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Summary

The differential diagnosis of clear cell, papillary and chromophobe renal cell carcinoma is clinically
important, because these tumor subtypes are associated with different pathobiology and clinical
behavior. For cases in which histopathology is equivocal, immunohistochemistry and quantitative
RT-PCR can assist in the differential diagnosis by measuring expression of subtype-specific
biomarkers. Several renal tumor biomarkers have been discovered in expression microarray studies.
However, due to heterogeneity of gene and protein expression, additional biomarkers are needed for
reliable diagnostic classification. We developed novel bioinformatics systems to identify candidate
renal tumor biomarkers from the microarray profiles of 45 clear cell, 16 papillary and 10
chromophobe renal cell carcinoma; the microarray data was derived from two independent published
studies. The ArrayWiki biocomputing system merged the microarray datasets into a single file, so
gene expression could be analyzed from a larger number of tumors. The caCORRECT system
removed non-random sources of error from the microarray data, and the omniBioMarker system
analyzed data with several gene-ranking algorithms, in order to identify algorithms effective at
recognizing previously described renal tumor biomarkers. We predicted these algorithms would also
be effective at identifying unknown biomarkers that could be verified by independent methods. We
selected six novel candidate biomakers from the omniBioMarker analysis, and verified their
differential expression in formalin-fixed paraffin-embedded tissues by quantitative RT-PCR and
immunohistochemistry. The candidate biomarkers were carbonic anhydrase X, ceruloplasmin,
schwannomin-interacting protein 1, E74-like factor 3, cytochrome c oxidase subunit 5a and acetyl-
CoA acetyltransferase 1. Quantitative RT-PCR was performed on 17 clear cell, 13 papillary and 7
chromophobe renal cell carcinoma. Carbonic anhydrase 1X and ceruloplasmin were overexpressed
in clear cell renal cell carcinoma; schwannomin-interacting protein 1 and E74-like factor 3 were
overexpressed in papillary renal cell carcinoma; and cytochrome c oxidase subunit 5a and acetyl-
CoA acetyltransferase 1 were overexpressed in chromophobe renal cell carcinoma.
Immunohistochemistry was performed on tissue microarrays containing 66 clear cell, 16 papillary
and 12 chromophobe renal cell carcinoma. Cytoplasmic carbonic anhydrase X staining was

Address Correspondence To: Andrew N Young MD PhD, Laboratory Director, Grady Health System, Emory University Department of
Pathology & Laboratory Medicine, Grady Memorial Hospital D-119, 80 Jesse Hill Jr Dr SE, Atlanta GA 30303, Tel: 404-616-4800, Fax:
404-616-9913, andrew.n.young@emory.edu; ANYOUNG@gmbh.edu.

Disclosure/Conflict of Interest: The authors declare no conflicts of interest related to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Osunkoya et al. Page 2

significantly associated with clear cell renal cell carcinoma. Strong cytoplasmic schwannomin-
interacting protein 1 and cytochrome c¢ oxidase subunit 5a staining were significantly more frequent
in papillary and chromophobe renal cell carcinoma, respectively. In summary, we developed a novel
process for identifying candidate renal tumor biomarkers from microarray data, and verifying
differential expression in independent assays. The tumor biomarkers have potential utility as a
multiplex expression panel for classifying renal cell carcinoma with equivocal histology. Biomarker
expression assays are increasingly important for renal cell carcinoma diagnosis, as needle core
biopsies become more common and different therapies for tumor subtypes continue to be developed.
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1. Introduction

Renal cell carcinoma (RCC) is the major adult malignancy of the kidney; it is subclassified
into several subtypes including clear cell, papillary and chromophobe RCC. Renal oncocytoma
is a relatively common benign tumor that may be related to chromophobe RCC [1]. Accurate
classification is clinically important, because tumor subtypes are associated with different
malignant potential, prognoses and optimal therapies [2]. In recent years, we and other groups
have used cDNA and oligonucleotide microarrays to characterize gene expression profiles in
renal tumor subtypes [3-6]. Based on unique expression patterns, several novel
immunohistochemical markers have been identified for each RCC subtype. When used in
conjunction with histopathology, these immunohistochemical markers are clinically useful for
renal tumor diagnosis [7-10]. However, due to the heterogeneity of gene and protein expression
in RCC, additional biomarkers are needed to develop clinically reliable immunohistochemical
panels, with adequate diagnostic sensitivity and specificity for each RCC subtype. In this report,
we describe the use of novel bioinformatics systems to identify candidate RCC biomarkers
from previous microarray data [11]. The bioinformatics systems are designed to combine
disparate datasets from independent microarray studies, remove non-random sources of error
from the expression data, and analyze expression patterns in the context of pre-existing
biological knowledge, in order to identify valid biomarkers more efficiently. Following
identification of candidate biomarkers, we describe the verification of selected markers in
formalin-fixed paraffin-embedded renal tumor tissues by quantitative RT-PCR and
immunohistochemistry.

2. Materials and Methods

Acquisition of microarray data

Microarray datasets were obtained from previously published reports [3,12]. Schuetz et al
utilized Affymetrix HG Focus microarrays with over 8700 probe sets, in a study that included
13 clear cell, 5 papillary and 4 chromophobe RCC. The chromophobe carcinomas were
combined with 3 additional renal oncocytomas to form a single class for biomarker discovery
(n=7). Jones et al. utilized Affymetrix HG-U133A microarrays with over 22000 probe sets,
in a study that included 32 clear cell, 11 papillary, 6 chromophobe RCC and 12 oncocytomas.
The HG-U133A microarray data were reduced to include only those probe sets shared with
HG Focus data. The ArrayWiki biocomputing system [13] combined the microarray datasets
into a single data file, in order to increase total sample size, while updating probe annotation
with a knowledge management interface based on Wikipedia standards. The URL
http://arraywiki.bme.gatech.edu/index.php/Andrew_Young contains visual representations of
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experiments described in this report. General information on ArrayWiki is available at the URL
http://www.bio-miblab.org/arraywiki.

Quality assurance of microarray data

The RCC microarray datasets were analyzed with caCORRECT (chip artifact CORRECTion;
http://www.bio-miblab.org), a web-based bioinformatics system that detected and removed
localized array, or “chip”, artifacts [14]. For this purpose, artifacts were defined as spatially
prominent data variances caused by chip manufacturing or lab processing errors For detection
of artifacts, quantile normalization was used to align signal distributions from each microarray
and remove global array biases within the set of experiments [15]. After quantile normalization,
variance scores were calculated for each probe on each microarray chip, using a modified t-
statistic calculated from other chips in a leave-one-out fashion. A sliding window image-
processing algorithm was then run to identify high-variance probes that were geographically
clustered on the array platform; regions of clustered high-variance probes represented potential
artifacts, while geographically isolated high-variance probes were left alone. After this first
round was complete, four additional rounds of artifact-omitting quantile normalization, and
artifact-weighted artifact detection, were performed in order to identify subtle artifacts that
may have been overshadowed in earlier rounds by larger defects. At this point, quality metrics
were calculated to describe the artifact coverage and noise content of each chip and of the
experiment as a whole. Probe data that were identified as artifacts were then replaced with the
probe-specific median intensity of all other chips in the dataset. Completion of the
caCORRECT process resulted in the following files: (i) heatmap images of probe variance
score for all chips, with and without logical artifact masks; (ii) new versions of “clean” probe
expression files with appropriate replacements; and (iii) gene expression value tables,
calculated by R implementation of the Robust Microarray Averaging (RMA) algorithm [16]
from data before and after caCORRECT.

Identification of candidate biomarkers

The omniBioMarker bioinformatics resource [17] was used to identify genes expressed
differentially in RCC subtypes, using microarray data processed with cACORRECT. Processed
gene expression value tables were combined into a master gene expression data file, which
was assessed by hierarchical clustering [18] to ensure that combined data continued to classify
RCC subtypes as in the original reports [3,12]. omniBioMarker then analyzed the combined
RCC data in an iterative fashion using support vector machine classifiers (SVM) to rank the
genes individually by classification ability, as determined by bootstrapping [19]. In order to
identify the optimal algorithm for subtype classification, omniBioMarker varied the SVMs by
adjusting two parameters that control classifier complexity and generalization ability. The
algorithm searched for the best set of parameters over a predefined parameter space. In the first
iteration, omniBioMarker ranked the performance of each SVM classifier using control
biomarkers, which were defined as biomarkers that had been verified in previous studies by
RT-PCR or IHC [3,20]. The optimal classifier generally ranked control biomarkers before non-
control biomarkers. After identifying the optimal gene-ranking classifier for the combined
RCC microarray data, the corresponding ranking results were used to identify additional
candidate biomarkers with consistent differential expression in clear cell, papillary and
chromophobe RCC. Candidates were interpreted with Gene Ontology analysis tools including
GO-Miner [21], and selected for subsequent verification by quantitative RT-PCR and IHC.

Quantitative RT-PCR

Gene expression was assessed by quantitative RT-PCR, using total RNA from fixed tissues of
17 clear cell, 13 papillary and 7 chromophobe RCC. Duplicate experiments were performed
according to published protocols with minor modifications [22]: Histological sections were

Hum Pathol. Author manuscript; available in PMC 2010 December 1.


http://www.bio-miblab.org/arraywiki
http://www.bio-miblab.org

1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Osunkoya et al.

Page 4

deparaffinized with ethanol and xylene, and cells of interest were microdissected with a sterile
scalpel. Tissues were digested in buffer containing proteinase K at 60°C overnight. RNA was
extracted with phenol/chloroform, and genomic DNA was removed with DNase. RNA quality
and quantity were assessed with a Bioanalyzer (Agilent Technologies). Up to 3 ug of RNA
was used for first strand cDNA synthesis with Superscript Il (Invitrogen). PCR was performed
with a custom-designed Tagman Low Density Array (LDA, Applied Biosystems) in a 96-well
microfluidic card format, using the ABI PRISM 7900HT Sequence Detection System (high-
throughput real-time PCR system). Gene expression data were normalized relative to the
geometric mean of two housekeeping genes (18S, ACTB). LDA runs were analyzed by using
Relative Quantification (RQ) Manager (Applied Biosystems) software. The following test
genes were analyzed: carbonic anhydrase IX (CA9, Assay ID: Hs00154208_m1, Applied
Biosystems); ceruloplasmin (CP, Assay ID: Hs00236810_m1, Applied Biosystems);
schwannomin-interacting protein 1 (SCHIP1, Assay ID: Hs00205829_m1, Applied
Biosystems); E74-like factor 3 (ELF3, Assay ID: Hs00231786_m1, Applied Biosystems);
cytochrome ¢ oxidase subunit 5a (COX5A, Assay ID: Hs00362067_m1, Applied Biosystems);
and acetyl-CoA acetyltransferase 1 (ACAT1, Assay ID: Hs00608002_m1, Applied
Biosystems). Test gene expression was normalized to 18S ribosomal RNA and referenced to
anormal kidney reference RNA specimen. Relative normalized gene expression was compared
in renal tumor subtypes, with statistical significance assessed by two-tailed T-test.

Immunohistochemistry

3. Results

Selected biomarkers were further verified by immunohistochemistry, performed on the
KIC1501 tissue microarray (Clonagen), which included 66 clear cell, 16 papillary and 12
chromophobe RCC. Tissue sections were incubated with the following primary antibodies:
anti-CA9 (rabbit polyclonal serum, Novus Biological), anti-SCHIP1 (rabbit polyclonal 1gG,
Sigma), and anti-COX5A (rabbit polyclonal 1gG, Protein Tech Group). After washing unbound
primary antibody, sections were treated with goat anti-rabbit immunoglobulin conjugated to a
peroxidase-labeled polymer, according to the manufacturer's instructions (Envision kit; DAKO
Corp., Carpinteria, CA). Immunohistochemical reactions were developed with
diaminobenzidine as the chromogenic peroxidase substrate. Sections were counterstained with
hematoxylin after immunohistochemistry. Specificity was verified by negative control
reactions without primary antibody, as well as appropriate staining reactions in positive control
tissues. The intensity of immunohistochemical staining in tumor cells was graded as negative
(0), weak (1+), moderate (2+) and strong (3+); negative-to-weak staining was classified as
low-level expression, whereas moderate-to-strong staining was classified as high-level
expression. Frequency of cases with high-level expression was compared among renal tumor
subtypes, with statistical significance assessed by chi-square analysis.

We analyzed two RCC microarray datasets with a series of novel bioinformatics systems, in
order to identify candidate diagnostic biomarkers. First, the ArrayWiki knowledge
management system was used to combine and annotate the datasets in compatible formats. The
caCORRECT quality assurance system was then used to identify non-random physical artifacts
on the microarrays, and eliminate potentially confounding results from these defective regions.
Examples of chip artifacts included scratches on the array surface and bubbles in the
hybridization medium (Figure 1). Next, the omniBioMarker system was used to analyze the
combined microarray dataset with a variety of support vector machine classifiers, in order to
identify optimal algorithms for identifying candidate RCC biomarkers. In this step, the support
vector machines were compared for performance in classifying RCC subtypes, using only
biomarkers in the dataset that had been previously verified in independent studies by
quantitative RT-PCR or immunohistochemistry. The strongest algorithm was then applied to
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the entire dataset, in order to identify additional gene products with differential expression in
RCC subtypes. From this group of gene products, we selected candidate diagnostic biomarkers
for subsequent verification by quantitative RT-PCR and immunohistochemistry.

Differential expression of six gene products was verified by quantitative RT-PCR, using
formalin-fixed paraffin-embedded specimens from 17 clear cell, 13 papillary and 7
chromophobe RCC (Figure 2). CA9 and CP were overexpressed in clear cell RCC (p = 9.83 x
1005 and 3.59 x 10-96, respectively); SCHIP1 and ELF3 were overexpressed in papillary RCC
(p=1.48 x 1093 and 4.14 x 1098, respectively); and COX5A and ACAT1 were overexpressed
in chromophobe RCC (p = 1.32 x 10-%5 and 1.40 x 10-97, respectively). Differential expression
of CA9, SCHIP1 and COX5A was further verified by immunohistochemistry, using commercial
primary antibodies and a formalin-fixed paraffin-embedded tissue microarray that included 66
clear cell, 16 papillary and 12 chromophobe RCC (Figure 3). By immunohistochemistry,
CA9 was strongly overexpressed in the tumor cell cytoplasm of clear cell RCC (p < 0.001).
Cytoplasmic SCHIP1 staining was seen in papillary and clear cell RCC, but 3+ intensity was
significantly more frequent in tumor cells of papillary RCC (p < 0.001). Cytoplasmic
COXB5A staining was seen in all RCC subtypes; however, 3+ intensity was significantly more
frequent in tumor cells of chromophobe RCC (p < 0.02). Immunohistochemical data are
summarized in Table 1.

4. Discussion

Gene expression profiling is an important approach to discover molecular markers for
diagnostic pathology. Microarrays are used to identify complex expression profiles, which are
screened to identify large numbers of differentially expressed genes. These differential
expression profiles provide a list of candidate diagnostic biomarkers for clinical pathology
laboratories, using assays such as immunohistochemistry and quantitative RT-PCR [3,4,
6-10,23-25]. While this approach has been applied effectively, it remains limited because the
number of genes in most microarray studies exceeds the number of experimental samples by
several orders of magnitude. Therefore, differential expression profiles tend to contain
numerous false positives (candidate biomarkers that are not verified when different samples
and analytical methods are tested) and false negatives (true biomarkers that are not
differentially expressed among the small number of samples in the microarray study). In order
to maximize the potential contribution of microarray technology, new information tools are
needed to identify candidate biomarkers with the greatest likelihood of validity. In this report,
we describe an integrated series of biocomputation systems, called ArrayWiki, caCORRECT
and omniBioMarker, which we developed to make the process of biomarker discovery effective
and efficient [11,13,14,17]. The bioinformatics systems are designed to maximize the
experimental sample size, remove systematic error from the microarray data, and empirically
identify optimal algorithms to identify differentially expressed biomarkers. Our data are
presented publicly at the ArrayWiki Internet site (see Materials & Methods). Data in ArrayWiKi
are open to community contribution, comment, and modification, using syntax and structure
common to Wikipedia and similar resources [26,27]. Ongoing annotation from the community
could enhance the value of this knowledge base for future biomarker discovery experiments.

We selected six candidate RCC biomarkers for verification by RT-PCR and
immunohistochemistry; each biomarker has potential relevance for renal tumor pathobiology
and clinical management. Carbonic anhydrase 1X (CA9) and ceruloplasmin (CP) were verified
as biomarkers for clear cell RCC. CA9, a hypoxia-inducible protein, is well-established as a
clear cell RCC biomarker [20,28]. It is overexpressed in clear cell tumors compared to benign
lesions and other RCC subtypes, and thus may be useful for diagnostic classification. Several
studies also suggest that comparatively low CA9 expression in clear cell RCC is a negative
prognostic indicator [29,30]. In addition, CA9 is a potentially important therapeutic biomarker,
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since it is the protein target for G250 monoclonal antibody-based immunotherapy and vaccines
against clear cell RCC [31]. Along with CA9, the acute phase reactant CP was overexpressed
in clear cell RCC in our previous microarray experiments. This pattern was seen with many
other genes related to inflammation and the acute phase response [3,6]. Similarly, other groups
have identified CP as a clear cell RCC biomarker by suppression subtractive hybridization
[32,33]. In addition, serum CP protein levels are elevated in patients with RCC and other
malignancies compared to healthy controls [34-38]. CP has antioxidant properties that may be
involved with the host response to neoplasia [39].

Schwannomin-interacting protein 1 (SCHIP1) and E74-like factor 3 (ELF3) were verified as
biomarkers for papillary RCC. Neither gene product has been described in RCC previously.
SCHIP1 was first discovered as a protein that interacts specifically with spliced isoforms and
naturally occurring mutants of neurofibromatosis type 2 (NF2) tumor suppressor protein, also
known as schwannomin or merlin [40]. Specific interactions of NF2 with a variety of proteins,
including SCHIP1, have been associated experimentally with the PI13-kinase, MAP kinase and
small GTPase signaling pathways, which may represent therapeutic targets for inhibiting tumor
proliferation [41]. ELF3 (also termed ESX and ESE-1) encodes an ETS-family nuclear
transcription factor that is expressed specifically in epithelial cells [42,43]. Microarray studies
have shown that ELF3 is overexpressed in several types of carcinoma and sarcomas with
epithelial differentiation [43-45]. Transfection of ELF3 into breast epithelial cell lines results
in malignant transformation [46,47]. ELF3 expression may be involved in feedback regulatory
pathways with transforming growth factor beta type 1l receptor and erbB2 receptor, and thus
may be a potential therapeutic target [48-50].

Cytochrome ¢ oxidase subunit 5a (COX5A) and acetyl-CoA acetyltransferase 1 (ACAT1) were
verified as biomarkers for chromophobe RCC. The COX5A gene product is localized to the
mitochondrion and is critical for oxidative phosphorylation [51]. Proteomic studies have shown
that COX5A is expressed differentially in gastric carcinoma [52]. In addition, we have shown
that chromophobe RCC overexpresses many mitochondrial proteins and other gene products
related to energy pathways, electron transport, and oxidative phosphorylation [3,6], amolecular
signature that may reflect the abundant mitochondria in neoplastic cells of these tumors [53].
Previous research on renal tumors has correlated high content of oxidative phosphorylation
complexes with a slow growing, noninvasive phenotype [54]. ACATL is an integral membrane
protein that localizes to the endoplasmic reticulum. It controls cholesterol ester formation in
kidney and other organs [55]. Interferon gamma and STAT1 regulate ACAT1 expression in
prostate cancer cells [56,57], but the regulation of ACAT1 in renal cancer is still unknown.

In summary, we describe several candidate biomarkers for RCC classification, derived from
microarray data analyzed with a series of novel biocomputational tools. These biomarkers have
potential clinical utility as a multiplex expression panel for classification of RCC with
equivocal histology, when combined with H&E morphology and other gene expression or
cytogenetic studies. For many tumor types, multiplex biomarker panels are more sensitive and
specific than assays for individual markers [10,20,58]. In addition, multiplex immunohistology
platforms will be important to develop the emerging class of immunoassays based on
nanoparticle optical detection tags [59,60]. Therefore, CA9, SCHIP1 and COX5A could be
combined with other immunohistochemical markers for renal tumor classification, such as
glutathione S-transferase (GSTA) and adipophilin (ADFP) for clear cell RCC [23,25]; alpha
methyacyl CoA racemase (AMACR) for papillary RCC [9]; and parvalbumin (PVALB), beta
defensin-1 (DEFB1), claudin 7 (CLDN7) and claudin 8 (CLDNB8) for chromophobe RCC [7,
10]. Multiplex immunohistochemical profiling of RCC is likely to become more important for
classification, as the use of diagnostic needle core biopsies grows, and differential therapies
for primary and metastatic RCC subtypes continue to be developed [2,61,62].

Hum Pathol. Author manuscript; available in PMC 2010 December 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Osunkoya et al.

Page 7

Acknowledgments

Th

is work was supported by a grant from the National Cancer Institute Centers for Cancer Nanotechnology Excellence

Program (U54CA119338).

References
1.

10

11.

12.

13.

Amin MB, Amin MB, Tamboli P, et al. Prognostic impact of histologic subtyping of adult renal
epithelial neoplasms: an experience of 405 cases. Am J Surg Pathol 2002;26:281-91. [PubMed:
11859199]

. Beck SD, Patel MI, Snyder ME, et al. Effect of papillary and chromophobe cell type on disease-free

survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol 2004;11:71-7. [PubMed:
14699037]

. Schuetz AN, Yin-Goen Q, Amin MB, et al. Molecular Classification of Renal Tumors by Gene

Expression Profiling. J Mol Diagn 2005;7:206-18. [PubMed: 15858144]

. Takahashi M, Yang XJ, Sugimura J, et al. Molecular subclassification of kidney tumors and the

discovery of new diagnostic markers. Oncogene 2003;22:6810-8. [PubMed: 14555994]

. Yang XJ, Sugimura J, Schafernak KT, et al. Classification of renal neoplasms based on molecular

signatures. J Urol 2006;175:2302-6. [PubMed: 16697863]

. Young AN, Amin MB, Moreno CS, et al. Expression profiling of renal epithelial neoplasms: a method

for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 2001;158:1639—
51. [PubMed: 11337362]

. Osunkoya AO, Cohen C, Lawson D, et al. Claudin-7 and claudin-8: immunohistochemical markers

for the differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma. Hum Pathol.
2008

. Pan CC, Chen PC, Chiang H. Overexpression of KIT (CD117) in chromophobe renal cell carcinoma

and renal oncocytoma. Am J Clin Pathol 2004;121:878-83. [PubMed: 15198361]

. Tretiakova MS, Sahoo S, Takahashi M, et al. Expression of alpha-methylacyl-CoA racemase in

papillary renal cell carcinoma. Am J Surg Pathol 2004;28:69-76. [PubMed: 14707866]

. Young AN, de Oliveira Salles PG, Lim SD, et al. Beta defensin-1, parvalbumin, and vimentin: a panel
of diagnostic immunohistochemical markers for renal tumors derived from gene expression profiling
studies using cDNA microarrays. Am J Surg Pathol 2003;27:199-205. [PubMed: 12548166]
Stokes TH, Phan J, Quo CF, et al. Bio-nano-informatics: an integrated information management
system for personalized oncology. Conf Proc IEEE Eng Med Biol Soc 2006;1:3325-8. [PubMed:
17947022]

Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer.
Clin Cancer Res 2005;11:5730-9. [PubMed: 16115910]

Stokes TH, Torrance JT, Li H, et al. ArrayWiki: an enabling technology for sharing public microarray
data repositories and meta-analyses. BMC Bioinformatics 2008;9:518. [PubMed: 18541053]

14. Stokes TH, Moffitt RA, Phan JH, et al. chip artifact CORRECTion (caCORRECT): a bioinformatics

system for quality assurance of genomics and proteomics array data. Ann Biomed Eng 2007;35:1068—
80. [PubMed: 17458699]

15. Steinhoff C, Vingron M. Normalization and quantification of differential expression in gene

expression microarrays. Brief Bioinform 2006;7:166—77. [PubMed: 16772260]

16. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics 2003;4:249-64. [PubMed: 12925520]

17. Phan JH, Young AN, Wang MD. Selecting clinically-driven biomarkers for cancer nanotechnology.

Conf Proc IEEE Eng Med Biol Soc 2006;1:3317-20. [PubMed: 17947020]

18. Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression

patterns. Proc Natl Acad Sci U S A 1998;95:14863-8. [PubMed: 9843981]

19. Huynh KN, Phan JH, Vo TM, et al. Improved bolstering error estimation for gene ranking. Conf Proc

IEEE Eng Med Biol Soc 2007;2007:4633-6. [PubMed: 18003038]

Hum Pathol. Author manuscript; available in PMC 2010 December 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Osunkoya et al.

20.

21.

22.

23.

24,

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Page 8

Chen YT, Tu JJ, Kao J, et al. Messenger RNA expression ratios among four genes predict subtypes
of renal cell carcinoma and distinguish oncocytoma from carcinoma. Clin Cancer Res 2005;11:6558—
66. [PubMed: 16166433]

Zeeberg BR, Feng W, Wang G, et al. GoMiner: a resource for biological interpretation of genomic
and proteomic data. Genome Biol 2003;4:R28. [PubMed: 12702209]

Specht K, Richter T, Muller U, et al. Quantitative gene expression analysis in microdissected archival
formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol 2001;158:419-29. [PubMed:
11159180]

Chuang ST, Chu P, Sugimura J, et al. Overexpression of glutathione s-transferase alpha in clear cell
renal cell carcinoma. Am J Clin Pathol 2005;123:421-9. [PubMed: 15716239]

Higgins JP, Shinghal R, Gill H, et al. Gene expression patterns in renal cell carcinoma assessed by
complementary DNA microarray. Am J Pathol 2003;162:925-32. [PubMed: 12598325]

Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose
differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal
carcinoma. J Pathol 2005;205:377-87. [PubMed: 15682440]

Salzberg SL. Genome re-annotation: a wiki solution? Genome Biol 2007;8:102. [PubMed: 17274839]
Giles J. Key hiology databases go wiki. Nature 2007;445:691. [PubMed: 17301755]

Dorai T, Sawczuk IS, Pastorek J, et al. The role of carbonic anhydrase 1X overexpression in kidney
cancer. Eur J Cancer 2005;41:2935-47. [PubMed: 16310354]

Bui MH, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent predictor of survival
in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res
2003;9:802-11. [PubMed: 12576453]

Patard JJ, Fergelot P, Karakiewicz PI, et al. Low CAIX expression and absence of VHL gene mutation
are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J
Cancer 2008;123:395-400. [PubMed: 18464292]

Shuch B, Li Z, Belldegrun AS. Carbonic anhydrase 1X and renal cell carcinoma: prognosis, response
to systemic therapy, and future vaccine strategies. BJU Int 2008;101:25-30. [PubMed: 18430119]

Stassar MJ, Devitt G, Brosius M, et al. Identification of human renal cell carcinoma associated genes
by suppression subtractive hybridization. Br J Cancer 2001;85:1372-82. [PubMed: 11720477]

Nishie A, Masuda K, Otsubo M, et al. High expression of the Cap43 gene in infiltrating macrophages
of human renal cell carcinomas. Clin Cancer Res 2001;7:2145-51. [PubMed: 11448934]

Pejovic M, Djordjevic V, Ignjatovic I, et al. Serum levels of some acute phase proteins in kidney and
urinary tract urothelial cancers. Int Urol Nephrol 1997;29:427-32. [PubMed: 9405999]

Senra Varela A, Lopez Saez JJ, Quintela Senra D. Serum ceruloplasmin as a diagnostic marker of
cancer. Cancer Lett 1997;121:139-45. [PubMed: 9570351]

Nayak SB, Bhat VR, Upadhyay D, et al. Copper and ceruloplasmin status in serum of prostate and
colon cancer patients. Indian J Physiol Pharmacol 2003;47:108-10. [PubMed: 12708132]

Nayak SB, Bhat VR, Mayya SS. Serum copper, ceruloplasmin and thiobarbituric acid reactive
substance status in patients with ovarian cancer. Indian J Physiol Pharmacol 2004;48:486-8.
[PubMed: 15907060]

Boz A, Evliyaoglu O, Yildirim M, et al. The value of serum zinc, copper, ceruloplasmin levels in
patients with gastrointestinal tract cancers. Turk J Gastroenterol 2005;16:81-4. [PubMed: 16252197]
Zowczak M, Iskra M, Paszkowski J, et al. Oxidase activity of ceruloplasmin and concentrations of
copper and zinc in serum of cancer patients. J Trace Elem Med Biol 2001;15:193-6. [PubMed:
11787988]

Goutebroze L, Brault E, Muchardt C, et al. Cloning and characterization of SCHIP-1, a novel protein
interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol Cell
Biol 2000;20:1699-712. [PubMed: 10669747]

Scoles DR. The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys
Acta 2008;1785:32-54. [PubMed: 17980164]

Brembeck FH, Opitz OG, Libermann TA, et al. Dual function of the epithelial specific ets transcription
factor, ELF3, in modulating differentiation. Oncogene 2000;19:1941-9. [PubMed: 10773884]

Hum Pathol. Author manuscript; available in PMC 2010 December 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Osunkoya et al.

Page 9

43. Tymms MJ, Ng AY, Thomas RS, et al. A novel epithelial-expressed ETS gene, ELF3: human and
murine cDNA sequences, murine genomic organization, human mapping to 1932.2 and expression
in tissues and cancer. Oncogene 1997;15:2449-62. [PubMed: 9395241]

44.He J, Pan Y, Hu J, et al. Profile of Ets gene expression in human breast carcinoma. Cancer Biol Ther
2007;6:76-82. [PubMed: 17172821]

45. Tschoep K, Kohlmann A, Schlemmer M, et al. Gene expression profiling in sarcomas. Crit Rev Oncol
Hematol 2007;63:111-24. [PubMed: 17555981]

46. Manavathi B, Rayala SK, Kumar R. Phosphorylation-dependent regulation of stability and
transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1. J Biol Chem
2007;282:19820-30. [PubMed: 17491012]

47. Prescott JD, Koto KS, Singh M, et al. The ETS transcription factor ESE-1 transforms MCF-12A
human mammary epithelial cells via a novel cytoplasmic mechanism. Mol Cell Biol 2004;24:5548—
64. [PubMed: 15169914]

48. Chang J, Lee C, Hahm KB, et al. Over-expression of ERT(ESX/ESE-1/ELF3), an ets-related
transcription factor, induces endogenous TGF-beta type Il receptor expression and restores the TGF-
beta signaling pathway in Hs578t human breast cancer cells. Oncogene 2000;19:151-4. [PubMed:
10644990]

49. Neve RM, Ylstra B, Chang CH, et al. ErbB2 activation of ESX gene expression. Oncogene
2002;21:3934-8. [PubMed: 12032832]

50. Scott GK, Chang CH, Erny KM, et al. Ets regulation of the erbB2 promoter. Oncogene 2000;19:6490-
502. [PubMed: 11175365]

51. Uddin M, Opazo JC, Wildman DE, et al. Molecular evolution of the cytochrome ¢ oxidase subunit
5A gene in primates. BMC Evol Biol 2008;8:8. [PubMed: 18197981]

52. Nishigaki R, Osaki M, Hiratsuka M, et al. Proteomic identification of differentially-expressed genes
in human gastric carcinomas. Proteomics 2005;5:3205-13. [PubMed: 16003825]

53. Tickoo SK, Lee MW, Eble JN, et al. Ultrastructural observations on mitochondria and microvesicles
in renal oncocytoma, chromophobe renal cell carcinoma, and eosinophilic variant of conventional
(clear cell) renal cell carcinoma. Am J Surg Pathol 2000;24:1247-56. [PubMed: 10976699]

54. Simonnet H, Alazard N, Pfeiffer K, et al. Low mitochondrial respiratory chain content correlates with
tumor aggressiveness in renal cell carcinoma. Carcinogenesis 2002;23:759-68. [PubMed: 12016148]

55. Chang TY, Chang CC, Ohgami N, et al. Cholesterol sensing, trafficking, and esterification. Annu
Rev Cell Dev Biol 2006;22:129-57. [PubMed: 16753029]

56. Yang JB, Duan ZJ, Yao W, et al. Synergistic transcriptional activation of human Acyl-coenzyme A:
cholesterol acyltransterase-1 gene by interferon-gamma and all-trans-retinoic acid THP-1 cells. J
Biol Chem 2001;276:20989-98. [PubMed: 11399774]

57. Locke JA, Wasan KM, Nelson CC, et al. Androgen-mediated cholesterol metabolism in LNCaP and
PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol
Acyltransferase (ACAT). Prostate 2008;68:20-33. [PubMed: 18000807]

58. Oliva E, Young RH, Amin MB, et al. An immunohistochemical analysis of endometrial stromal and
smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel
because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol 2002;26:403—
12. [PubMed: 11914617]

59. Qian X, Peng XH, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-
enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26:83-90. [PubMed: 18157119]

60. Xing Y, Chaudry Q, Shen C, et al. Bioconjugated quantum dots for multiplexed and quantitative
immunohistochemistry. Nat Protoc 2007;2:1152-65. [PubMed: 17546006]

61. Kummerlin I, ten Kate F, Smedts F, etal. Core biopsies of renal tumors: a study on diagnostic accuracy,
interobserver, and intraobserver variability. Eur Urol 2008;53:1219-25. [PubMed: 18082317]

62. Motzer RJ, Bacik J, Mariani T, et al. Treatment outcome and survival associated with metastatic renal
cell carcinoma of non-clear-cell histology. J Clin Oncol 2002;20:2376-81. [PubMed: 11981011]

Hum Pathol. Author manuscript; available in PMC 2010 December 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Osunkoya et al.

a)

Page 10

c) ol 1 . B.i'-oma;kersv

101 . Random Probes
2

2 102 -
e

-

107 -

o 1 2 3 4 5
Number of Outlier Probes

Figure 1. caCORRECT analysis of microarray data

a) Detection of localized artifacts caused by an air bubble in hybridization medium. b)
Detection of localized artifacts caused by a scratch on the microarray surface. ¢) Analysis of
published microarray data from Schuetz et al. The biomarkers proposed in this study were
randomly distributed with the microarray artifacts detected by caCORRECT. If biomarkers
did colocalize with microarray artifacts, the biomarker bar (blue) would be larger than the
random probe bar (red) at higher number of outlier probes.
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Differential mRNA Expression in Renal Tumors
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Figure 2. Quantitative RT-PCR in formalin-fixed paraffin-embedded renal tumors

In each panel, bars indicate relative mRNA expression in a single tumor specimen. Tumor
subtypes are designated as CC (clear cell RCC), PA (papillary RCC) and CH (chromophobe
RCC). Top left) Carbonic anhydrase 1X (CA9). Top right) Ceruloplasmin (CP). Middle left)
Schwannomin-interacting protein 1 (SCHIP1). Middle right) E74-like factor 3 (ELF3). Bottom
left) Cytochrome c oxidase subunit 5A (COX5A). Bottom right) Acetyl-CoA acetyltransferase
1 (ACAT1). CA9 and CP were significantly overexpressed in clear cell RCC; SCHIP1 and
ELF3 were significantly overexpressed in papillary RCC; COX5A and ACAT1 were
significantly overexpressed in chromophobe RCC.
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Figure 3. Immunohistochemistry in formalin-fixed paraffin-embedded renal tumors

All images were taken at 100x magnification a) Clear cell RCC, hematoxylin & eosin stain.
b) Clear cell RCC, CA9 immunohistochemical stain (3+ positive). ¢) Papillary RCC,
hematoxylin & eosin stain. d) Papillary RCC, SCHIP1 immunohistochemical stain (3+
positive). ) Chromophobe RCC, hematoxylin & eosin stain. f) Chromophobe RCC, COX5A
immunohistochemical stain (3+ positive).
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