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Abstract

The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive
oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function
as “second messengers” regulating numerous cellular processes, including proliferation. Periodic oscillations in the
cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (Go) to proliferation (G, S,
Gy, and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a
hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox
cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders
including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We
hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment
could improve many aspects of the proliferative disorders. Antioxid. Redox Signal. 11, 2985-3011.

lular redox environment is a balance between the production
of reactive oxygen species (ROS), reactive nitrogen species
(RNS), and their removal by antioxidant enzymes and small-

I. Introduction

A. A redox cycle within the cell cycle

OXIDATION AND REDUCTION (Redox) reactions represent
the transfer of electrons from an electron donor (reduc-
ing agent) to an electron acceptor (oxidizing agent). The cel-

molecular-weight antioxidants. The concept of the cellular
redox environment regulating the cell cycle dates back to
1931, when Rapkine (255) first demonstrated the oscillating
pattern for the accumulation of soluble thiols during mitosis
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in sea urchin eggs. In 1960, Kawamura et al. (146) showed
increased protein thiol staining as the mitotic spindle was
assembling in sea urchin eggs. The authors found maximal
thiol staining in prophase and metaphase, which decreased
significantly in anaphase and telophase.

Consistent with these observations, we have reported that
the cellular redox environment fluctuates during the cell
cycle. HeLa (human adenocarcinoma) cells synchronized
by mitotic shake-off were replated and then harvested at
different times after plating for flow-cytometry measure-
ments of the cellular redox environment. The fluorescence of a
prooxidant-sensitive dye (DCFH,-DA) was three- to fourfold
higher in mitotic cells compared with cells in the G; phase.
The cellular redox environment increased gradually toward a
more-oxidizing environment as G; cells moved through the
cell cycle (111). These results suggest that a redox control of
the cell cycle regulates progression from one cell-cycle phase
to the next. This hypothesis is also supported by a recent re-
port demonstrating significantly higher GSH content in the G,
and M phases compared with G;; S-phase cells showed an
intermediate redox state (64). Furthermore, pharmacologic
and genetic manipulations of the cellular redox environment
perturb normal cell-cycle progression (200202, 276, 277).

Overall, these results support the hypothesis that a redox
cycle within the cell cycle represents a regulatory link between
the oxidative metabolic processes and cell-cycle functions.
A defect in this regulation could lead to aberrant proliferation.
Aberrant proliferation is central to a variety of human path-
ologic conditions, such as cancer, wound healing, fibrosis,
cardiovascular diseases, diabetes, and neurodegenerative dis-
eases. It is hypothesized that reestablishing the redox control
of the cell cycle by manipulating the cellular antioxidant
pathways could be an innovative approach to prevent, re-
verse, or suppress (or a combination of these) many aspects of
aberrant cellular proliferation.

Proliferation depends both on cell division and cell death.
Cell division drives proliferation, and cell death prevents
damaged cells from propagating damaged cellular macro-
molecules to daughter generations. Reproductive death, ap-
optosis, and necrosis are the three major modes of cell death.
This review article focuses on literature reports demonstrating
a redox control of cellular proliferation. The readers are re-
ferred to excellent recent reviews discussing the possible
role of cellular redox environment and apoptosis in various
pathologic conditions (15, 190, 233, 245, 306).

B. Reactive oxygen species

ROS are oxygen-containing molecules that are highly re-
active in redox reactions. The partial reduction of molecular
oxygen results in the production of superoxide (O,"") and
hydrogen peroxide (H,O,) (120). O,"" and H,O, react with
transition metal ions (e.g., cuprous and ferrous ions) through
Fenton and Haber—Weiss chemistry, generating the highly re-
active hydroxyl radical (HO") (121).

ROS are primarily produced intracellularly by two meta-
bolic sources: the mitochondrial electron-transport chain and
oxygen-metabolizing enzymatic reactions such as xanthine
oxidases, the cytochrome P450 system, NADPH oxidases,
myeloperoxidase, and nitric oxide synthase (27, 30, 151, 189,
278, 284, 355). ROS levels also are dependent on oxygen
concentrations. Most eukaryotic organisms require oxygen to
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survive. Oxygen is the terminal electron acceptor during en-
ergy production. It accepts an additional electron to create
superoxide, a more reactive form of oxygen. Superoxide can
be converted to hydrogen peroxide (H,0O,) spontaneously.
ROS were traditionally thought of as toxic byproducts of
living in an aerobic environment because they are known to
damage cellular macromolecules (Fig. 1), which could sub-
sequently lead to cell death (296). However, in recent years,
several studies have shown that ROS can function as signaling
molecules that regulate numerous cellular processes, includ-
ing proliferation (9, 13, 19, 38, 39, 200-202, 262, 276, 277, 315).
The second-messenger properties of ROS are believed to
activate signaling pathways by activating tyrosine kinases,
tyrosine phosphatases, MAP kinases, or ion channels (235).
Furthermore, interactions between specific receptor-ligands
also are known to generate ROS (76). This dual function of
ROS, as signaling molecules or toxins, could result from the
differences in their concentrations, pulse duration, and sub-
cellular localization. The concentration-dependent effects of
ROS regulating different cellular processes are clearly evident
in a recent report by Laurent et al. (165). NIH 3T3 fibroblasts
treated with 0.02-0.13 uM H,O, enhanced proliferation,
whereas treatment with 0.25-2 uM H,0, resulted in cell
death. Prostate cancer DU-145 cells treated with low concen-
trations of H,O, (100 nM to 1 uM) enhanced c-Fos expression,
which was associated with an increase in cell proliferation,
whereas a higher concentration of H,O, (200 uM) decreased
c-Fos expression and induced cell-cycle arrest (341). There-
fore, although higher levels of ROS can be toxic, low levels of
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FIG. 1. ROS signaling and cellular processes. Reactive
oxygen species (ROS; e.g., O, and H,0,) are produced in-
tracellularly by the mitochondrial electron-transport chain and
flavin-containing enzymes. Superoxide dismutase (MnSOD
and CuZnSOD) converts O," to HyO,; catalase (CAT), per-
oxiredoxin (Prx), and glutathione (GSH)-glutathione peroxide
(GPx) neutralize H,O, to water. H;O, in the presence of
metals can generate hydroxyl radical (HO"); HO® damages
cellular macromolecules. ROS can serve as second messengers
influencing multiple signaling pathways that regulate prolif-
eration, quiescence, differentiation, and cell death. The redox
potentials related to these cellular processes were adapted
from literature report (282).
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ROS may serve as signaling molecules regulating numerous
cellular processes, including proliferation (Fig. 1).

C. Antioxidant enzymes and small-molecular-weight
antioxidants

Cellular ROS levels are maintained both by the production of
ROS and by their neutralization by antioxidant enzymes and
small-molecular-weight antioxidants. In addition to spontaneous
conversion, superoxide is converted to hydrogen peroxide by
superoxide dismutase enzymes (MnSOD, CuZnSOD, and Ec-
SOD). Catalase (CAT) and glutathione peroxidase (GPx) neu-
tralize H,O, to water (Fig. 1). MnSOD, a nuclear-encoded and
mitochondria-localized homotetrameric enzyme, is the primary
defense against mitochondrially generated ROS (196). CuZnSOD
is in both the cytoplasm and the nucleus. EcSOD is present in the
plasma membrane and extracellular space (98). CAT is found
primarily in the peroxisomes, and different isozymes of GPx are
found in most subcellular compartments (225, 350).

Hydroperoxides also are neutralized by thioredoxin/
thioredoxin reductase, glutaredoxin/glutaredoxin reductase,
and the six-member family of peroxiredoxins (93, 262). Per-
oxiredoxins (Prxs) are a family of peroxidases that reduce
H,0, and alkyl hydroperoxides to water and alcohol. Prxs
include both the 2-cys (Prx I-IV) and 1-cys (Prx V and VI)
family of oxidoreductase proteins: Prx I, II, and VI are pres-
ent in the cytosol; Prx III and V (short and long forms) are
localized in the mitochondrion; and Prx IV is present in
the endoplasmic reticulum and extracellular space (261).
Thioredoxin is a small, 12-kDa ubiquitous protein. It reduces
protein disulfides and itself is oxidized during this redox re-
action. Oxidized thioredoxin is reduced by thioredoxin re-
ductase, a seleno-cysteine protein, in the presence of NADPH
(218). Glutaredoxins (Grx) are a GSH-dependent oxidore-
ductase family of 1-Cys and 2-Cys proteins of low molecular
mass, 9-14 kDa. The human Grx family includes three mem-
bers: Grx1 is present in the cytosol and nucleus, and Grx2 and
Grx5 are present in mitochondria. Grx catalyzes the formation
and reduction of the protein-mixed-disulfide forms in pres-
ence of the GSH/GSSG-redox couple and NADPH (130).
Additional intracellular small-molecular-weight antioxidants
include cysteine, vitamin C (ascorbic acid), and vitamin E (o-
tocopherol) (77). Therefore, changes in the antioxidant enzyme
activities or small-molecular-weight antioxidant levels or both
could perturb the cellular redox environment, which in turn
could affect the redox regulation of the cell-cycle progression.

D. Redox regulation of cell-cycle progression

The mammalian cell cycle has five distinct phases; quies-
cence is Gy, whereas the proliferative state encompasses the G,
S, Gy, and M phases. In response to mitogenic stimuli, quiescent
cells enter the proliferative cycle and may transit back to the
quiescent state. Reentry into quiescence is essential to prevent
aberrant proliferation as well as to protect the cellular life span.
The quiescent state is frequently incorrectly referred to as cel-
lular senescence or differentiated states. Unlike differentiation
and cellular senescence, quiescence is a reversible process that
protects the proliferative capacity of cells essential for cell and
tissue renewal. One of the best examples of the quiescent state
in vivo is stem cells that retain the capacity to proliferate.

As mentioned previously, the redox regulation of cell-cycle
progression was first reported in the cell cycle of sea urchin
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eggs (255). In mammalian cells, a transient increase in cellular
prooxidant levels in G, is required for entry into S phase (202).
Inhibition of this prooxidant event with an antioxidant like
N-acetyl-L-cysteine (NAC) inhibited progression from G, to S.
NAC-induced inhibition of entry into S phase was associated
with an increase in MnSOD activity and a decrease in cyclin
D1 protein levels (201). MnSOD activity has been shown to
regulate a mitochondrial “ROS-switch,” in which a super-
oxide signal promotes proliferation, and a hydrogen peroxide
signal supports quiescence (277). The concept of the cellular
redox environment regulating cell-cycle progression is further
supported by recent observations of SOD activity influencing
the oxidative stress-induced activation of the G,-checkpoint
pathway in human oral squamous cancer, pancreatic cancer,
and glioma cells (97, 105, 143).

Furthermore, in cultured hamster fibroblasts, sublethal
doses of ROS added exogenously stimulated proliferation (39—
41). Likewise, H,O, in nanomolar concentrations generated
from growth factor receptor-ligand binding is known to fa-
cilitate cell proliferation (37). NADPH oxidases, such as Nox1
and Nox4, are required for growth factor-mediated produc-
tion of H,O,, which subsequently activates multiple signaling
pathways including the SOS-RAS-Raf-Erk and PI3K/AKT
pathways (69, 259, 260). NADPH oxidase is a multi-subunit
membrane-bound oxidase composed of p227", p47""*, p40P">~,
p67”h”x, and Nox2 (or any of its homologues: Nox1, Nox2,
Nox3, etc.). The enzyme consists of two membrane-spanning
subunits: p227"°*, which serves as a stabilizing and regulatory
subunit for the superoxide-producing subunit Nox (174). The
cytoplasmic components include p477"%, p67""*, p40""*~, and
Rac, which helps to regulate the assembly of the functional
oxidase and its activity (263). NADPH oxidase is found in
various cell types, including neutrophils, smooth muscle cells,
endothelial cardiac myocytes, and vascular and cardiac fi-
broblasts. Manipulations of cellular redox environment, by
using NAC, inhibited proliferation in mouse embryonic fi-
broblasts, hepatic stellate cells, and vascular smooth muscle
cells (147,160, 202). The redox potential in proliferating cells is
reported to be —240 mV, and necrotic cells exhibit the highest
oxidizing state (—150 mV); the redox potential for the quies-
cent cells is in between proliferation and differentiation states,
whereas apoptotic cells exhibit a redox potential of —170 mV
(Fig. 1) (134, 282).

The hypothesis of a redox cycle regulating the cell cycle is
also evident in other organisms (59, 328). The yeast metabolic
cycle (YMC) in budding yeast oscillates between glycolytic
and respiratory metabolism. Yeast cell-division cycle is re-
stricted to the reductive phase of the YMC when oxygen
consumption is minimal. The level of NADPH that provides a
reducing equivalent to numerous enzymes peaks during the
reductive phase of the YMC. Furthermore, the YMC in bud-
ding yeast coordinates with periods of gene expression regu-
lating essential cellular and metabolic events (328). Mutations
in the metabolic genes and cell-cycle checkpoint genes disrupt
the communication between the YMC and cell-cycle progres-
sion (59). The literature discussed earlier overwhelmingly
supports the hypothesis that a redox cycle within the cell cycle
regulates progression through different cell-cycle phases.

E. Redox regulation of cell-cycle proteins

Progression through the cell-cycle phases is orchestrated
by sequential and periodic activation of positive regulators,
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cyclins, and cyclin-dependent kinases (CDKs) (Fig. 2). Pro-
gression from Gy/G; to S is largely regulated by the D-type
cyclins (cyclin D1 and D2) in association with CDK4-6 (112,
299, 300). CDK4-6 kinase activity in early G; is low primarily
because of lower levels of cyclin D1. After mitogenic stimu-
lation, cyclin D1 peaks in mid-to-late Gy, coinciding with
higher levels of CDK4-6 kinase activity. Cyclin D1 expression
is regulated at the transcriptional, posttranscriptional, trans-
lational, and posttranslational levels. A recent report indicates
that cyclin D1 is transcriptionally downregulated by forkhead
box O (FoxO3a) transcription factor, which subsequently in-
hibits cell-cycle progression (283). The FoxO-family of tran-
scription factors are known to be phosphorylated by the
mitogenic-signaling pathway, phosphatidylinositol-3 kinase
(PI3K)/protein kinase B (AKT). Phosphorylated FoxO is ex-
cluded from the nucleus, thereby relieving FoxO-mediated
gene repression (33). NAD-dependent deacetylases, sirtuin 1
and 2, also are known to activate FoxO transcription factor
activity (35, 339).

The cyclin D1/CDK4-6 kinase complex partially phosphor-
ylates the retinoblastoma (Rb) protein, causing a conforma-
tional change that releases the E2F family of transcription
factors (Fig. 2). Cyclin E/CDK2 kinase is activated in late G; to
early S and facilitates further Rb phosphorylation (112, 299).
E2F activates the expression of multiple S-phase-specific genes
that are required for DNA replication and progression through
the S phase (214). The G; phase of the cell cycle is critical in
deciding whether proliferation will be arrested or continued.
Temin (318) first proposed the presence of a “decision point” in
the G; phase beyond which cells become committed to prog-
ress through the cell cycle and divide. In 1974 Pardee (236)
renamed the decision point as “restriction point” and defined it
as the time in G; after which a cell is committed to enter the S
phase, more or less independent of external conditions. Al-
though the mechanisms regulating the “restriction point” are
not completely understood, it was observed that a change in
the cellular redox environment toward a more-oxidizing en-
vironment is required for entry into S phase (202). Thus, the
“restriction point” could represent a redox threshold necessary
for progression from Go/Gj to S.

The cyclin A/CDK2 kinase complex regulates progression
through S and G; phases. The cyclin B1/CDK1 kinase complex,
along with CDC25C phosphatase, regulates progression from
G; to M phase. Earlier it was believed that the functions of

A\ Oxidation CDK’s

Cyclins
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individual cyclins and CDKs are specific to a specific cell-cycle
phase. However, recent reports demonstrate redundancy in
these cell-cycle-regulatory protein functions. For example, cell-
cycle progression is unaffected in CDK2, CDK4, and CDK6
knockout mouse embryos, suggesting that CDK1 can substi-
tute for other CDKs. Cyclin D1 knockout mice are viable,
possibly because of redundancy from cyclin E function.
However, knockout of cyclin A and cyclin B are lethal in mice
(5, 128). Cyclins are the positive regulators of cell-cycle pro-
gression, and cyclin-dependent kinase inhibitors (CKlIs) are the
negative regulators. The INK family of CKls (INK4B, p15;
INK4A, p16; INK4C, p18; INK4D, p19) specifically inhibit cy-
clin D/CDK4-6 kinase complexes. The KIP family of CKlIs (p27
and p57) inhibits mainly cyclin E/CDK2 kinase complexes. The
inhibitory effect of p21 is ubiquitous, and it can inhibit all
cyclin/CDK kinase activities. p21 and p27 also are known to
facilitate the assembly of cyclin/CDK complexes (60, 161).
Redox regulation of cell-cycle proteins p21, Rb, cyclin
D1/CDK4-6 kinase, and CDC25 phosphatase is observed in
NAC-treated mouse and human fibroblasts (37, 175, 279, 288,
340, 351). NAC treatments shift the cellular redox environ-
ment toward a more-reducing environment. This change is
associated with a decrease in cyclin D1, an increase in p27, and
Rb hypophosphorylation (199, 201, 202). The decrease in cy-
clin D1 is inversely correlated with MnSOD activity (201).
Considering that MnSOD is mitochondrial and cyclin D1 is
a nuclear protein, this inverse correlation is intriguing. One
possible mechanism of this interorganelle crosstalk could be
due to the FoxO-mediated transcriptional control of cyclin D1
and MnSOD expression. FoxO3a is known to activate MnSOD
transcription, while inhibiting cyclin D1 transcription (153,
283). FoxO3a-mediated induction in MnSOD transcription is
associated with the quiescence state. During the quiescence
state, FoxO3a has been shown transcriptionally to upregulate
P27 expression (198). Inhibition of FoxO3a activity is antici-
pated to relieve cyclin D1 from transcriptional repression,
which in turn is anticipated to support cellular proliferation.
Alternatively, the redox sensitivity in cyclin D1 expression
could also be regulated by posttranslational mechanisms.
NIH3T3 mouse fibroblasts carrying the Thr286A cyclin D1
mutation suppressed NAC-induced cyclin D1 degradation.
This suggests that redox-sensitive phosphorylation of Thr286
could influence cyclin D1 protein levels (201). Furthermore,
the redox sensitivity in cyclin D1 accumulation could also be

FIG. 2. A redox cycle within the cell cycle
that is preserved in the daughter genera-
tions. The cell cycle has two distinct growth
states: quiescence (Gg) and proliferation (G,
S, Gy, and M). Progression through the cell
cycle is regulated by cell-cycle phase-specific

activation of cyclins and cyclin-dependent
kinases (CDKs). In the G; phase, cyclin
D1/CDK4-6 and cyclin E/CDK2 are the major
regulators. Cyclin A/CDK2 and cyclin
B/CDKI1 regulate the S, G, and M phases.

Cyclin/CDK complexes phosphorylate reti-

Reduction

noblastoma (Rb) protein, which undergoes
conformational change, releasing the tran-
scription factor, E2F. E2F regulates tran-
scription of S phase-specific genes. The
periodicity in the cellular redox environment
is represented by the line graph.
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regulated by the thiol-redox reactions of critical cysteine res-
idues. Consistent with this hypothesis, mutations of specific
cysteines were found significantly to decrease cyclin D1 pro-
tein levels compared with wild-type cyclin D1 (unpublished
observations).

In contrast to the effect of NAC on cyclin D1, H,O, inhibits
cyclin D1 protein degradation in Her14 fibroblasts, resulting
in cyclin D1 accumulation (188). Overall, this literature sup-
ports the hypothesis that redox regulation of the cell cycle
could be mediated via the redox-sensitive regulation of the
cell-cycle-regulatory protein function.

The significance of the relation between cyclin D1 expres-
sion and the cellular redox environment is clearly evident
from a recent report by Sakamaki et al. (274). Physiologic
levels of cyclin D1 decreased aerobic glycolysis and mito-
chondria size and function in vivo. Mitochondria activity was
enhanced by genetic deletion of cyclin D1. Subsequent study
by Wang et al. (338) showed that cyclin D1/CDK4-6 phos-
phorylates nuclear respiratory factor 1 (NRF1) at Ser47, sup-
pressing its transcriptional activation of nuclear-encoded
mitochondrial gene expression (338). Likewise, dephosphory-
lation of NRF1 in the absence of cyclin D1 promotes expression
of nuclear-encoded mitochondrial genes. These results provide
strong evidence for cyclin D1 coordinating cellular metabolism
and cell-cycle progression.

Another cell-cycle-regulatory protein that exhibits re-
dox sensitivity in its function is CDC25 phosphatase. CDC25
phosphatases are a family of dual specific phosphatases that
dephosphorylate pThr14 and pTyrl5 on CDKs and activate
the cyclin-CDK kinase activity (287). Dunphy and Kumagai
(84) showed in vitro that the phosphatase activity of CDC25
can be inhibited by using N-ethylmaleimide, a thiol-alkylating
agent, or mutating a single conserved cysteine residue. Re-
cently, Savitsky and Finkel (279) showed that the H,O,
treatment of HeLa cells induces an intramolecular disulfide
bond between two critical site cysteines, Cys377 and Cys330,
of CDC25 (Fig. 3). This thiol-disulfide redox reaction is asso-
ciated with an inhibition in CDC25 phosphatase activity.
CDC25 harboring the double mutant of the cysteines was
resistant to the H,O,-induced inhibition in its phosphatase
activity. These observations are consistent with earlier reports
suggesting that ROS could reversibly modify the redox state
of specific cysteine residues in phosphatases (protein tyrosine
phosphatases and dual-specificity phosphatases), inactivating
their activities, which could favor Ser/Thr phosphorylation-
dependent signal pathways initiating proliferation (95, 205,
260, 314, 320).

Hydrogen peroxide could influence the redox state of
protein thiols, two-electron reactions (36) (Fig. 4). The reduced
form of cysteine in protein (RSH) can be oxidized to sulfenic
acid (RSOH), which can be further oxidized to sulfinic
(RSO,H) and sulfonic (RSOsH) acids. The sulfinic and sulfonic
forms of proteins are believed to be targeted for degradation;
the sulfenic form can react with another RSH to form the
disulfide, RSSR. RSSR can be then reduced back to RSH by
cellular antioxidant machinery. This thiol-disulfide exchange
reaction can regulate many of the cell-cycle-regulatory pro-
tein functions during the redox regulation of the cell cycle. In
addition, superoxide can initiate one-electron reactions that
can alter the redox state of metal cofactors (e.g., Fe and Zn)
(Fig. 4) present in many kinases and phosphatases, thereby
affecting their activities. Thus, both one- and two-electron
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FIG. 3. Thiol-redox reactions regulating CDC25 phos-
phatase activity. The reduced form of cysteine in proteins
can undergo oxidation reactions to form sulfenic, sulfinic,
and sulfonic acids. Sulfinic and sulfonic forms are believed to
be irreversible, whereas the sulfenic form can conjugate with
other reduced thiols (RSH) to form a disulfide bridge. Cel-
lular antioxidant systems can reduce the disulfide bond and
generate the reduced form of the cysteine in proteins. Mu-
tational analysis identified cysteine 330 and 377 of CDC25
phosphatase as the sites for thiol redox reactions; the reduced
(-SH) form of CDC25 has phosphatase activity, whereas the
oxidized (-S-S-) form is inactive.

reactions can participate in the redox regulation of cell-cycle
proteins during progression from one cell-cycle phase to the
next.

F. RNS signaling and cell-cycle progression

Reactive nitrogen species (RNS) are molecules derived
primarily from the reactions of nitric oxide. Nitric oxide (NO)
is a short-lived and highly reactive diffusible free radical that
is known to regulate various biologic processes. NO is pro-
duced from L-arginine by the enzymatic action of nitric oxide
synthase (NOS) (70). The NOS family of proteins includes the
constitutive (cNOS), inducible (iNOS), neuronal (nNOS), and
endothelial NOS (eNOS). Inflammation and oxidative stress
induce iNOS expression. NO in the central and peripheral
nervous system is believed to regulate cell-cell communica-
tion. eNOS generates NO in the blood vessels to regulate
vascular functions. NO reacts with O,"~ to form peroxynitrite.
Peroxynitrite is highly reactive and can damage proteins by
nitration. Nitration of structural proteins, like actin and neu-
rofilaments, is known to disrupt filament assembly, leading to
various pathologic disorders like atherosclerosis, ischemia,
and septic lung, among others (17, 167).

Kinases and Phosphatases
(Metal co-factors)
Thiol-redox reactions
One electron (cysteines in proteins)
reductions
Two electron

e o SoD reductions

w

FIG. 4. ROS regulate protein activity. Superoxide dis-
mutase (SOD) converts superoxide (O,"") to hydrogen per-
oxide (HyO3). O2°~ can modulate the activities of kinases and
phosphatases by interacting with metals in one-electron re-
actions. HyO, can regulate protein function by manipulating
thiol-redox reactions in two-electron reactions (36).
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NO can also mediate important biologic effects via the ac-
tivation of specific cell-signaling pathways. Lower concen-
trations of NO are known to activate NF-xB transcription
factor, possibly by S-nitrosation of p21 and activation of IxB.
In contrast, higher concentrations of NO inhibit the DNA-
binding activity of the SP-1 transcription factor (79, 167).
Higher levels of NO have been shown to accelerate S-phase
entry basally, and facilitate entry into mitosis apically in de-
veloping chick neuroepithelium (227). Low-molecular-weight
S-nitrosothiol, S-nitroso-N-acetylpenicillamine promotes the
nitrosation of p21 Ras and the activation of the Ras-ERK 1/2-
MAP kinase signaling pathway. This activation in the ERK-
signaling pathway leads to cell-cycle progression in rabbit
aortic endothelial cells (17). NO inhibits proliferation in vas-
cular smooth muscle cells, resulting in G; delay. NO-induced
G; delay is accompanied with a decrease in cyclin A/CDK2
activity and an increase in p21 protein levels (324). Results
from these studies indicate that the cell-type specificity and
signaling pathway(s) could significantly influence the mito-
genic and cytostatic properties of NO.

G. Summary

This literature clearly supports the hypothesis that periodic
oscillations in metabolic redox reactions, a redox cycle, within
the cell cycle represent a fundamental mechanism linking
oxidative metabolic processes to the cell-cycle-regulatory
processes. The periodicity in cellular redox environment is
maintained by a delicate balance between the production of
ROS, RNS, and their removal by nonenzymatic and enzymatic
antioxidants. Redox regulation of the cell-cycle-regulatory
proteins could be influenced by the presence of redox-sensitive
motifs, such as cysteine residues or metal cofactors in kinases
and phosphatases. The literature presented in the next section
integrates information supporting the concept that perturba-
tions in the redox control of the cell cycle could lead to prolif-
erative disorders. It is hypothesized that reestablishing the
redox cycle by manipulating the cellular antioxidant pathways
could reverse, suppress, and/or prevent many aspects of pro-
liferative disorders.

Il. Redox Control of the Cell Cycle
and Proliferative Disorders

A. Development

Development in living organisms involves two distinctive
criteria: proliferation and differentiation. Cells proliferate in
low oxygen concentrations throughout the embryonic stage
and in higher oxygen concentrations during neonatal life. This
environmental transition from low to high oxygen during
development creates a gradient of ROS that may have direct
and indirect effects on cellular proliferation. ROS signaling is
known to regulate many of the transcription factors that in-
fluence development (e.g., NF-xB, AP-1, and HIF-1) (162).

The role of antioxidants during development is well
documented. For example, homozygous MnSOD-knockout
mice survive the embryonic stage of development. However,
these mice die after birth of lactic acidemia, cardiomyopathy,
and degeneration of the basal ganglia (138, 325, 326). Devel-
opmental defects in MnSOD-knockout mice are associated
with damage to mitochondrial aconitase, complex I, and
succinate dehydrogenase. In comparison to control mice,
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defects in MnSOD-knockout mice were very pronounced af-
ter oxygen exposure, with a subsequent increase in ROS
production (166, 171). MnSOD overexpression is known to
promote differentiation (62, 168, 310).

CuZnSOD-knockout mice are viable (194), but slowly de-
velop neuronal axonopathy, which is not as pronounced at
birth in comparison to mice lacking MnSOD (166, 171). An-
other example of SOD-dependent developmental defects
relates to CuZnSOD overexpression in Down syndrome pa-
tients; aberrant placental formation is common in these pa-
tients (10, 99, 100). Furthermore, a lack of selenium-containing
protein antioxidants, such as thioredoxin reductase and
phospholipid hydroperoxide glutathione peroxidase (GPx-4),
is lethal in early gestation (191, 353). Interestingly, another
selenium-containing protein, antioxidant selenoprotein W,
was found to be highly expressed in proliferating cells during
the development of the heart, skeletal muscle, and the ner-
vous system in mice. However, as cells exit from the cell cycle,
the expression of this protein is decreased (140, 177).

The changes in the cellular redox environment during de-
velopment could affect both proliferation and differentiation.
Although proliferation is the major event in development,
both positive (cyclin/CDK) and negative (CKI) regulators
of the cell cycle are involved. Results from knockout mice
demonstrated that a lack of individual cyclins and CDKs is
not lethal to the organism (63, 89, 184, 231, 249, 303, 304), with
the exception of cyclin Bl and cyclin A2, which are fatal in
early gestation (28, 208, 209). In general, these mice have a
normal developmental life, suggesting that redundancy in
cyclin and CDK functions could compensate for the absence
of an individual member of the cyclin and CDK family of
proteins. It also is interesting to note that whereas individual
cyclin (or CDK)-knockout embryos develop normally to
adults, they are susceptible to proliferative disorders later in
life. An additional complication of this regulation is that these
impaired proliferative activities are tissue specific. Cyclin-
dependent kinase inhibitor (INK4 and CIP/KIP) homozygous
knockout mice showed viable embryos and normal neonatal
development. However, these animals did develop an in-
crease in tumor incidence later in life (75, 150, 155, 164, 295).
p57-Knockout mice were found to be neonatal fatal with se-
vere developmental defects in the gastrointestinal tract and
abnormal cell proliferation in placenta, cartilage, and eye
lenses (352, 356).

This literature suggests that the cellular redox environment
and cell-cycle-regulatory proteins might collectively regulate
development. Although individual cell cycle-regulatory pro-
teins may not affect the development process because of re-
dundancy, their presence as a family is essential for the
normal developmental process.

B. Aging and cancer

One of the most well-stated definitions of aging was offered
by Caleb Finch (94), who defines aging as “a nondescript
colloquialism that can mean any change over time, whether
during development, young adult life, or senescence. Aging
changes may be good (acquisition of wisdom); of no conse-
quence to vitality or mortality risk (male pattern baldness); or
adverse (arteriosclerosis).” The numerous theories of aging
can be broadly classified into two major categories: error and
program theories. According to the program theory, aging
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occurs because of a preexisting external or internal pro-
gram. The program theory of aging includes both the “Hay-
flick limit” and the telomere-shortening phenomenon. The
error theory considers aging to be a cumulative damage
process (289). The free radical theory of aging, originally
proposed by Harman (123), is an example of the error theory
of aging. ROS-mediated damage to critical cellular macro-
molecules is believed to accumulate as a function of age and to
lead to deleterious effects associated with degenerative dis-
eases of aging, senescence, and carcinogenesis (96). A recent
study clearly demonstrated that mitochondria-targeted
overexpression of human catalase extends the median and
maximal life span of mice by 20% (285). Mitochondrial over-
expression of catalase delayed age-associated loss in mito-
chondrial DNA deletions, cardiac pathology, and cataracts in
mice (285). Previous studies reported that overexpression of
MnSOD and CuZnSOD extended Drosophila life span (230).

In 1961, Hayflick (reviewed in ref. 49) showed that human
diploid fibroblasts cultured in vitro divide a finite number of
times (Hayflick limit) before irreversible growth arrest, also
known as senescence. Cellular senescence is associated with
specific changes in cell morphology that include increased
cell volume, expression of neutral senescence-associated
f-galactosidase activity, and increased production of extracel-
lular matrix degradative enzymes such as collagenase and
stromelysin. Cellular senescence is believed to be caused by
telomere shortening. Telomeres are repetitive DNA sequences
(TTAGGG in vertebrates) present at the ends of chromosomes
and are essential for maintaining chromosomal integrity.
During DNA replication, 50-200bp of telomeric DNA are not
replicated at the end of the S phase of the cell cycle. Because
telomerase, the enzyme that synthesizes telomeric DNA de novo,
is not expressed by most human cells, telomeres shorten with
each cell cycle. When the telomeres shorten from the maximum
size of 10-15 kb to an average size of 4-6 kb, human cells irre-
versibly arrest in growth, producing a characteristic pheno-
type, defined as senescence (48, 308). These observations are
known now as the telomere hypothesis of the Hayflick limit.

It is important to mention that a majority of cell-culture
experiments are performed at nonphysiologic oxygen con-
centrations of 21% compared with physiologic concentrations
of 4%. Because ROS are byproducts of oxygen metabolism, it
is anticipated that oxygen concentrations will significantly
affect cellular ROS levels: 21% oxygen environment is known
to reduce population doublings (PDs) in cultured cells (294,
348, 349). Furthermore, human and mouse fibroblasts cul-
tured at 21% oxygen concentrations exhibit significantly re-
duced replicative life span despite mouse cells having long
telomeres (43, 237). Consistent with these previous reports,
our unpublished results show that normal quiescent human
skin fibroblasts cultured at 4% vs. 21% oxygen concentrations
protect these cells from age-related loss in proliferative ca-
pacity. Interestingly, the protection of proliferative capacity at
4% vs. 21% oxygen environment correlated with the preser-
vation of mitochondrial morphology. These results suggest
that oxygen concentrations could significantly influence the
redox biology of the cell cycle.

Results from several studies suggest that the redox reg-
ulation of the cell cycle could be influenced by the redox-
controlled maintenance of telomeres. Overexpression of
EcSOD in human fibroblasts decreased the intracellular per-
oxide content, slowed the telomere shortening rate, and
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elongated the life span of these cells under normoxia and
hyperoxia (293). Minamino et al. (203) showed that hypoxia
extends the life span of vascular smooth muscle cells through
activation of telomerase activity. Furthermore, ectopic ex-
pression of telomerase increased MnSOD expression by more
than sevenfold (298). Telomerase-immortalized cells have
higher levels of the p21 cell-cycle-regulatory protein (49, 83,
110, 334). Thus, the redox regulation of the cell cycle could
protect replicative senescence via a redox-sensitive regulation
of the telomeres and telomerase activity.

Redox regulation of the cell cycle could also influence the
chronologic life span of aging. Chronologic life span is char-
acterized as the capacity of quiescent (Go) cells to reenter the
proliferative cycle (124). The mechanisms regulating the chro-
nologic life span are poorly understood. In response to mi-
togenic stimuli, quiescent cells enter the proliferative cycle
and subsequently transit back to the quiescent state. This re-
versible property of cellular quiescence is highly essential to
protect the chronologic life span and avoid aberrant prolif-
eration. MnSOD activity protects the chronologic life span of
normal human skin fibroblasts from age-dependent loss (276).
Quiescent normal human skin fibroblasts cultured for 40 to
60 days were unable to reenter the proliferative cycle after
replating. This inhibition of reentry was associated with a
significant accumulation of p16 and a decrease in p21 cyclin-
dependent kinase inhibitor protein levels. Interestingly,
MnSOD overexpression suppressed age-associated increase
in pl6 accumulation, maintained p21 at a higher level, and
restored the ability of quiescent fibroblasts to reenter the
proliferative cycle (Fig. 5). Furthermore, MnSOD activity has
been shown to regulate a ROS switch favoring a superoxide
signal regulating the proliferative cycle and a hydrogen per-
oxide signal supporting quiescent growth. Higher levels of
MnSOD activity were associated with quiescence, whereas
lower levels support proliferation. MnSOD activity-regulated
transitions between quiescent and proliferative growth was
associated with changes in cyclin D1 and cyclin Bl protein
levels (277). These results support the hypothesis that MnSOD
activity could maintain a redox-balance protecting the chro-
nologic life span.

Cellular ROS levels and the protection of proliferative ca-
pacity are also apparent in hematopoietic stem cells (322). FoxO
transcription factor-deficient hematopoietic stem cells (HSCs)
showed reduced ability to repopulate (321). Because FoxO is
known to regulate antioxidant enzyme (MnSOD and catalase)
and cell-cycle (cyclin D1 and p27) genes transcription (154), it
has been suggested that ROS could mediate the proliferative
capacity of HSCs. Consistent with this notion, small-molecular-
weight antioxidant (NAC) treatment of FoxO-deficient HSCs
protected the proliferative capacity of HSCs (322). Overall, this
literature supports the hypothesis that a loss in the redox
control of the cell cycle during transitions between quiescent
(Gp) and proliferative (Gy, S, G, and M) cycles could severely
affect the proliferative capacity of cells.

Cancer is a disease manifesting late in life, suggesting that
the very biology of aging contributes to its exponential in-
crease in the older population. Cancer risk is elevated with
aging, which could be due to an increase in ROS production or
decrease in ROS removal or both (157, 331). Carcinogenesis
can be divided into three distinct stages: initiation, promotion,
and progression. Initiation can occur because of mutations in
one or more genes, which result in loss or gain of function.
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FIG.5. MnSOD activity protects the chronologic life span
of normal human skin fibroblasts. Quiescent normal human
skin fibroblasts cultured for 40-60 days at 21% oxygen en-
vironment lose their capacity to reenter the proliferative cy-
cle after replating of cells at a lower density. This loss in
proliferative capacity is associated with an increase in cel-
lular ROS levels and p16 accumulation. Overexpression of
MnSOD suppressed pl6 accumulation, increased p21 levels,
and protected quiescent fibroblast proliferative capacity
(276).

Proliferation

Promotion is the functional enhancement and alteration of the
pathway induced by initiation. Progression is the continuing
change of the unstable karyotype, often leading to aberrant
proliferation. Aberrant proliferation in cancer cells could be
due to a loss in the redox regulation of the cell cycle. Oberley
and Buettner (224) were first to report that cancer cells exhibit
lower levels of antioxidant enzyme activities compared with
their respective normal cells, in particular MnSOD. Other
studies suggest that oxidative stress could significantly con-
tribute to cancer progression, possibly by perturbing the
redox control of the cell cycle (103, 118, 129, 239, 240, 292).
Redox potential in normal cells correlates with Rb phos-
phorylation status during the cell cycle, suggesting that per-
turbations in cellular redox potential could significantly affect
the function of a tumor-suppressor gene (129). Furthermore, it
is hypothesized that the metabolic redox-signaling pathways
could initiate as well as promote carcinogenesis (108). This
hypothesis is based on numerous studies demonstrating a
regulatory role of MnSOD activity in cancer cell growth in
both cell-culture and tumor xenograft animal model systems
(62, 223, 346, 347, 357). These results suggest that reestabli-
shing the redox control of the cell cycle by manipulating the
expression of ROS-removal enzymes (e.g., MnSOD) could
suppress or inhibit (or both) carcinogenesis.

Recent reports enlighten an additional aspect of carcino-
genesis that relates to the tumor microenvironment. Several
studies report that aged normal human breast and prostate
fibroblasts support epithelial malignancies (11, 16, 50, 81, 157,
228, 271). The majority of human cancers are carcinomas orig-
inating from epithelial cells. Fibroblasts are the primary com-
ponent of the stroma that supports these epithelial tissues.
Campisi et al. (47, 50, 51) showed that senescent human fi-
broblasts enhanced cellular proliferation in premalignant and
malignant epithelial cells in vitro, and tumor growth and
metastasis in mice in vivo. Prostate epithelial cells from tissue
with aged stroma can become tumorigenic when co-cultured
with tumor-burden fibroblasts (228). Likewise, exposure of
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mammary gland stroma to irradiation or carcinogens stimu-
lates nonmalignant epithelial cell proliferation and promotes
tumor formation (11). Although the mechanisms regulating
this phenomenon are not completely understood, the secreted
growth factors, cytokines, and extracellular matrix proteins
from aged fibroblasts are believed to enhance premalignant
and malignant epithelial cell proliferation. Because many of
the growth factors and cytokines are known to generate
ROS, it is hypothesized that ROS signaling derived from aged
fibroblasts could provide mitogenic stimuli to premalignant
and malignant epithelial cells.

C. Wound healing

Wounds are an inevitable part of life. They could arise both
from internal and external injuries. Wound healing is a com-
plex process that can be grouped into three major overlapping
stages: inflammation, proliferation, and maturation or closure
(Fig. 6). ROS are involved in all three stages of wound healing
(31, 226, 256, 270, 302, 311). The inflammation stage of the
wound-healing process is one of the most widely studied
areas for ROS production, and it is the stage during which
most ROS are produced (270). The production of ROS during
the inflammation stage is believed to protect cells from
pathogens and regulate angiogenesis (290). Hydrogen per-
oxide levels are higher in the early stages of wound repair
compared with late stages; superoxide is also detected in the
leading edge of the wound area (270). MnSOD, CuZnSOD,
catalase, and glutathione peroxidase levels increases during
the normal wound-healing process (311). Likewise, treatment
with SODs and administration by hydrogels containing
CuZnSOD or transgenic expression of MnSOD resulted in
better wound healing in mouse models (56, 61, 291). In con-
trast, lower levels of antioxidants (e.g., glutathione) were as-
sociated with improper wound healing (207, 256).
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FIG. 6. Redox control of the cell cycle during wound
healing. The wound-healing process can be divided into
three stages: inflammation, proliferation, and closure. Higher
ROS levels are essential during the inflammatory stage of the
wound-healing process to defend against pathogens. Lower
levels of ROS later in the wound-healing process could be
mitogenic, facilitating quiescent cell entry into the prolifera-
tion cycle. Redox control of quiescent cell entry into and exit
from the proliferative cycle could be essential to prevent
aberrant proliferation and improper closure.
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Although inflammation is the initial stage, the wound-
healing process is mainly dependent on the proliferative
stage. Cells repopulate during the proliferative phase and
prepare the wound for closure and healing. The repopulation
process depends on the ability of quiescent cells to reenter and
subsequently exit the proliferative cycle (Fig. 6). Quiescent
normal human skin fibroblast entry into and exit from the
proliferative cycle is dependent on cellular superoxide and
hydrogen peroxide levels regulated by MnSOD (277). Redox-
sensitive regulation of cyclin D1 and cyclin Bl protein ex-
pression correlated with the quiescent fibroblast entry into
and exit from the proliferative cycle (277). Cyclin E and Ki-67
protein levels are known to increase during the early stages of
the wound-healing process (359). Increased levels of cyclin
D1/CDK4-6 correlate with better wound closure (332). Fur-
thermore, ROS are also known to regulate cellular migration
and proliferation during different physiologic responses (217,
252). The decrease in cyclin levels at later stages of the wound-
healing process was associated with an increase in p21 and
p27 (12, 359, 360, 364). p21 and p27 were upregulated in the
migrating epithelial cells on the leading edge of the wound,
whereas the basal cells showed an increase in cyclin A and Ki-
67 protein levels (12). Redox-sensitive control of the prolifer-
ative stage of wound healing is critical for normal wound
healing.

Loss of the redox-sensitive control in the inflammatory or
proliferative stages, including migration and reentry into the
proliferative cycle, could lead to higher accumulations of
collagen, elastin, fibronectin, and proteoglycan that are hall-
marks of keloids and hypertrophic scars (1, 44, 178). These
results support the hypothesis that tight redox control of the
cell cycle is necessary for proper wound healing.

D. Fibrosis

Fibrosis is defined as the formation of fibrous tissue as a
reaction or repair process due to disease, treatment, or expo-
sure to chemicals. Fibrosis involves the overgrowth, hardening,
and often scarring of tissue due to excess collagen. Fibrosis is
most common in the lung, heart, peritoneum, and liver.

1. Radiation-induced fibrosis. Radiation-induced fibro-
sis (RIF) is a serious and common complication of radiation
therapy that causes chronic pain, neuropathy, swelling of
lymph nodes, and limited motion in the joints. It occurs most
commonly in the head, neck, breast, and connective tissues.
Risk factors for developing RIF include high-dose radiation,
large tissue volume exposed to radiation, and radiation
combined with surgery or chemotherapy.

The biologic effects of ionizing radiation begin with the
generation of both early and late ROS accumulation (105).
ROS signaling could activate quiescent fibroblasts to differ-
entiate into myofibroblasts, which have the phenotype of
smooth muscle cells. Myofibroblasts appear during the initial
inflammatory phase, and they are present during the consti-
tutive fibrotic phase. Myofibroblasts are characterized by in-
creased proliferation and reduced production of extracellular
matrix metalloproteinases (187). The persistent excess of
myofibroblasts is believed to be responsible for the areas
of hypercellular fibrosis and the clinical observation of
radiation-induced fibrous swellings (74). Numerous bio-
chemical compounds, such as cysteine, pentoxifylline, and
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tocopherol, are used to minimize radiation-induced damage
to normal tissue (74).

EcSOD-overexpressing mice exhibit decreased fibrosis,
which correlated with a decrease in TGF-f and Smad3
protein levels (144, 243). Likewise, liposomal delivery of
CuZnSOD in a 3D-culture of myofibroblasts decreased TGF-
p levels and facilitated myofibroblast reversal to normal
fibroblasts (335). Although in general, the effect of TGF-f is
growth inhibition, TGF-f is also known to promote prolif-
eration of fibroblasts. TGF-f has been shown to decrease p21
and p27 protein levels in WI38 human lung fibroblasts
and NIH3T3 mouse fibroblasts, respectively (80, 257). This
decrease in cyclin-dependent kinase inhibitors was accom-
panied by a significant increase in cyclin E/CDK2 kinase
activity. A decrease in cyclin D2 expression in fibroblasts
isolated from breast cancer patients correlated with a low
risk for the development of RIF (264). TGF-f remains ele-
vated long after the radiation treatment (6). The increase in
TGEF-f can result in prolonged inhibition of p21 and p27,
which could support continued proliferation facilitating the
development of RIF.

2. Lung fibrosis. The most common types of lung fibrosis
include idiopathic pulmonary fibrosis (IPF), chronic obstruc-
tive pulmonary disease (COPD), and bleomycin-, asbestos-, or
cigarette smoke-induced fibrosis (137, 148). The lung is subject
to the highest exposure to oxygen, which makes it susceptible
to ROS- and RNS-induced abnormalities. In addition to the
ETC and NADPH oxidases, ROS in lung can be generated by
myeloperoxidase, eosinophil peroxidase, and xanthine oxi-
dase (149). Xenobiotics or pathologic conditions can overcome
the detoxification enzyme system (104, 149, 246, 337). GSH
levels were found to be low in the epithelial lining fluid of IPF
patients (52). In bleomycin-induced lung fibrosis, increased
oxidation of cysteine (Cys) to its oxidized form, cystine
(CySS), and a decrease in the GSH pool were observed (137).
IPF patients also exhaled more NO as compared with healthy
individuals (265). Failure to cope with the oxidant insult could
be the major factor causing fibrosis. This hypothesis is sup-
ported by a recent report of aerosolized administration of
NAC attenuating bleomycin-induced lung fibrosis (117).

The oxidant insult could lead to a loss of regulation of the
fibroblast cell cycle, causing the resulting fibrosis. Fibroblasts
derived from areas of fibrosis proliferate faster than cells de-
rived from histologically normal areas of lung tissue (141).
Patients with IPF have elevated levels of nitric oxide, which
could stimulate proliferation of human lung fibroblasts, pos-
sibly via NF-kB-mediated activation of cyclin D1 expression
and progression from Gy/G; to S phase (127, 186, 265). NO-
induced proliferation in a normal human fetal lung fibroblast
cell line, MRC-5, is associated with inhibition of p21 and p27,
activation of cyclin/CDK complexes (cyclin D1/CDK4-6 and
cyclin E/CDK2), and hyperphosphorylation of Rb (Fig. 7) (57).

As in RIF, oxidants and TGF-f may interact to enhance
fibrosis in patients with IPF (149). Active TGF-f has been
detected in patients with pulmonary fibrosis, in contrast to
healthy individuals in whom TGF-$ is present mostly in the
latent form (23). TGF-f has been shown to activate NADPH
oxidase in human fibroblasts, which is associated with an
increase in ROS levels (319). TGF-f-induced increase in ROS
levels inhibits cell proliferation by inducing a G; arrest, de-
creases cyclin D1/CDK4-6 kinase activities, and increases p21,
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FIG. 7. Redox control of the cell cycle and
lung fibrosis. Elevated levels of nitric oxide
(NO) can stimulate proliferation of lung fibro-
blast by the NF-xB-mediated activation of cyclin
D1 expression. NO also is known to decrease
p21 and p27 cyclin-dependent kinase inhibitors,
which is associated with an increase in cyclin
D1/CDK4-6 and cyclin E/CDK2 kinase activi-
ties, as well as Rb hyperphosphorylation.
Hyperphosphorylated Rb undergoes conforma-
tional change releasing the E2F transcription
factor. Activation of the E2F-targeted S-phase-
specific gene expression prepares cells for DNA
synthesis and subsequent cell division.

P27, and p16 protein levels (71, 206, 323). Consistent with these
results, p21 overexpression demonstrates an antiapoptotic and
antifibrotic effect in attenuating bleomycin-induced pulmo-
nary fibrosis in mice (135). It is unclear how TGF-f could
promote proliferation in RIF and inhibit proliferation in pul-
monary fibrosis.

3. Cardiac fibrosis. Cardiac fibrosis refers to the thick-
ening of heart valves due to increased proliferation of cardiac
fibroblasts and subsequent collagen accumulation. The per-
turbation in cardiac fibroblast proliferation is believed to be
regulated by ROS signaling generated from the membrane-
bound NADPH oxidase, a major source of superoxide in the
heart. An increase in Nox2, also known as gp91” hoX has been
observed in the perivascular space and at sites of fibrosis in
both the right and left ventricles (358). Cardiovascular NOX is
thought to release low levels of superoxide intracellularly.
These lower amounts of ROS could serve as second messen-
gers initiating cellular signaling pathways that control many
cellular processes, including proliferation.

Both the renin-angiotensin system and TGF-§ play im-
portant roles in the development of cardiac fibrosis. Angio-
tensin II (Ang II) is an effector hormone of the circulating
renin-angiotensin system, which has endocrine functions in
maintaining cardiovascular homeostasis. Ang II-dependent
induction of TGF-f expression induces cardiac fibroblast pro-
liferation and phenotypic conversion to myofibroblasts (266).
Ang II increase in cell proliferation is associated with a signif-
icant increase in cyclin D and cyclin A expression in neonatal
rat cardiac myocytes (272). Furthermore, Ang Il-induced
phosphorylation of Rb on serine 480, a mitosis-specific event,
suggests that Ang II promotes cell division (272). Over-
expression of p21 and p16 inhibited Ang II-induced cardiac
myocyte hypertrophy (220). These results support the hy-
pothesis that a loss in the redox regulation of the cell cycle could
contribute to the genesis of cardiac fibrosis (Fig. 8).

4. Liver fibrosis. The adult human liver is the largest in-
ternal organ, and it plays an important role in the metabolism
and the clearance of body toxins. The parenchymal cells of the

liver contain most of the hepatic antioxidant enzymes, but
Kupffer cells, hepatic stellate cells (HSCs), and endothelial
cells are more exposed and sensitive to oxidative stress.
Chronic liver injury is associated with accumulation of matrix
proteins, causing fibrosis (336). After liver injury, parenchy-
mal cells regenerate and try to replace necrotic or apoptotic
cells. This is usually accompanied by an inflammatory re-
sponse and the deposition of extracellular matrix (ECM). The
excess accumulation of extracellular matrix in hepatic fibrosis
is regulated mostly by HSCs. After liver injury, HSCs undergo
“activation” that is accompanied with the transition from
quiescent to proliferative growth (101). In the healthy liver,
the HSCs are in a quiescent state and function to store vitamin
A.Inresponse to liver damage, quiescent HSCs lose vitamin A
and differentiate into a myofibroblast phenotype expressing
a-smooth muscle actin (101). This phenomenon is a hallmark
of cellular response to liver injury. MnSOD activity is known
to regulate transitions between quiescent and proliferative
growth states (277), suggesting that quiescent HSC entry into
the proliferative cycle could be regulated by the cellular redox
environment.

The cellular redox environment in hepatocytes and Kupffer
cells may be regulated by ROS produced from the
NADP/NADPH oxidase system or leakage of electrons from
the ETC (or both), followed by univalent reduction of oxygen
to superoxide anion (72, 172). Substrates like ethanol, poly-
unsaturated fatty acids, and iron may enhance ROS produc-
tion. Noncytotoxic levels of superoxide in human HSCs have
been shown to enhance procollagen type I expression through
the antioxidant-sensitive pathway Ras/ERK, which stimu-
lates HSC migration and the profibrogenic response (219).
ROS signaling could be influenced by the activities of various
antioxidant enzymes, the expression of which is regulated by
a number of redox-sensitive transcription factors, including
NF-kB and NRF1. Quiescent HSCs lack NF-xB in contrast to
activated HSCs, suggesting that a redox-sensitive activation
of NF-«B could regulate expression of NF-xB-targeted genes
providing an appropriate cellular redox threshold for quies-
cent HSC entry into the proliferative cycle (Fig. 9). Consistent
with this hypothesis, inhibition in NF-«B activity by using
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FIG. 8. Redox control of the cell cycle and
cardiac fibrosis. ROS generated from membrane-
bound NADPH oxidase may activate antioxidant
enzyme expression that could influence the cel-
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pyrrolidine dithiocarbamate is known to protect rats from
the development of hepatic fibrosis (34). Inhibition in NRF1
could alter the expression of antioxidant response element
(ARE)-responsive antioxidant enzymes that could perturb the
cellular redox environment and subsequently affect prolifer-
ation, cell death, and increased collagen synthesis in HSCs
that collectively results in liver fibrosis (195).

E. Cardiovascular diseases

Redox signaling has been implicated in the pathogenesis of
all major diseases, including those of the cardiovascular sys-
tem. Cardiovascular disease is the number one cause of death
in the United States, accounting for ~35.3% of all deaths in
2005 (2). Oxidative stress in cardiovascular biology was once
considered only in terms of injury, damage, and dysfunction.
However, an accumulating body of literature suggests that
low to moderate concentrations of ROS may act as secondary
messengers and signaling molecules regulating redox-sensi-
tive processes during the vascular smooth muscle cell (VSMC)
and cardiac myocyte cell-cycle progression.

Coronary heart disease is caused by atherosclerosis, the
narrowing of vessels due to a buildup of plaque, which may
lead to chest pains and heart attack. VSMCs are known to
play an important role in the formation of fibrous plaques in
atherosclerosis and initial thickening after angioplasty (267,
286). Focal accumulations of monoclonal VSMCs are pre-
cursors to atherosclerotic lesions (286). In these accumula-
tions, VSMCs cause vessel-wall inflammation, lipoprotein
retention, and fibrous cap formation that stabilizes plaques.
Proliferation of VSMCs in atherosclerosis has been linked to
inflammation, apoptosis, and matrix alterations (85). Ad-
ditionally, VSMC proliferation has been identified as the
primary mechanism of pathogenesis in restenosis, transplant
vasculopathy, and vein bypass graft failure (29). Hyperten-
sion and diabetes are also associated with VSMCs growth
(235).
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In general, an injury to vessels initiates vascular prolifera-
tive disorders. This injury can cause endothelial denudation/
dysfunction, inflammation, and VSMC activation and prolif-
eration (85). ROS generated during VSMC proliferation could
originate from the NADPH oxidase or growth factors or both.
Nox4 is highly expressed in vascular wall cells, and Nox2 is
predominantly expressed in VSMCs (179). Treatment of VSMCs
with Nox1 antisense inhibits superoxide production and ROS-
dependent signaling pathways (163). ROS generated from
growth factors, such as platelet-derived growth factor (PDGF),
are associated with increases in smooth muscle cell prolifera-
tion (248). Increased expression of PDGF and its receptors has
been found in lesions of atherosclerosis (248). Overexpression
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FIG. 9. Redox control of the cell cycle and liver fibrosis.
ROS signaling can recruit quiescent hepatic stellate cells to
the proliferative cycle by upregulating the activity of redox-
sensitive transcription factors, NF-«B and NRF1. Proliferat-
ing hepatic stellate cells can subsequently differentiate into
myofibroblasts.
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of catalase inhibited VSMC proliferation, indicating a causal
link between ROS signaling and cell proliferation in VSMCs
(315). Furthermore, TGF-$, angiotensin II, epidermal growth
factor, insulin-like growth factor, and basic fibroblast growth
factor could also initiate medial proliferation of VSMCs (86,
114,173, 183, 210). Angiotensin II-induced VSMC proliferation
is regulated at least in part via the NADPH oxidase-dependent
generation of H,O,-sensitive signaling pathways (115).

Extracellular signal-regulated kinases (ERKSs) of the mitogen-
activated protein kinase (MAPKSs) family form one of the H,O,-
sensitive signaling pathways that could contribute to VMSC
proliferation (235). Exogenous addition of HO, induced VSMC
proliferation via tyrosine phosphorylation of MAPKSs (8, 253,
254, 315). ERK 1/2 activation is known to increase cyclin D1
(4, 102). PDGF can increase PIP; levels, which in turn mediate
p70S6K and AKT activation. AKT is known to phosphorylate
GSK-3f and thus negatively affect its kinase activity. Inactiva-
tion of GSK-3f kinase activity inhibits cyclin D1 Thr286 phos-
phorylation, thereby stabilizing cyclin D1. An increase in cyclin
D1 facilitates cells progression from G; to S phase (68). AKT-
mediated inactivation of GSK-3f and stabilization of cyclin D1
have been proposed recently for enhanced proliferation of
VSMCs after treatment with betacellulin and amphiregulin
(Fig. 10) (301).

Furthermore, PDGF is known to activate redox factor 1
(Ref-1) by altering its redox status, enhance AP-1 activity, and
increase cell-cycle-regulatory protein expression, facilitating
progression from Gy/G; to S phase in VSMCs (125). CDK2,
cyclin E, cyclin A, and PCNA protein levels were low in un-
injured rat carotid arteries. However, a significant increase
in these protein levels occurs within 2 days of balloon an-
gioplasty. This increase in cell-cycle-regulatory proteins
was present even after 10 days after injury, suggesting a
continuous activation of proliferation during this period (169).
Abundant expression of cell-cycle proteins has been observed
in regions of human restenotic lesions, which also showed
increased VSMCs proliferation (345). Disruptions of the E2F-
Rb complex and inhibition of p53 have also been shown to
stimulate proliferation of VSMCs (22).

Hydrogen peroxide is known to increase c-myc and c-fos
mRNA levels, which can influence cell-cycle progression
(253). Studies have shown the proliferative effects of c-myc
in VSMCs (21, 213). Diez et al. (78) demonstrated an associa-
tion between enhanced expression of c-myc and increased
expression of cyclin A in VSMCs. c-Fos, conversely, promotes
AP-1 transcription factor activity, which could activate cyclin
A expression via binding to the AP1-consensus promoter se-
quence (317). Figure 10 summarizes the possible pathways of
the redox control of cellular proliferation leading to the de-
velopment of atherosclerosis.

In contrast to ROS activating VSMC proliferation, nitric
oxide (NO) is a potent mitogenic repressor. NO suppresses
the promoter activity for cyclin A gene transcription, resulting
in decreased cyclin A mRNA and protein levels, which was
associated with cell-cycle arrest (116). Additionally, NO-induced
inhibition of CDK2 activity is associated with Rb hypopho-
sphorylation, increased p21 expression, and inhibition in cell-
cycle progression from G; to S (136).

As atherosclerosis progresses and vessels are continually
narrowed, myocardial infarction is a likely result. Cardiac
myocytes rapidly proliferate during fetal life, but are termi-
nally differentiated soon after birth. This limits the ability of
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the heart to restore function after injury. However, recent
evidence suggests that cardiac myocytes may retain some
proliferative potential (20, 142, 176). Additionally, cardiac
progenitor cells have been identified that give rise to cardiac
myocyte-like cells (3). Ki-67, a common indicator of prolifer-
ation, was found to be positive in 4% of myocytes near in-
farction sites and in 1% in distant myocytes in human tissue
sections. Mitotic spindles, contractile rings, karyokinesis, and
cytokinesis were also identified in these tissue sections (20).
These results suggest that cardiac myocytes could be recruited
to the proliferative cycle, at least under ischemia/reperfusion
conditions.

Cardiac tissue contains many of the same growth factors
seen in VSMCs, such as basic fibroblast growth factor and
insulin-like growth factor (145). ROS are known to be gener-
ated in the ischemic myocardium, especially after reperfusion
during acute myocardial infarction (131). Superoxide derived
HO® and R* from reperfusion (366) may account for up to 50%
of the final size of the myocardial infarction (354). The major
sources of ROS in ischemic reperfused myocardium are from
mitochondria, xanthine oxidase, and phagocyte NADPH ox-
idase (82, 281, 344). Although high levels of these ROS can
cause significant damage, lower levels of ROS could stimulate
myocyte proliferation for repair. H,O,, added to ventricular
myocytes, activated the ERK pathway, leading to myocytes
proliferation (159). Myocardial infarction is associated with
enhanced expression of cyclin E, cyclin A, cyclin B, CDK2, and
CDK1 in the remaining viable ventricular cardiac myocytes
(258). In both acute and end-stage heart failure, the levels of
P21, p27, and p57 reverted to a pattern similar to that ob-
served in human fetal heart; p21 and p27 declined, whereas
P57 expression was significantly increased (42). Although it
appears that some ROS may activate proliferation, nitric oxide
may have a different effect.

Recent evidence showed NO protects the myocardium
from ischemia/reperfusion injury, possibly by scavenging
superoxide (40). NO-induced increase in p21 and inhibition
of cylin A/CDK?2 activity prevented apoptosis in reperfused
cardiomyocytes (181).

This literature supports the hypothesis that the cellu-
lar redox environment could influence VSMCs and cardiac
myocytes proliferation in cardiovascular diseases. Interest-
ingly, one of the recent strategies to improve cardiac func-
tion has been aimed at increasing the number of viable
cardiac myocytes by manipulating cell-cycle-regulatory
protein expression (307). The application of antioxidants
could be a viable redox-based therapy for preserving the
redox control of the cell cycle in VSMCs and cardiomyocytes.
Additionally, some drugs already in use may have previ-
ously unknown redox function. Statins have been used to
lower cholesterol to prevent heart disease by inhibiting 3-
hydroxyl-3-methylglutaryl-CoA reductase and increasing
LDL. Recently they have been shown also to have an anti-
oxidant effect (313). Statins inhibit isoprenylation, resulting
in decreased translocation of Rac-1 to the membrane; Racl is
required for NADPH oxidase activity (180, 342, 343). Statins
also decreased mRNA expression of NADPH oxidase sub-
units (343). In addition to preventing oxidant production,
statins have been shown to increase catalase in liver and
aortic vascular smooth muscle cells (139, 343). These effects
also may serve to reduce the oxidant burden to mitogenic
levels to allow repair in vasculature.
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FIG. 10. Redox control of the cell cycle and cardiovascular diseases. Receptor-mediated ROS signaling can activate
cellular proliferation during atherosclerosis. ROS generated from PDGF-ligand interaction can convert PTEN from the
reduced form (phosphatase active) to the disulfide form (phosphatase inactive). Inactive PTEN can favor AKT phosphory-
lation, which in turn can phosphorylate GSK-3p, thereby stabilizing cyclin D1 and facilitating proliferation. ROS signaling can
also initiate the ERK pathway, activating growth-promoting transcription factors, c-fos and c-myc. c-fos and c-myc can
transcriptionally activate cyclin D1 and cyclin A expression, supporting proliferation. Nitric oxide inhibits proliferation by
suppressing cyclin A expression and increasing p21 protein levels.

F. Diabetes

Diabetes is one of the earliest recorded diseases, found in
the documents of ancient Greek and Hindu cultures (250,
268). Diabetes affects almost 8% of the United States popula-
tion, and it was the seventh leading cause of death in 2006 (54).
Type I, or insulin-dependent, diabetes mellitus, is usually
diagnosed early in life and consists of 5-10% of the general
diabetes diagnoses. Type I diabetes is denoted by a defect in
insulin production and is most successfully treated with
glucose monitoring and insulin administration. Type II, or
non-insulin-dependent diabetes mellitus, is usually diag-
nosed later in life and is associated with obesity. Type II di-
abetes represents 90-95% of all diabetes diagnoses. Type II
diabetes can be controlled with diet, medication, and glucose
monitoring. Some common complications of diabetes are
heart disease, stroke, high blood pressure, blindness, kidney
disease, nervous system disease, delayed wound healing,
amputation, and dental disease (54).

Although the exact cause of diabetes is not completely
understood, one hypothesis is that the cellular redox envi-
ronment and control of the cell cycle could significantly con-
tribute to the development of this disease. A recent study by
Houstis et al. (133), in an experimental model of insulin re-

sistance, suggests that increased ROS activate insulin resis-
tance in TNF-a and glucocorticoid dexamethasone-treated
3T3-L1 adipocytes. This resistance can be suppressed by
prior treatments with small-molecular-weight antioxidants,
N-acetyl cysteine (NAC), and manganese (III) tetrakis (4-
benzoic acid) porphyrin (MnTBAP) (133). The authors
showed that 3T3-L1 adipocytes overexpressing CuZnSOD,
MnSOD, and cytoplasmic and mitochondrial-targeted cata-
lase were able to prevent insulin resistance in this experi-
mental model system of diabetes. Furthermore, results from
gene-expression analysis showed six of the ROS-biology—
related genes (metallothionein, cytochrome P450, xanthine
dehydrogenase, haptoglobin, and ceruloplasmin) increased by
two- to sevenfold. Interestingly, these results also showed ap-
proximately a two- to fivefold decrease in the Gy/G; switch
gene that is believed to regulate quiescent cell transition into
the proliferative cycle (133). Hydrogen peroxide treatment of
muscle cells (L6), human embryonic kidney fibroblasts, and
mouse fibroblasts conferred insulin resistance (24, 122). Results
from several studies showed that the increase in ROS levels
precedes the hyperglycemia and insulin resistance, suggesting
a causal role of ROS in the disease process (24, 122, 133).
Hyperinsulinemia also has been linked to diabetes as a
cause for insulin resistance demonstrated in vivo and in vitro
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(73, 297). Several different types of cells, including adipose,
insulin-sensitive hepatoma, and human skin fibroblasts, have
shown evidence of ROS generation after insulin stimulation
(55, 182). Prolonged insulin treatment of 3T3-L1 adipocytes
inhibited insulin signaling and glucose uptake, while pro-
ducing ROS (106). The reader is referred to two of the recent
reviews discussing a possible link between insulin/IGF-1 and
ROS/RNS signaling pathways (14, 234).

The cellular redox environment also is suggested to have a
role in the late complications of diabetes, such as atheroscle-
rosis, fi-cell dysfunction, and nephropathy. Similarly, evi-
dence of a preceding antioxidant imbalance has been linked to
abnormal glucose levels (25, 275). Perturbation in the cellular
redox environment also is known to alter free fatty acid levels
(FFAs). FFA produced during the process of lipolysis has been
shown to be higher in obese and diabetic individuals (26).
Elevated FFA levels are known to uncouple oxidative phos-
phorylation, generate ROS, and reduce glutathione levels (88).
Glucose autooxidation, NADPH oxidase, NOS, and super-
oxide generated from mitochondrial complexes I, II, and III
are believed to be some of the sources of ROS production that
could contribute to the development of hyperglycemia (13,
170, 216, 330, 365). Intermittent and stable hyperglycemia has
been shown to cause ROS and eventually impaired cellular
functions in pancreatic f§ cells (132, 242).

p-Cell dysfunction in the pancreas is one of the earliest
events in the progression of type II diabetes (330). A majority
of diabetes research focuses on the differentiation, function,
and maintenance of pancreatic -cell mass. In type II diabetes,
the f cells exhibit defective proliferation and growth, whereas
in type I diabetes, f cells are depleted by an autoimmune
reaction (250). A further distinction of f cells is their low levels
of antioxidant enzymes and thus their subsequent sensitivity
to ROS and the eventual damage to cellular macromolecules
(113). p Cells have a short cell-cycle duration compared with
other cells in the body, but not all f cells retain the ability to
reenter the cell cycle (316). The low percentage of proliferating
B cells has been linked to lower CDK1 serine/threonine kinase
and cyclin Bl mRNA levels (185). Some other cell-cycle pro-
teins linked to diabetes are p27, CDK4, cyclin D1, and cyclin
D2 (158). p27-Knockout mice showed increased f-cell prolif-
eration and suppressed hyperglycemia, whereas p27 over-
expression resulted in severe diabetes (329). CDK4-knockout
mice showed poor fi-cell proliferation and insulin-deficient
diabetes (249). INK4a (p16) inhibits CDK4, which is necessary
for f-cell proliferation (327). Transgenic overexpression of p16
exhibits decreased pancreatic islet proliferation (156). Mice
expressing a mutant form of CDK4 that is unable to bind
pl6 develop pancreatic hyperplasia (249). Human and rat
pancreatic f# cells overexpressing CDK4 and cyclin D1 via
adenovirus-mediated gene delivery enhanced Rb phosphor-
ylation and increased proliferation by approximately two- to
10-fold (66). Cyclin D2-knockout mice develop severe dia-
betes by 12 weeks, because of defective f-cell replication, and
these f cells also are unable to increase cyclin D1 or D3 ex-
pression until 2 weeks after birth (107). A cyclin D2-knockout
mouse cross-bred with a heterozygote cyclin D1 mouse ab-
lated f-cell proliferation, suggesting that cyclin D1 could also
contribute to fi-cell proliferation in these mice (158). AKT has
been shown to regulate f-cell proliferation by cyclin D1, cyclin
D2, and p21, through increased CDK4 activity (91). These
results provide compelling evidence in support of the hy-
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pothesis that perturbations in the redox control of cell-cycle
proteins could significantly affect -cell proliferation and the
development of diabetes.

G. Neurodegenerative diseases

Neurodegeneration is a pathologic condition affecting the
nerves of the brain and spinal cord. Neuronal cell death occurs
over the course of many years. In addition, distinct popula-
tions of neurons are targeted in different diseases; in Alzhei-
mer’s disease, 40% of the superior temporal sulcus is lost over
a 10-year period, whereas 45% of the caudal substantia niagra
is lost in Parkinson’s disease within the same period of time
(92,109, 221). Throughout development, neuronal precursors
proliferate to make more neurons than necessary. Apoptosis
removes this excess, and the remaining neurons are termi-
nally differentiated (152).

Alzheimer’s disease is the most common form of dementia
(87). The hallmark histopathology for this disease includes
senile plaques, which are fi-amyloid aggregates, and neurofi-
brillary tangles, which are tau protein aggregates. f-Amyloid,
when bound to copper or iron, has been implicated as a major
source of oxidative stress in Alzheimer’s disease (18, 269, 280).
Nunomura et al. (222) demonstrated that oxidative stress is
highest early in Alzheimer’s disease and lower later in the
disease process. Transgenic mice overexpressing f-amyloid
precursors, presenilinl and amyloid precursor protein, showed
an induction of oxidative stress (192). Presenilin 1 also has been
shown to inhibit phosphorylation of Rb, suggesting a possible
correlation between the cell cycle and oxidative stress in Alz-
heimer’s disease (241). Activated microglia, upregulated in
Alzheimer’s disease, and surrounding tangles and plaques can
be additional sources of NO and O,"~ (53, 119, 193).

Parkinson’s disease is characterized by rigidity, resting
tremors, and bradykinesia (65, 90). This disease is caused by
selective degeneration of neuromelanin-containing neurons,
resulting in a significant decrease in the neurotransmitter
dopamine in the substantia niagra. Affected cells histologi-
cally contain Lewy bodies and cytoplasmic inclusions of
a-synuclein protein.

Amyotrophic lateral sclerosis (ALS) is another progressive
neurodegenerative disease that has a direct link to ROS.
Mutations in CuZnSOD account for ~20% of all familial cases
of ALS (273, 305). More than 100 known mutations are found
in CuZnSOD, all of which are dominant, and most of which
confer a toxic gain of function (244, 305).

Whereas higher levels of ROS (O,"~ and H,0,) could result
in oxidative stress and neuronal cell death, lower levels of
ROS could be mitogenic. Rb hyperphosphorylation, increased
levels of cyclin D, and E2F-1 redistribution to the cytoplasm
have been observed in motor neurons and glia of ALS patients
(251). CDK4 is highly abundant in mice overexpressing
CuZnSOD mutants (215). Neurofibrillary tangles, present in
many neurodegenerative diseases, may be an ideal source for
mitogenic levels of HO,. MAPK p38 expression has been
localized to these tangles, providing a link between oxidative
stress and cell-cycle reentry (7, 152, 362). Consistent with this
hypothesis, cells treated with dopamine, a drug known to
have an oxidative metabolism with the ability to generate
ROS (152), activated a neuronal expression of cyclin Bl and
CDKS5 (303). Treatment of these cells with antioxidants blun-
ted the activation of the cell-cycle protein expression, sug-
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FIG.11. Redox control of the cell cycle and
neurodegenerative diseases. ROS signaling
can activate growth-promoting signaling
pathways facilitating unscheduled entry into
the cell cycle. An aborted cell cycle can lead to
neuronal cell loss, which is a hallmark of
neurodegenerative diseases.

tangles

gesting that the ROS signaling could trigger a mitogenic re-
sponse in neuronal cells.

Many classic markers of proliferating cells, such as cyclin
D1, CDK4, and Ki67, have been detected in degenerating
neurons (197, 211, 212, 247, 309, 361). The presence of cyclin E
and CDK?2 in degenerating neurons suggests that the mito-
genic properties of ROS facilitate neuronal cell progression
from Gy to the G;/S border (212). The identification of cyclin
B1, CDK1, and tau proteins as well as binucleated cells in
neuronal tissues of patients diagnosed with neurodegenera-
tive diseases suggest that terminally differentiated neuronal
cells could be susceptible to unscheduled entry into the pro-
liferative cycle (333, 361, 363). However, the absence of mitotic
structures in these neurons suggests that the ROS levels that
facilitate neuronal cell unscheduled entry into the cell cycle
might not be high enough to stimulate neuronal cell entry into
mitosis (152). This premise is consistent with a previous report
demonstrating a gradual increase in cellular ROS levels as
cells progress through the cell cycle; cells in M phase exhibit
the highest oxidative state (111). The literature discussed ear-
lier supports the hypothesis that the absence of an appropriate
redox control of the neuronal cell cycle after reentry could
activate the cell-death pathways, resulting in neuronal cell
loss and the subsequent pathology of various neurodegener-
ative diseases (Fig. 11).

lll. Summary and Future Directions

Not too long ago, ROS, diverse and abundant in biologic
systems, were thought of as toxic byproducts of living in an
aerobic environment. ROS are known to cause damage to
cellular macromolecules, including both nuclear and mito-
chondrial genomes, proteins, and lipids, resulting in apopto-
sis or necrosis. However, recent evidence suggests ROS could
be beneficial and necessary for many of the cellular processes,
including proliferation and growth arrest. The literature dis-

FIG. 12. Redox control of the cell cycle in
human health and disease. A schematic il-
lustration of cell-cycle regulatory processes
and redox-gradient is presented. A loss in the
redox control of the cell cycle can lead to
aberrant proliferation, which is a hallmark of
various proliferative disorders. It is hypothe-
sized that reestablishing the redox control of
the cell cycle may alleviate many aspects of
proliferative disorders.
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cussed in this review indicates that a periodic oscillation in
metabolic redox reactions represents a fundamental mecha-
nism linking oxidative metabolic processes to the cell-cycle—
regulatory processes. The periodicity in intracellular redox
state can be regulated by a delicate balance between pro-
duction of ROS and subsequent removal by nonenzymatic
and enzymatic antioxidants. It is important to note that spe-
cific species of ROS can be a determining factor that drives
cellular proliferation and ultimately cellular responses in
health and disease. An “ROS switch” exists in which super-
oxide signaling promotes proliferation, and hydrogen per-
oxide signaling supports quiescence (277).

Future studies are necessary to decipher how the same ROS
could regulate necessary biologic processes but also be toxic
to cells. It is possible that this dual function of ROS could
be due to the difference in their concentrations (threshold),
pulse duration (flux), subcellular localization, and cell types.
We believe that advances in the quantitative redox biology
research may resolve many of these intriguing questions in
the very near future.

Another future direction would be to determine whether
the activation of the redox-sensitive signaling pathways is
specific to a particular source of ROS generation. Must all cel-
lular processes be under the control of specific ROS-sensitive
signaling pathways? Can the redox regulation of the cell cycle
be controlled by direct modifications of redox-sensitive motifs
(cysteine residues, metal cofactors) present in cyclins/CDKs,
CKIs, and phosphatases? It has been reported that critical
thiol-disulfide exchange reactions between specific cysteine
residues significantly affect CDC25 phosphatase activity
(279). Our unpublished observations showed that specific
cysteines in cyclin D1 could regulate its protein levels. These
results suggest that many of the redox-sensitive processes
regulating cell-cycle progression could be directly regulated
by thiol-redox reactions in specific cell-cycle-regulatory pro-
teins.
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As demonstrated, ROS appear to play a critical role in
many human diseases, especially in relation to the cell-cycle
control (Fig. 12). However, it is interesting to note that many
clinical trials using antioxidants to treat or prevent cancer
(126, 229), coronary disease (32), and other diseases have been
inconclusive or have yielded negative results. These results
reemphasize the complexity of the redox biology and warrant
that any clinical trials must take into consideration the redox
threshold, flux, subcellular localization, and cell types. For
example, ascorbate was first hypothesized to be an effective
anticancer agent in 1972 by Ewan Cameron and Linus Pauling
(45, 46, 232). However, early clinical trials by Moertel (67, 204)
showed that ascorbate is ineffective in treating advanced
cancers. Although the research community was quick to lose
interest in ascorbate as a cancer-therapy agent, it is important
to note that the oral delivery of ascorbate was insufficient to
achieve a therapeutic dose level in the plasma. Recent evi-
dence suggests that intravascular delivery of ascorbate indeed
showed a much higher plasma concentration of ascorbate that
exhibited a positive correlation with inhibition in tumor
growth in human, rat, and murine tumor xenografts (58).
Additionally, antioxidants are often chosen as therapy agents
based on their availability and ease of delivery (312). Many
studies have used vitamin E, which has both antioxidant and
prooxidant effects (238). This dual effect of certain antioxidants
warrants that extra care must be taken in selecting antioxidants
for therapeutic purposes. It is believed that a more-careful de-
velopment of targeted antioxidant-based therapy could be
more rewarding.

We believe the literature discussed in this review article
will foster an innovative research frontier focusing on redox
control of the cell cycle in health and disease. Newer and
more-effective antioxidants targeted at the redox control of
the cell cycle could provide additional therapy options to treat
proliferative disorders.
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Abbreviations Used

ALS = amyotrophic lateral sclerosis
Ang II = angiotensin II
AP-1 = activator protein 1
ARE = antioxidant response element
CAT = catalase
CDK = cyclin-dependent kinase
CKI = cyclin-dependent kinase inhibitor
COPD = chronic obstructive pulmonary disease
CuZnSOD = copper zinc superoxide dismutase
Cys = cysteine
CySS = cystine
DCFH,-DA = 2/,7'-dichlorodihydrofluorescein diacetate
DHE = dihydroethidine
ECM = Extracellular matrix
EcSOD = extracellular superoxide dismutase
ERK = extracellular signal-regulated kinase
ETC = electron-transport chain
FFA = free fatty acid
FoxO = Forkhead transcription factor
GPx = glutathione peroxidase
Grx = glutaredoxin
GSH = glutathione
GSK = glycogen synthase kinase
GSSG = glutathione disulfide
HIF-1 = hypoxia-inducible factor 1
HSC = hematopoietic stem cell
HSC = hepatic stellate cells
IGF-1 = insulin-like growth factor 1
iNOS = inducible nitric oxide synthase
IPF = idiopathic pulmonary fibrosis
MAPK = mitogen-activated protein kinase
MnSOD = manganese superoxide dismutase
MnTBAP = manganese (III) tetrakis
(4-benzoic acid) porphyrin
NAC = N-acetyl-L-cysteine
NADPH = nicotinamide adenine dinucleotide phosphate
NO = nitric oxide
NOS = nitric oxide synthase
NOX = NADPH oxidase
NRF1 = nuclear respiratory factor 1
PCNA = proliferating cell nuclear antigen
PDGF = platelet-derived growth factor
PIBK = phosphatidylinositol-3-kinase
PIP = phosphatidylinositol phosphate
Prx = peroxiredoxin
PTEN = phosphatase and tensin homologue
Rb = retinoblastoma
Redox = reduction and oxidation
Ref-1 = redox factor 1
RIF = radiation-induced fibrosis
RNS = reactive nitrogen species
ROS = reactive oxygen species
TGF-p = transforming growth factor-beta
VSMC = vascular smooth muscle cell
YMC = yeast metabolic cycle







