shown in Table 1 are sub-types of some other, more general, evidence types within the greater
evidence taxonomy. One exception was the most general in vitro evidence type A drug
metabolism identification experiment that is assigned four times in the current DIKB evidence-
base. All four uses of the evidence type were to classify metabolite identification experiments
that could not be classified using the more specific types within the hierarchy.

5.2 Observed biases
One can calculate from Table 1 that evidence types assignments in the current DIKB slightly
favor clinical trial types (42%) over in vitro studies (27%) and non-traceable statements in drug
labeling and FDA guidance documents (30%). The distribution of evidence types among
individual assertion types is much more diverse than that of the evidence-base as a whole
(Tables 3 and 4 in supplementary material). For example, all 15 evidence items linked to
inhibition-constant assertions are from in vitro evidence types while no in vitro evidence is
currently linked to a maximum-concentration assertion. Likewise, two-thirds of the evidence
items linked to maximum-concentration assertions are instances of clinical trial types while
the one-third are instances of non-traceable statement types. Approximately the opposite
distribution of evidence types is present in items linked to bioavailability assertions (38%
clinical trial types and 62% non-traceable statements).

While the evidence board attempted, where appropriate, to collect both supporting and refuting
evidence for each assertion, the current evidence-base is strongly biased toward supporting
evidence. Eighty-two percent of the 102 evidence sources provide evidence items that are used
strictly as support for one or more assertions. In comparison, only 3% of sources provide strictly
refuting evidence items and only 15% of sources provide both supporting and refuting evidence
items. Of the 257 non-redundant evidence items, 229 (89%) support, and 28 (11%) refute, some
drug mechanism assertion. In terms of the 20 assertions types that the DIKB currently
represents, only four (20%) have any assertions with refuting evidence; substrate-of, inhibits,
increases-auc, and primary-metabolic-enzyme.

5.3 The use of default assumptions
The evidence-board labeled approximately one-fifth (39) of the assertions in the DIKB default
assumptions. Nearly half (17) of the default assumptions were entered because of a DIKB
policy that treated certain information in FDA guidances as completely authoritative.5 The 17

5Specifically, DIKB curators assumed the validity of drugs or chemicals listed as selective inhibitors or probe substrates of certain drug-
metabolizing enzymes in an FDA guidance to industry on drug-interaction studies [15].
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assertions are linked to evidence items that refer to the FDA guidance that prompted the
evidence-board’s decision to make them default assumptions.

Another 17 assertions are labeled default assumptions but have no evidence items linked to
them at all. Five of these were entered by the evidence board because of actions specified in
the inclusion criteria for pharmacokinetic DDI studies (defined in Appendix B of
supplementary material). The remaining 12 were entered without evidence based on the
knowledge of one or more members of the evidence-board. These were entered as default
assumptions out of convenience with the intent that a DIKB curator would seek evidence for
and against the assertions at a later time.

5.4 The application of evidence-use assumptions
Nearly one-quarter (23%) of the evidence items in the current evidence-base have at least one
evidence-use assumption. Table 2 provides a sample of five of these evidence items. Fifty-
three evidence items are linked to one evidence-use assumption and five evidence items are
linked to two bringing the total number of evidence-use assumptions in the current DIKB to
63. Only twenty-three (11%) of the 207 assertions in the DIKB comprise all 63 evidence-use
assumptions. The number of times the evidence board used any specific assertion as an
evidence-use assumption ranged from once to nine times (mean: 2.7, median: 1.0).

6 Discussion and Conclusion
We successfully used the DIKB’s new evidence taxonomy to integrate drug mechanism
evidence from a variety of sources including in vitro experiments, clinical trials, and statements
from drug product labels. The evidence taxonomy and related inclusion criteria were
instrumental to ensuring that the evidence entered into the DIKB was of high quality. All 257
evidence items in the DIKB are labeled by their type from the novel evidence taxonomy and
meet the inclusion criteria for their assigned type. The taxonomy was also used extensively in
a set of tests used to ensure that the current evidence-base has no redundant entries, rejected
evidence items, or applications of evidence that were the result of circular reasoning by the co-
investigators.

6.1 Limitations of the current evidence-base
The DIKB is designed so that expert users can define belief criteria using abstract evidence
types. Incorrect classification of an evidence item’s type could cause the system ability to
falsely appear as if it has satisfied the user’s belief criteria. One limitation of the current
evidence-base is that we did not independently evaluate how accurately and consistently the
evidence-board classified evidence. The evidence board employed some internal consistency
checks such as reviewing each evidence item multiple times before it was entered into the
DIKB and using double-entry methods to track an evidence item’s progress through the
evidence collection process. However, it would be desirable to acquire independent verification
that the evidence-board’s classifications were accurate and consistent across all entries.

While the evidence board attempted to collect both supporting and refuting evidence for each
assertion, the current evidence-base is strongly biased toward supporting evidence (see Section
5.2). It is possible that this bias in the DIKB’s evidence-base is a reflection of a more general
bias in the scientific literature towards publishing studies that confirm hypotheses. Our methods
are not capable of answering this question definitively because we do not claim to have
collected an exhaustive set of evidence within any of our evidence classifications. It is unclear
at this time if this observed bias will hinder the system’s ability to help users overcome any
tendency toward confirmation bias (see Section 2.4).
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Another limitation of the current evidence-base is that the evidence-board did not search for
evidence in the FDA Summary Basis for Approval for each drug or the EMBASE6, Web of
Science®, Cochrane Library7, CINHAL8 publication database. It is possible that these
resources might have contained important evidence that is now missing in the DIKB. Future
work on the evidence-base should include comprehensive searches of these sources as well as
other possible sources such as The Medical Letter9.

6.2 Future Work on the Taxonomy
While the taxonomy provides coverage of a broad range of possible evidence types relevant
for support drug mechanism assertions, it is likely that many other evidence types are yet to
be defined and included. Most evidence items in the DIKB (98%) are classified using relatively
specific types within the taxonomy. However, as Section 5.1 notes, there is a need for additional
types to more specifically classify metabolite identification experiments. Future work will
address this need and the need for a detailed evaluation of the taxonomy to test its coverage
and determine if there is good agreement in the evidence classifications made by drug experts
using the taxonomy. Future work should also test our hypotheses that 1) expert users should
be able to assess their confidence in the system’s assertions relatively quickly once they are
familiar with evidence type definitions and their associated inclusion criteria and 2) that this
process should involve less effort and be more consistent than requiring the expert to review
the original sources for each evidence item.

6.3 Future Work to Support Evidence Collection
Some assertions in the evidence-base have numerous pieces of evidence to support them of
many different types. For example, as of this writing, the assertion (itraconazole inhibits
CYP3A4) can be supported by at least three randomized clinical trials [39–41], drug product
labeling [42], and an FDA guidance [15]. An interesting question in this case is – when should
one stop collecting evidence for an assertion?

DIKB curators are charged with collecting a minimally-biased body of relevant evidence from
which customized views of drug-mechanism knowledge can be created. Since the belief criteria
of different expert users will not necessarily be known in advance, curators must attempt to
collect all available items of each evidence type that is relevant for supporting or refuting each
assertion. The evidence collection approach that we used (Section 4.1) went a long way toward
achieving this ideal. However, time constraints and an over-abundance of evidence for some
assertions, meant that we did not collect all relevant evidence items of each evidence type.
Achieving the ideal will certainly require the use of advanced informatics tools to ease the
curators task. Research in machine learning and artificial intelligence provides several
examples of machine classifiers that accurately identify relevant articles from indexed research
abstracts [43] and automatically extract biomedical relationships [44]. We think that human
curators should always make the final decision as to how to apply a given item of evidence but
automated tools have the potential to greatly ease their task.

6.4 Conclusion
We have presented a novel drug-mechanism evidence taxonomy that, when combined with a
set of inclusion criteria, enables drug experts to specify what their confidence in a drug
mechanism assertion would be if it were supported by a specific set of evidence. While it is
likely that many other evidence types are yet to be defined and included in the taxonomy, the

6http://www.embase.com/
7www.cochrane.org
8www.cinahl.com
9www.medletter.com
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current version was instrumental to ensuring that the 257 drug-mechanism evidence items
entered into the DIKB’s current evidence-base were of high quality.

We have also highlighted features of the evidential knowledge-representation approach
implemented in the DIKB that should be useful for representing knowledge in other biomedical
domains where knowledge is dynamic, sometimes missing, and often uncertain. Rather than
provide expert users with a static view of knowledge within a specific domain, the evidential
approach enables them to construct customized views of a comprehensive body of knowledge
based on their own, subjective, interpretation of evidence. An even more powerful feature of
an evidential system is that it can iterate through a large number of possible evidence-type
combinations to determine which combination of evidence enables a model or theory to make
the most optimal set of predictions in terms of accuracy and coverage of a validation set. Part
II of this series provides a complete description an experiment we conducted to explore this if
the method could be used to make accurate and clinically relevant DDI predictions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The 16 drugs and 19 drug metabolites chosen for DIKB experiments
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Fig. 2.
A circular line of evidence support that indicates circular reasoning within the evidence-base
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Table 1

The evidence board used only one-third of the 36 types in the evidence taxonomy to classify all the 257 non-
redundant evidence items. The 12 evidence types are shown in this table along with the number of supporting or
refuting evidence items each type was assigned to. Indented evidence types are sub-types of the type in the
previous row

Clinical trial types

Evidence type Evidence for Evidence against

A pharmacokinetic clinical trial 31 0
 A genotyped pharmacokinetic clinical trial 5 1
A randomized DDI clinical trial 49 11
A non-randomized DDI clinical trial 8 0
 A parallel groups DDI clinical trial 4 0

Total 97 12
in vitro experiment types

Evidence type Evidence for Evidence against

A CYP450, recombinant, metabolic enzyme inhibition
experiment

2 0

A CYP450, human microsome, metabolic enzyme
inhibition experiment

13 2

A drug metabolism identification experiment 4 0
 A CYP450, recombinant, drug metabolism
identification experiment with possibly NO probe
enzyme inhibitor(s)

31 6

 A CYP450, human microsome, drug metabolism
identification experiment using chemical inhibitors

8 4

Total 58 12
Non-traceable statement types

Evidence type Evidence for Evidence against

A non-traceable, but possibly authoritative, statement 22 0
 A non-traceable drug-label statement 52 4

Total 74 4
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Table 2

A sample of five of the 58 evidence items in the DIKB’s evidence-base that were entered with evidence-use
assumptions

SourceAssertion evidence is supportingEvidence type Evidence-use assumption(s)
[45] diltiazem inhibits CYP3A4 A randomized DDI

clinical trial
triazolam’s primary-total-clearance enzyme is CYP3A4

[36] simvastatin is a substrate-of
CYP3A4

A randomized DDI
clinical trial

itraconazole is a selective inhibitor of CYP3A4 in vivo

[46] alprazolam is a substrate-of
CYP3A5

A genotyped
pharmacokinetic
clinical trial

CYP3A5 has multiple drug- metabolizing phenotypes

[47] clarithromycin is a substrate-of
CYP3A4

A CYP450, human mi-
crosome, drug
metabolism
identification
experiment using
chemical inhibitors

ketoconazole is a selective inhibitor of CYP3A4 in vitro

[35] lovastatin’s primary-total-
clearance enzyme is CYP3A4

A randomized DDI
clinical trial

1 itraconazole’s sole PK effect (in this study) is to alter the metabolic
clearance lovastatin

2 itraconazole is a selective in- hibitor of CYP3A4 in vivo
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Table 3

The version of the DIKB’s evidence taxonomy used in the reported study

➢ [EV Clinical Trial] A clinical trial: “a pre-planned clinical study of the safety, efficacy, or optimum dosage schedule of one or more diagnostic,
therapeutic, or prophylactic drugs, devices, or techniques in humans selected according to predetermined criteria of eligibility and observed for
predefined evidence of favorable and unfavorable effects.”-(Medical Subject Headings (MeSH) [23] version 2008, concept code D016430, Clinical
Trial)

➢ [EV CT DDI] A DDI clinical trial: A study designed to quantify the pharmacokinetic and/or pharmacodynamic effects within study participants
of a single drug in the presence of a purported precipitant.

➢ [EV PK DDI NR] A non-randomized DDI clinical trial: A pharmacokinetic DDI study where participants receive a drug in the presence
of a purported precipitant (experimental group) or not (control group) but participants are not randomly assigned to experiment and control
groups. This can include fixed-order studies where all participants are tested with placebo and precipitant after some period of washout

- [EV PK DDI Par Grps] A parallel groups DDI clinical trial: A pharmacokinetic DDI study involving two groups of non-
randomized participants where both groups receive the purported object drug while only one group receives the purported
precipitant

➢ [EV PK DDI RCT] A randomized DDI clinical trial: A randomized, controlled, pharmacokinetic DDI study where participants receive a
drug either in the presence of a purported precipitant (experimental group) or not (control group)

➢ [EV CT Pharmacokinetic] A pharmacokinetic clinical trial: ”A study of the process by which a drug is absorbed, distributed, metabolized, and
eliminated by the body.” (NCI Thesaurus [28] version 8, concept code C49663, Pharmacokinetic Study)

- [EV CT PK Genotype] A genotyped pharmacokinetic clinical trial: A drug pharmacokinetics study whose population consists of at least
two groups known to posses distinct forms of some drug-metabolizing enzyme

- [EV CT PK Phenotype] A phenotyped pharmacokinetic clinical trial: A drug pharmacokinetics study whose population consists of at least
two groups known to posses distinct drug metabolizing phenotypes

➢ [EV Retrospective] A retrospective study: ”Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal
factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that
some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected
persons.” (Medical Subject Headings (MeSH) [23] version 2008, concept code D012189, Retrospective Studies)

- [EV PK DDI Retro] A retrospective DDI study: A retrospective study looking at the change in patient exposure of a single drug in the
presence of a purported precipitant using a retrospective set of clinical records

- [EV Population PK] A retrospective population PK study: a “…study of the sources and correlates of variability in drug concentrations
among individuals who are the target patient population receiving clinically relevant doses of a drug in question.” ([48], p.1)

➢ [EV EX Met Enz ID] A drug metabolism identification experiment: An experiment conducted with biological tissues and/or chemical compounds
in a laboratory designed to identify the specific enzymes responsible for the metabolism of a drug ([15], p. 25)

➢ [EV EX Met Enz ID Cyp450] A CYP450 drug metabolism identification experiment: A metabolic enzyme identification experiment specifically
designed to identify the Cytochrome P-450 enzymes involved in the metabolism of a drug

➢ [EV EX Met Enz ID Cyp450 Hum Recom] A CYP450, recombinant, drug metabolism iden-tification experiment with possibly NO probe
enzyme inhibitor(s)

- [EV EX Met Enz ID Cyp450 Hum Recom Chem] A CYP450, recombinant, drug metabolism identification experiment using
chemical inhibitors

- [EV EX Met Enz ID Cyp450 Hum Recom Antibody] A CYP450, recombinant, drug metabolism identification experiment using
antibody inhibitors

➢ [EV EX Met Enz ID Cyp450 Hum Microsome] A CYP450, human microsome, drug metabolism identification experiment: A Cytochrome
P-450 metabolic enzyme identification experiment using human liver microsomes that have been characterized for Cytochrome P-450 activity
and possibly NO probe enzyme inhibitor(s)

- [EV EX Met Enz ID Cyp450 Hum Microsome Chem] A CYP450, human microsome, drug metabolism identification experiment
using chemical inhibitors

- [EV EX Met Enz ID Cyp450 Hum Microsome Antibody] A CYP450, human micro-some, drug metabolism identification
experiment using antibody inhibitors:

➢ [EV EX Met Enz Inhibit] A metabolic enzyme inhibition experiment: An experiment conducted with biological tissues and/or chemical compounds
in a laboratory designed to determine whether or not a drug inhibits a specific drug-metabolizing enzyme

➢ [EV EX Met Enz Inhibit Cyp450] A CYP450 metabolic enzyme inhibition experiment: A metabolic inhibition experiment specifically designed
to determine whether or not a drug inhibits a specific CYP450 enzyme

➢ [EV EX Met Enz Inhibit Cyp450 Hum Recom] A CYP450, recombinant, metabolic enzyme inhibition experiment: A Cytochrome P-450
inhibition experiment using recombinant human enzymes

- [EV EX Met Enz Inhibit Cyp450 Hum Microsome] A CYP450, human microsome, metabolic enzyme inhibition experiment: A
Cytochrome P-450 metabolic enzyme inhibition experiment using human liver microsomes that have been characterized for
Cytochrome P-450 activity

➢ [EV Observation] An observation-based report: An observation-based report of some occurrence

➢ [EV Obs ADE] An observation-based ADE report: An observation-based report of an adverse drug event
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- [EV Obs ADE Public Reported] An observation-based ADE report in a public reporting database: An adverse event report on
file in a public adverse event reporting database such as the FDA’s Adverse Event Reporting System

➢ [EV Obs DI CR] A published observation-based ADE report: An published observation-based case-report of a drug interaction

- [EV Obs DI CR Evaluated] A published and evaluated observation-based ADE report: An observation-based report of a drug
interaction that has been evaluated by some assessment tool

➢ [EV Review] A review article: A published analysis of the evidence supporting and/or refuting some topic

➢ [EV Drug Review] A drug review article: A published analysis of research on the efficacy or safety of a drug, family of drugs, or drug
therapy.

- [EV DrugClinicalReview] An FDA clinical review: An FDA-sponsored review of a drug’s pre-market studies and adverse event
reports.

➢ [Statement] A statement: A published artifact that is “…the basis for belief or disbelief; knowledge on which to base belief” see the term “evidence”
in Wordnet version 3.0 [27]

➢ [Non Traceable Statement] A non-traceable, but possibly authoritative, statement: A statement that does not explicitly refer to evidence
items in justification of its assertion(s) or that refers to an evidence item that is not accessible to the curator (e.g. pre-market drug studies only
accessible to drug-company or FDA researchers)

- [Non traceable Drug Label Statement] A non-traceable drug-label statement: An assertion found in a drug label that does not
provide any traceable citations for its evidence support

➢ [Traceable Statement] A traceable statement: A statement that provides citation to evidence support for justification of its assertion(s)

- [Traceable Drug Label Statement] A traceable drug-label statement: An assertion stated in a drug label that provides citations for its evidence
support
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