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Abstract
Mitochondria are the power engine generating biochemical energy in the cell. Mitochondrial
dysfunction and bioenergy deficiency is closely linked to the pathogenesis of neurodegenerative
disorders. Mitochondria play a variety of roles by integrating extracellular signals and executing
important intracellular events in neuronal survival and death. In this context, the regulation of
mitochondrial function via therapeutic approaches may exert some salutary and neuroprotective
mechanisms. Understanding the relationship of mitochondria-dependent pathogenesis may provide
important pharmacological utility in the treatment of neurodegenerative conditions such as
Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease and Parkinson’s disease.
Indeed, the modulation of mitochondrial pathways is rapidly emerging as a novel therapeutic target.
This review focuses on how mitochondria are involved in neurodegeneration and what therapeutics
are available to target mitochondrial pathways.
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1. Introduction
Mitochondria are the power plants of cells generating biochemical energy in the form of
adenosine triphosphate (ATP) by passing electrons derived from the oxidation of nutrients
down the respiratory chain to react with oxygen, using redox energy to translocate protons
across the mitochondrial inner membrane [1]. The electrochemical potential gradient of protons
is generated across the inner membrane consisting of a membrane potential (negative inside)
and a pH gradient (basic inside) that drives ATP synthesis through F0F1-ATP synthase [2].
Mitochondria are the source of 80% or more of the reactive oxygen species generated in
neurons. Neuronal toxins and stress blocking mitochondrial functions cause excessive neuronal
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damage and cell death by the dysregulation of oxyradicals. Rotenone and the neurotoxin 1-
methyl 4- phenyl 1,2,3,6 tetrahydropyridine (MPTP/MPP+) also induce mitochondrial
dysfunction that is relevant to Parkinson’s disease (PD). Thus, while the role of mitochondrial
dysfunction has been proposed in neurodegenerative diseases, the exact mechanism of
mitochondrial pathogenesis is unclear. Mitochondrial function in terms of energy deficiency
and oxidative stress is important in characterizing the pathogenesis of neurodegenerative
disorders [3-5]. Mitochondrial DNA defects or mutations are also closely linked to neurological
disorders. Excitotoxicity is a well-established mechanism of neuronal cell death in
neurodegenerative disorders. N-Methyl D-Aspartate (NMDA) stimulation can decrease the
mitochondrial membrane potential associated with neuronal excitotoxicity. Mitochondria
therefore play an indirect role as executioner in the excitotoxic pathway. Identification of
specific molecules and signaling cascades, which may ultimately lead to neuronal dysfunction
and/or cell death, may provide important clues in understanding the pathogenesis of
neurological disorders. Recent findings have suggested that mitochondria-dependent cellular
events are emerging as potential therapeutic targets. In this review, we address how
mitochondria dysfuntion contributes to neurodegeneration and discuss which drugs may
improve mitochondria-dependent neuroprotective signaling pathways.

2. Mitochondrial Dysfunction in Neurodegenerative Disorders
2-1. Amyotrophic lateral sclerosis (ALS) and mitochondrial dysfunction

Amyotrophic lateral sclerosis (ALS) is a clinically severe, fatal neurodegenerative disorder
characterized by a loss of upper and lower motor neurons, resulting in progressive muscle
wasting and paralysis [6]. The vast majority of ALS cases occur sporadically, but about 5-10%
of ALS cases are familial. The genetic linkage of several mutations in the gene for Cu/Zn
superoxide dismutase (SOD 1) with some cases of familial ALS provided the first indication
of a potential causal factor in the disease process [7]. The similarity in the course and
pathological features of familial (FALS) and sporadic ALS (SALS) has led a number of
investigators to search for genetic mutations associated with FALS as a strategy for elucidating
disease pathogenesis and defining novel treatments in both sporadic and inherited forms of the
disease. Mitochondria dysfunction and oxidative stress is closely linked to oxidative
phosphorylation dysfunction and is further implicated in the pathogenesis of FALS. Metabolic
processes involving the mitochondrial electron transport chain are known to contribute to the
formation of harmful reactive oxygen species (ROS) (Figure 1). In ALS, motor neurons are
particularly vulnerable to oxidative stress, a phenomena attributed to a low level of antioxidant
enzymes, a high content of easily oxidized substrates (e.g. polyunsaturated membrane lipids),
and an inherently high flux of reactive oxygen species generated during energy metabolism.
Therefore, based on the well characterized and essential function of SOD1 in limiting free
radical accumulation, research has examined the association between SOD1 mutations and the
generation of pathological oxidative damage, which results in subsequent motor neuron
degeneration [7]. Oxidative damage to spinal cord proteins has been shown to occur in both
human SALS and FALS [8]. In addition, previous studies have shown that transgenic mice
expressing mSOD1 develop a progressive accumulation of 8-hydroxy-2-deoxyguanosine, a
marker of oxidative DNA damage, and have elevated levels of mitochondrial oxidative
damage. A proteomics approach has recently showed that SOD1, translationally controlled
tumor protein, ubiquitin carboxyl-terminal hydrolase-L1, and alphaB-crystallin are highly
carbonylated in the spinal cord of G93A ALS mice [9]. Other oxidative modifications, such
as nitrosylation of proteins, could also be important pathogenic mechanisms of ALS. Either
excessive or deficient levels of protein S-nitrosylation may contribute to onset of ALS.
Recently, deficient S-nitrosylation has been found in the mitochondria of cells expressing
SOD1 mutants [10]. In this paradigm, S-nitrosothiol donor compounds rescue cells from
mutant SOD1-induced cell death and suggest that this protective mechanism may provide a
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novel therapeutic strategy in ALS. Recently, it has been shown that mutation of Omi/HtrA2
(MND2), a mitochondrial serine protease, causes motor neuron degeneration [11]. Loss of Omi
protease activity increases the susceptibility of mitochondrial permeability transition pore
(mtPTP), and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell
death. Thus, mitochondria are especially critical to the motor neurons that die in ALS, as these
cells must meet extraordinary demands for cellular energy. A common means to solving many
neurodegenerative problems in ALS may come to light by understanding more about the role
of mitochondria.

2-2. Alzheimer’s disease (AD) and mitochondrial dysfunction
AD is the most common neurodegenerative disease, characterized by neuronal loss and
impairment of cognitive function. Deposits of the protein amyloid beta (Aβ) in the form of
extracellular insoluble structures or senile plaques are the most prevalent morphological
feature. Mitochondrial dysfunction is an early event observed in AD. Recent studies have
provided substantial evidence that mitochondria serve as direct targets for Aβ protein-mediated
neuronal toxicity. Observations that Aβ progressively accumulates in cortical mitochondria
from AD patients and in brains from transgenic AD-type mouse models suggest the role of
mitochondrial Aβ in the pathogenesis or development of the disease.

Yan and colleagues have found that mtPTP may be central in mitochondrial and neuronal
malfunction relevant to AD [12]. Their report provides a plausible mechanism underlying
Aβ-mediated mitochondrial stress through an interaction with cyclophilin D (CypD): a protein
with prolyl isomerase activity which is linked to synaptic plasticity and learning/memory
(Figure 1). CypD is located within the mitochondrial matrix and is an integral part in the
formation of the mtPTP leading to cell death. The role of CypD in AD had not been known
until Yan and colleagues demonstrated that CypD interacts with Aβ peptide within the
mitochondria of AD patients and a transgenic mouse model of AD. Their findings suggest how
this mitochondrial process is linked to synaptic failure in AD. Moreover, these findings may
help explain the mechanism of action of a medication already in use in clinical trials. The study
also provides new insights into the mechanism underlying mitochondrial Aβ-mediated and
synaptic stress that links to the mtPTP, an opening that leads to cell death for those with AD.
mtPTP causes mitochondrial swelling, outer membrane rupture and release of cell death
mediators and enhances production of reactive oxygen species (ROS). The cortical
mitochondria isolated from AD mice lacking CypD are resistant to Aβ- and Ca2+-induced
mitochondrial swelling; they are also resistant to mitochondrial permeability transition, show
increased calcium buffering capacity, and attenuate the generation of mitochondrial ROS.
Furthermore, CypD-deficient neurons protect against Aβ- and oxidative stress-induced cell
death. Importantly, deficiency of CypD greatly improved the learning, memory, and synaptic
function of an AD mouse model and alleviated Aβ-mediated reduction of long term potentiation
(LTP). Thus, the CypD/Aβ-mediated mtPTP directly links to the cellular and synaptic
perturbation relevant to the pathogenesis of AD.

Aβ also binds to heme to form a peroxidase which catalyzes the oxidation of serotonin and
3,4-dihydroxyphenylalanine by H2O2 (Figure 1) [13]. The binding of Aβ to heme supports a
unifying mechanism by which excessive Aβ causes oxidative damage to macromolecules and
leads to mitochondrial dysfunction and neurotoxicity and other cytopathologies of AD. Recent
studies show that Omi/HtrA2 interacts preferentially with the most toxic oligomeric form of
Aβ [14,15]. Omi/HtrA2 inhibits the secretion of Aβ from neurons that decreases the level of
toxic Aβ and might reduce Aβ stress in the brain (Figure 1). Thus, Omi/HtrA2-mediated Aβ -
detoxification pathway is a promising therapeutic target for AD including other
neurodegenerative diseases.
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2-3. Huntington’s disease (HD) and mitochondrial dysfunction
Huntington’s disease (HD) is an autosomal dominantly inherited, neurodegenerative disorder
caused by a CAG repeat expansion in the gene encoding huntingtin that manifests as a
progressive and characteristic increase in chorea and dementia [16]. Although autopsy
specimens of HD brains show a generalized cell loss, the earliest and most extensive atrophy
is seen in two specific areas: the caudate and putamen [17]. There is evidence to suggest that
the cellular degeneration seen in these two areas is responsible for perturbations in the level of
neurotransmitters such as glutamate, which in turn cause the involuntary movements [18,19].
Importantly, a local hypometabolism appears prior to the bulk of tissue loss in these specific
areas. This finding raises the possibility that impaired glucose utilization and decreased aerobic
energy metabolism are the causes of the cellular atrophy in the caudate and putamen. Consistent
with this finding, mitochondrial electron transport enzymes are altered in HD. Mitochondria
in HD lymphoblasts and fibroblasts show an increased susceptibility to depolarization which
directly correlates with CAG repeat length [20]. The maximal rate of mitochondrial ATP
generation in muscle is significantly reduced in both symptomatic HD patients and in
presymptomatic HD gene carriers. There has been some debate regarding the vulnerability of
transgenic HD mice to neurotoxins. The mitochondrial toxins malonate and 3-nitropropionic
acid produce striatal lesions that mimic HD and are mediated by excitotoxic mechanisms
(Figure 1). It has been reported that both R6/1 and R6/2 mice are resistant to excitotoxic lesions
[21,22]. In contrast, the other study has shown that R6/2 mice are more susceptible to the
mitochondrial toxin, 3-nitropropionic acid [23]. As such, the discrepancy in the findings may
be methodological with regards to periodicity and dosage of injections. It is of interest,
however, that YAC mice containing full-length huntingtin are more susceptible to
excitotoxicity [24]. In addition, the fact that NMDA antagonists prolong survival in R6/2 mice
clearly implicates excitotoxicity [25]. Interestingly, Omi/HtrA2 dysfunction is linked to the
degeneration of striatal neurons in mutant Omi/HtrA2 (MND2) mice [11]. Indeed, Omi/HtrA2
was decreased under the expression of mutant huntingtin (htt) in striatal neurons but not in
cortical or cerebellar neurons [26]. These data suggest that the homeostatic function of Omi/
HtrA2 is linked to selective vulnerability of striatal neurons in HD pathology (Figure 1).

2-4. Parkinson’s disease (PD) and mitochondrial dysfunction
PD is the second most common neurodegenerative disease, affecting ~1.8% of people over 65
years old [27]. PD is characterized by a progressive loss of dopaminergic neurons and dopamine
in the substantia nigra and striatum. Oxidative stress and free radicals from both mitochondrial
impairment and dopamine metabolism are considered to play critical roles in the etiology of
PD. A mitochondrial defect in PD was first identified in 1989 in substantia nigra from patients
with PD [28,29]. This study has been expanded over the years and the results to date show that
there is approximately a 35% deficiency in complex I in PD nigra [30] Additionally,
neurodegeneration occurs in PD, at least in part, through the activation of the mitochondria-
dependent apoptotic molecular pathway [31]. Inhibition of mitochondria fueling pumps has
been implicated in the MPTP chemical model of PD and provides insight into the aetiology
and pathogenesis of idiopathic PD. (Figure 1). In addition, there has been an identification of
specific gene mutations in mitochondrial proteins that serve to cause PD. Thus, mitochondrial
dysfunction has been brought to attention in PD pathogenesis. Interestingly, mutations in the
Omi/HtrA2 gene have been identified in PD patients [32]. The G399S mutation results in
parkinsonian phenotype that includes rigidity [33].

3. Therapeutic Targeting of Mitochondria
3-1. Mitochondria as a therapeutic target

Mitochondria are thread shape organelles consisting of several compartments each with
different compositions and functions [34]. Therefore, mitochondria have been considered as
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intracellular targets for small compounds [35]. The porous mitochondrial outer membrane is
permeable to molecules which are smaller than ~5kDa. The mitochondrial intermembrane
space contains many specific proteins, but is continuous with the cytoplasm for small
molecules. The mitochondrial inner membrane - a convoluted and invaginated structure -
contains oxidative phosphorylation enzymes and a series of metabolic pathways.
Mitochondrial membrane damage contributes to the pathogenesis of many neurodegenerative
diseases. Neuronal cell fate is dependent on mitochondria that play key roles in apoptotic and
necrotic cell death. Necrotic neuronal cell death occurs in response to acute damage and results
in rapid, uncontrolled death with subsequent cell lysis and an inflammatory response. Necrotic
cell death follows ATP depletion and cellular calcium overloading, with extensive
mitochondrial damage leading to necrotic cell death [36]. Otherwise, apoptotic neuronal cell
death accompanies the activation of a cell death program that leads to the ordered self-
destruction of the cell, ending with phagocytosis without leakage of damaging contents and
thus no inflammatory response. The difference between apoptotic and necrotic neuronal death
is rather arbitrary as completion of the apoptotic program requires ATP, and if ATP levels drop
lower than a critical threshold after initiation of apoptosis, apoptosis is aborted and neurons
die by necrosis [37]. The mtPTP and mitochondrial membrane potential (ΔΨm) play an
important role in both necrotic and apoptotic neuronal death. Activation of the mtPTP increases
the mitochondrial membrane permeability to molecules with a mass of up to 1.5 kDa [38]. It
is activated by increases in calcium and free radicals. Cyclosporine A is a well known
compound to inhibit the activation of mitochondrial membrane permeability and prevent
neuronal damage provoked by neuronal stresses (Figure 2) [39]. For last decade, many
compounds have been tested for their effects on mtPTP, ΔΨm, and mitochondria-dependent
neuronal survival pathways as shown in the Table 1.

3-2. Therapeutics for mitochondria in neurodegenerative conditions
Coenzyme Q—Coenzyme Q10 (CoQ10), a strong antioxidant ubiquinone, is a lipid-soluble
benzoquinone that harbors antioxidant properties when reduced to ubiquinol, or through a
CoQ10-induced increase in alpha-tocopherol [40]. It is imposed in the inner mitochondrial
membrane and is essential for Complex I and II electron transfer activities during oxidative
phosphorylation [41], playing a vital role in ATP production. CoQ10 administration has been
demonstrated to significantly increase brain mitochondrial CoQ10 concentrations [42]. CoQ10
possesses neuroprotective effects in AD and PD by attenuating mitochondrial dysfunction and
nullifying oxidative damage [43]. The safety and tolerability of high doses of coenzyme Q10
(CoQ10) has been assessed in ALS. CoQ10 is safe and well tolerated in ALS patients with
high doses. CoQ10 may improve the mitochondrial dysfunction in ALS [44]. CoQ10 provides
significant neuroprotection in a dose-dependent manner in a striatal lesion model of HD [45].
CoQ10 treatment significantly delays the typical decline in weight loss and motor performance
as assessed on the rotarod and extends survival of R6/2 HD mice [46].

Creatine—The guanidine compound creatine is endogenously produced in neurons but can
also be obtained from the diet. It provides an antioxidant capacity and buffers intracellular
energy reserves, stabilizes intracellular calcium, and inhibits activation of the mitochondrial
pore transition [47]. In neurons, creatine can exist either as a free substrate, or phosphocreatine
(PCr). According to the PCr shuttle hypothesis, sites of energy production are connected with
sites of energy consumption when a phosphoryl group from PCr is transferred to ADP creating
ATP, in a reaction mediated by creatine kinase [48]. Treatment of mutant SOD1 (G93A) ALS
transgenic mice with creatine improves motor performance, delays loss of anterior horn motor
neurons, and extends survival [49]. In HD, there is a significant shift in the ratio of PCr to
phosphate [50]. Therefore, creatine is highly applicable to the restoration of normal metabolic
activity in HD. Indeed, several pre-clinical studies have shown the neuroprotective effect of
creatine in chemical and animal models of HD [51,52].
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Melatonin—Melatonin mediates a neuroprotective role in AD by scavenging oxygen and
nitrogen-based reactants generated in mitochondria. One of the mechanisms underlying the
neuroprotective effects of melatonin is a counter-action against mitochondrial cell death
pathways. For example, melatonin activates the survival signal Bcl-2 dependent-pathway,
which stabilizes mitochondrial function. Interestingly, Bcl-2 expression is enhanced by
melatonin concomitant with inhibition of Aβ-induced cell death [53]. Chronic high-dose
administration of melatonin has been shown to cause a reduction of oxidative damage in
patients with sporadic ALS [54]. In addition, melatonin delays the disease progression and
extends the survival of mutant SOD1(G93A) ALS transgenic mice. Moreover, melatonin
attenuates superoxide-induced cell death and modulates glutamate toxicity in cultured NSC-34
motor neuronal cells [54]. Administration of melatonin significantly delays the development
of the signs of AD and prevents cognitive and behavioral deterioration in a human monozygotic
twin study [55]; in addition, melatonin improves learning and memory deficits in an APP695
transgenic mouse model of AD [56]. Melatonin inhibits the dissipation of ΔΨm in mutant-htt
ST14A striatal cells, a cellular model of HD [57]. Melatonin prevents oxidative stress-induced
mitochondrial calcium overload, ΔΨm depolarization, opening of mtPTP, ROS formation, and
cytochrome c release in rat astrocytes in a chemical model of PD [58]. Taken together, the
large body of evidence suggests that melatonin provides a neuroprotective effective for ALS,
AD, HD and PD through its mitochondria-dependent anti-apoptotic activities.

3-3. Antioxidants, specific estrogen receptor modulators (SERMs) and other
compounds targeting mitochondria—Antioxidants and small compounds such as lipoic
acid, cystamine, vitamin E, and carnitine have shown neuroprotective effects in
neurodegenerative conditions (Figure 2) [59-69]. Deferoxamine (DFO), an antioxidant and
iron chelator known to inhibit oxidative stress-induced cell death, activates mitochondrial
protein kinase A (PKA) and increased mitochondrial CREB phosphorylation (Ser 133) [70].
The catalytic subunit of PKA is found in the mitochondrial matrix to phosphorylate
mitochondrial CREB in neurons [70]. The therapeutic approaches of increasing mitochondrial
PKA and mitochondrial CREB activity may provide a novel direction in both preclinical and
human trials. In this context, DFO increases CREB binding to CRE in the mitochondrial D-
loop DNA and D-loop CRE-driven luciferase activity. In contrast, KT5720, a specific inhibitor
of PKA, reduces DFO-mediated neuronal survival against oxidative stress induced by
glutathione depletion. Neuronal survival by DFO may be, in part, mediated by the
mitochondrial PKA-dependent pathway (Figure 2). These results suggest that the regulation
of mitochondrial function via the mitochondrial PKA and CREB pathways may underlie some
of the salutary effects of DFO in neurons. Taken together, the idea of targeting biologically
active molecules to the mitochondria is to modulate selective mitochondrial functions in a
specific manner. Therapeutic strategies will allow mitochondria to better cope with oxidative
stress, mitochondrial damage by excitotoxicity, and maintain efficient oxidative
phosphorylation and respiratory function. This study provides a novel mechanism for
preventing mitochondrial transcriptional dysfunction in neurodegenerative conditions and in
the design of applicable therapeutic treatments to modulate mitochondrial hormone receptors
and transcription factors.

Estrogen attenuates NMDA receptor-mediated excitotoxic neuronal death and oxidative
neuronal death [71-76]. Estrogen has a number of neurotrophic effects mediated via different
signaling pathways, including activation of PKA, ERK and phosphatidyl inositol 3-kinase
(PI3K) cascades and inactivation of glycogen synthase kinase 3beta (GSK3 beta) [77,78]. The
important structural motif that elicits estrogenic effects is a phenol ring that is relatively
unhindered and attached to a bulky hydrophobic structure [79]. The phenolic A ring is related
to its neuroprotective function [80]. Steroids with a hydroxyl group in the C3 position of the
A ring provides an antioxidant property. 17 beta-estradiol (E2) can suppress intracellular ROS
and prevent neurons from oxidative stress-induced cell death. However, the antioxidant
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property requires a higher concentration of E2 (10-100 microM). Furthermore, anti-apoptotic
neuroprotection may be blocked by ICI 182,720, which has a hydroxyl group at C3 [81,82].
Therefore, it is unlikely that the anti-cell death effect is solely due to the antioxidant property
of E2. As neuroprotective molecules, SERMs may act through mitochondria-dependent and
—independent signaling pathways (Figure 2). First, they may activate the transcription of
mitochondrial genes directly through binding to mitochondrial estrogen receptors (ERs) and
subsequently to the estrogen response element (ERE) in mitochondrial genome, which is the
mitochondrial transcription-dependent pathway [83]. This classical mode of estrogen action
works through the activation of estrogen receptors that target estrogen receptor-responsive
areas in the promoter regions of mitochondrial genomes. Therefore, mitochondrial estrogen
receptors that are activated by estrogen directly act as mitochondrial transcription factors
[84-86]. Second, SERMs directly regulate gene expression through ERs and ERE, as well as
indirectly activating gene transcription by performing a crosstalk with various intracellular
signaling pathways [87]. In this case, it is predicted that estrogenic compounds bind to estrogen
receptors that do not directly bind to the mitochondrial ERE, but rather interact with other
signaling cascades in the mitochondrial matrix. Such signaling partners of interaction may
include the mitochondrial PKA and the CREB-signaling processes. Third, SERMs may directly
affect mitochondrial membranes by modulating Ca2+ fluxes and protect neurons through their
antioxidant effects, which promote the transcription-independent pathway (Figure 2) [88].

FK 506, a calcineurin inhibitor, and Dimebon, an antihistamine drug, influence mitochondrial
membrane function, inhibit cytochrome c release, and mitochondrial permeability transition
pore (mtPTP)-induced cytotoxicity (Table 1 and Figure 2) [62,65,68,69,89-91,103-105].
Dimebon has been demonstrated to show efficacy in AD and HD clinical trials [1-3].
Minocycline, a tetracycline antibiotic, inhibits caspase-independent and -dependent
mitochondrial cell death pathways in models of HD [109]. Nicotinamide, resveratrol, and
Sirtuins modulate tricarboxylic acid (TCA) cycle in mitochondria and provide neuroprotective
effects in neurodegenerative conditions [110-118]. Rosiglitazone, as known as a PPAR-gamma
agonist and an anti-diabetic drug in the thiazolidinedione class of drugs, shows beneficial
effects on neuroprotection to a subset of patients with AD [119-123]. Interestingly,
mitochondria-targeted aromatic-cationic peptides (Szeto-Schiller peptides) are
neuroprotective in animal models of ALS and PD [124-127]. Avicins are pro-apoptotic and
anti-inflammatory triterpene electrophiles that modulate the activity of Nrf2, a redox-regulated
transcription factor that controls the expression of a battery of detoxification and antioxidant
proteins. Avicins directly target the outer membrane of mitochondria but its neuroprotective
effect remains to be determined [128,129]. Recently, two mitochondrial antioxidants have been
developed by conjugating alpha-tocopherol and the ubiquinol moiety of coenzyme Q to the
lipophilic triphenylphosphonium cation (TPP+), named MitoE and MitoQ, respectively
[130]. Both MitoE and MitoQ treatments result in an increased Ca2+ concentration in the
mitochondrial matrix by inhibiting Ca2+ efflux from the organelle; an effect dependent on the
TPP+ moiety of these compounds. It will be very interesting to study the effect of MitoE and
MitoQ on neurodegenerative conditions.

4. Conclusions
The extraordinary dependence of neurons on the energy provided by mitochondrial oxidative
metabolism is directly linked to neurodegenerative conditions. The central role of mitochondria
in neurodegeneration has become apparent over the last decade as the molecular mechanisms
leading to neuronal cell death have been underscored. Previous findings on the mitochondrial
localization and function of nuclear receptors and transcription factors have unraveled
interesting mechanisms in the mitochondria. The effectiveness of drug treatments may depend
upon targeting bioactive molecules to the appropriate organ, cell type, and subcellular
organelle. Therefore, future studies using small compounds to target the mitochondria directly
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or to modulate nuclear receptors and transcription factors that subsequently convey the signal
to the mitochondria, may contribute to improved mitochondrial function in a specific manner.
Taken together, small compounds are able to boost the health of mitochondria or tune up the
mitochondrial power engine to compensate the damaged or interrupted neuronal power failure
in response to neuronal stresses. We expect that novel therapeutic strategies will enable
mitochondria to better cope with oxidative stress, excitotoxicity, and other neuronal stresses,
as well as maintain efficient respiratory function in neurons.
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Figure 1. Mitochondria-dependent mechanisms of neurodegeneration and potential therapeutic
targets
A growing body of evidence from in vitro and in vivo studies has implicated Aβ, mutant SOD1
(mSOD1), mutant huntingtin (mHTT), mutant a-synuclein and their ability to induce
mitochondrial dysfunction as being toxic to neurons. Aβ-mediated mitochondrial stress
through an interaction with cyclophilin D (CypD). The binding of excessive Aβ to heme causes
oxidative damage to macromolecules and leads to mitochondrial dysfunction and
neurotoxicity. Mitochondria dysfunction and oxidative stress is closely linked to mutation of
SOD1. The dysfunction of mitochondrial oxidative phosphorylation is implicated in the
pathogenesis of ALS. The neurotoxins 3-NP and MPTP disrupt mitochondrial function and
result in idiopathic HD and PD. The neurodegenerative and multiple pathogenic molecules
interact with mitochondrial molecules and lead to mitochondrial dysfunction, oxidative stress,
and apoptosis of neurons. In this paradigm, the relative pathogenicity of Aβ, mSOD1, mHTT,
and mutant α-synuclein is dependent on their mitochondrial interacting molecules and
pathways. Omi/HtrA2 has emerged to play a role in protein quality control in AD, HD and PD
and its mutation is linked to motor neuronal degeneration in ALS.
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Figure 2. Therapeutic targeting of mitochondria-dependent neuropathogenic mechanisms
Nicotinamide, carnitine, resveratrol, and Sirtuins modulate tricarboxylic acid (TCA) cycle in
mitochondria. Desferoxamine may trigger mitochondrial protein kinase A (PKA) activity and
mitochondrial CREB-mediated transcription. The antioxidant and bioenergetic compounds
creatine, β-hydroxybutyrate, and coenzyme Q10 can improve mitochondrial function by
preventing 3-nitropropionic acid (3-NP)-induced cytotoxicity, while cyclosporine A, FK 506,
melatonine, and Dimebon influence mitochondrial membrane function and inhibit cytochrome
c release and mitochondrial permeability transition pore (mtPTP)-induced cytotoxicity.
Rosiglitazone promotes maintenance of mitochondrial Ca2+ activity. Specific estrogen
receptor modulators (SERMs) also affect the mitochondrial activity by modulating calcium
fluxes and may activate transcription of mitochondrial genes by interacting with mitochondrial
ERs. Cloquinol regulates the mitochondrial oxidative phosphorylation pathway via
demethoxyubiquinone hydroxylase (CLK-1 gene product) that catalyzes the production of
coenzyme Q. The reversible inhibitor of caspase activity reduces pro-apoptotic signaling in
the mitochondria. In addition, compounds exhibiting a robust antioxidant effect lead to the
improvement of mitochondrial oxidative metabolism, bioenergy production, and neuronal
survival.
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Table 1

Therapeutic Treatments for Targeting Neuronal Mitochondria

Compound Mitochondria Targeting Applicable Disease Reference

Direct Indirect

Calcineurin inhibitor
(FK 506,
Cyclosporin A)

Inhibition of mtPTP AD, PD, HD, ALS [12,89-91]

Carnitine TCA cycle, Inhibition of
mtPTP

antioxidant PD, HD, ALS [62,65,68,69]

Clioquinol Inhibition of mitochondrial
enzyme
CLK-1 (CoQ7)

AD, PD, HD [92]

Coenzyme Q10 antioxidant antioxidant [42,61,93,94]
Mito Q10 antioxidant [95,96]
Creatine ATP/ADP regulation AD, PD, HD, ALS [47-52,97-100]
Cystamine Inhibition of mitochondrial

depolarization
HD [63,66]

Deferoxamine Mitochondrial gene
regulation

Metal chelator [70,101,102]

Dimebon Inhibition of mtPTP AD, PD [103-105]
β-Hydroxybutyrate mitochondrial respiration

and ATP production
PD [106,107]

Lipoic acid antioxidant AD, PD, HD [59,60,64]
Melatonin antioxidant Inhibition of Cytochrome c

release from purified
mitochondria

[53-58,108]

Minocycline Inhibition of caspase and
cytochrome c release

PD, HD [109,110]

Resveratrol,
Sirtuins,
nicotinamide

Mitochondrial biogenesis,
TCA cycle

Anti-apoptotic, anti-
inflammatory,anti-stress
responses

AD, PD, HD, ALS [111-118]

Rosiglitazone
(PPAR-γ agonist)

Mitochondrial calcium &
membrane potential

Anti-apoptotic, Bcl-2
upregulation

AD, PD, HD, ALS [119-123]

Szeto-Schiller
peptide

antioxidant PD, ALS [124-127]

Triterpenoids
(avicins)

Antioxidant, anti-
inflammatory gene
regulation

PD, HD [128,12]

Vitamin E antioxidant PD, HD [61,67]
Mito-E Antioxidant [130]
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