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Abstract
This work explores several quantitative aspects of radiation-induced bystander mutagenesis in WTK1
human lymphoblast cells. Gamma-irradiation of cells was used to generate conditioned medium
containing bystander signals, and that medium was transferred onto naïve recipient cells. Kinetic
studies revealed that it required up to one hour to generate sufficient signal to induce the maximal
level of mutations at the thymidine kinase locus in the bystander cells receiving the conditioned
medium. Furthermore, it required at least one hour of exposure to the signal in the bystander cells to
induce mutations. Bystander signal was fairly stable in the medium, requiring 12–24 hours to
diminish. Medium that contained bystander signal was rendered ineffective by a 4-fold dilution; in
contrast a greater than 20-fold decrease in the cell number irradiated to generate a bystander signal
was needed to eliminate bystander-induced mutagenesis. This suggested some sort of feedback
inhibition by bystander signal that prevented the signaling cells from releasing more signal. Finally,
an ionizing radiation-induced adaptive response was shown to be effective in reducing bystander
mutagenesis; in addition, low levels of exposure to bystander signal in the transferred medium
induced adaptation that was effective in reducing mutations induced by subsequent γ-ray exposures.
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1. INTRODUCTION
Non-targeted effects, where unexposed cells are affected by nearby cells exposed to ionizing
radiation, have a long history (reviewed in [1,2]). Bystander effects have been reported to result
from exposures to both low and high LET radiations (reviewed in [1,3]), although most studies
have used the latter. In some experimental in vitro systems, bystander signals can be transmitted
through the growth medium, while in others, gap junctions seem to be required (reviewed in
[4,5]). These modes of transfer are of course not mutually exclusive; gap junctions are likely
to accentuate the effects of media transfer. Increasing evidence suggests that reactive oxygen
species (ROS) may be mediating damage in unexposed cells [6–12], and the involvement of
mitochondria in generating ROS has been explored [13–17]

Bystander effects are generally considered to be deleterious, and in cells exposed to bystander
signals, effects include, among others, changes in gene expression [18], DNA damage [10,
15,19], gene mutations [12,20,21], sister chromatid exchanges [22], chromosome aberrations
[23], cell killing [24], and cell transformation [25]. Defective repair of ionizing radiation-
induced DNA damage is associated with increased bystander responses [12,20,26–30].
Nevertheless, despite considerable effort over the past 17 years, much of the bystander
literature is descriptive or qualitative, and there are numerous gaps in our understanding of the
quantitative and temporal aspects which need to be addressed.

The adaptive response to radiation was first described in 1984 by Olivieri et al. [31] who
reported that peripheral blood lymphocytes cultured in 3H-thymidine showed a reduced
frequency of chromosome aberrations following a challenge with an acute moderate dose of
X-rays. The phenomenon was subsequently studied by many different laboratories in a variety
of test systems [32–39]. Adaptation is most efficiently induced by doses of 0.005–0.2 Gy. The
usual protocol is to prime cells with a low dose of ionizing radiation and then follow 4 or more
hours later with a challenge to a much higher dose of 0.5 – 2 Gy. The mechanism behind the
adaptive response is unclear. Some have suggested that it involves the induction of signaling
pathways, including DNA repair pathways or down regulation of heat-shock-related proteins
[39–43]. More recently, Coleman et al. [44] reported a number of different transcription
elements associated with the adaptive response.

There are several published studies which link bystander and adaptive responses. Ionizing
radiation-induced adaptation can render cells resistant to bystander signals (e.g., [45,46]), and
bystander signals themselves can induce the adaptive response (e.g., [32,33,47–49]). This may
be mediated in part by reactive oxygen species (ROS) such as H2O2 and reactive nitrogen
species, which have also been reported to induce adaptation directly [50–52]. A bystander
signal-induced adaptive response would tend to make cells more resistant to a subsequent high
dose challenge, and such an adaptive effect might also reduce DNA damage induced from any
long-term exposure to bystander factors. Thus there is the potential for bystander effects to be
advantageous.

The work reported here defines some key kinetic and temporal aspects of bystander-induced
mutagenesis in human lymphoblastoid cells, including induction of the adaptive response.

2. MATERIALS AND METHODS
WTK1 human lymphoblastoid cells [53] were maintained as exponentially growing cultures
at densities of 1–10 × 105 cells/ml in RPMI 1640 medium supplemented with 10% heat
inactivated horse serum, 100 U/ml penicillin, and 100 µg/ml streptomycin. Incubator
conditions were 37oC in 5% CO2 and 100% humidity.
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γ-irradiations were performed in a calibrated Mark I 137Cs γ-irradiator (J. L. Shepherd and
Associates, Glendale, CA). Exponentially growing cultures were removed from the incubator,
and immediately irradiated at a dose rate of 2.5 Gy/min for high dose (2 Gy), or 0.25 Gy/min
for low dose (0.05 Gy). Cells then were returned to the incubator. Cultures were insulated in
Styrofoam containers except for during the actual irradiation, and therefore temperatures of
the cultures were maintained between 34–35°C during the treatment. Temperatures were
restored to 37°C within 5 minutes after re-incubation.

Bystander signal-containing medium was prepared using a protocol modified from
Mothersill and Seymour [54]. Briefly, a total of 2.5 × 106 WTK1 cells in 5 ml, were irradiated
with 2 Gy γ-rays and returned to the incubator. At the appropriate time, medium containing
bystander signal was obtained by centrifuging for 10 minutes at 1000 rpm to pellet the cells,
at 37oC. To avoid removing any directly irradiated cells, only the upper 4 ml of medium was
removed; thus the standard protocol utilized bystander signal from the equivalent of 2 × 106

cells in a total of 4 ml. That directly irradiated cells were not contained in the bystander medium
was confirmed by demonstrating that the plating efficiency of this medium was < 10−6 (data
not shown).

Mutant fractions (MF) were analyzed at the heterozygous autosomal thymidine kinase locus,
using standard protocols [53]. In order to reduce the background MF prior to the experiment,
cells were treated for 2 days with CHAT (complete RPMI 1640 medium with 10−5 M
deoxycytidine, 2×10−4 M hypoxanthine, 2×10−7 M aminopterin, and 1.75×10−5 M thymidine),
followed by 1 day in CHT (CHAT without aminopterin); cells were then used within 5 days.
After the end of any particular potentially mutagenic treatment, cells were maintained in normal
RPMI medium for 3 days to allow for the expression of induced mutants. Cells then were
seeded into 96-well dishes to determine the MF by limiting dilution. Cells were seeded at 2000
cells/well in the presence of 2 µg/ml trifluorothymidine to select tk− mutants, and also at 1
cell/well in normal medium to determine plating efficiency. Mutation plates were fed with
fresh trifluorothymidine after 11 days and colonies were scored after 21 days incubation. The
MF was calculated using the Poisson distribution [55].

Background MFs shown in various figures are for completely untreated cultures. These were
determined separately for each experiment.

Statistical comparisons were made with the Student’s t-test, using SigmaStat 3.5.

3. RESULTS
This manuscript presents studies testing key kinetic aspects of the ionizing radiation-induced
bystander effect, and its effects on the adaptive response, specifically on the endpoint of
mutagenesis at the thymidine kinase locus in WTK1 human lymphoblasts. In these
experiments, medium transfer was employed; typically, cells were irradiated with 2 Gy of γ-
rays, and the medium was harvested by centrifugation at various times; this medium then was
used to culture untreated, naïve cells.

Kinetic and temporal aspects of bystander mutagenesis
In the first experiment, the medium was harvested at various times after irradiation, and utilized
to resuspend untreated, naïve cells. As can be seen in Figure 1, shorter post-irradiation culture
times of 5 or 15 minutes did not allow sufficient bystander signal to accumulate such that no
increase in mutagenesis was observed when the medium was transferred to bystander cells. An
accumulation time of 30 minutes resulted in an intermediate level of induced mutation (30
minutes compared to background, p=0.004; 30 minutes compared to 1 hr, p=0.002), showing
that the bystander effect is not an all or nothing response. One hour was required to generate
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sufficient signal in the medium to produce a full bystander effect. Post-irradiation culture times
of 1–12 hours produced approximately equal levels of bystander mutagenesis, approximately
a 2.5-fold increase over background (no statistical differences among these data points, p≥0.35;
all are significantly different from the background, p < 0.01). However, when the medium
transfer was done 24 hours after irradiation, bystander mutagenesis was still present but
significantly reduced (24 hr compared to background, p=0.003; 24 hr compared to 12 hr,
p=0.01), suggesting that the signal has a finite lifetime somewhat greater than 24 hours.

The time intervals during which bystander signal was secreted into medium by irradiated cells
were determined. For this experiment, cells were treated with 2 Gy, and the medium from those
cells was harvested in various time intervals (Figure 2). As can be seen, the strongest level of
bystander signal was present in the medium obtained from 0 – 6 hr after irradiation compared
to background, p=0.008). It was still present in the 6–12 hour interval (compared to
background, p=0.032); although it appeared to be diminished the difference was not significant
(p=0.15). There was no significant increase in mutagenesis in the 12–24 hour interval
(p=0.196), suggesting that no signal was produced in this time interval. Interestingly, there
appeared to be a second wave of bystander signal produced between 24–30 hours (compared
to background, p=0.003).

Next, batches of medium containing bystander signal were prepared by irradiating aliquots of
cells with 2 Gy and harvesting the medium 2 hours later. Naïve cells were incubated with this
bystander-signal-containing medium for various times, and it was found that at least 1 hour of
exposure to the bystander signal was required to induce maximal levels of mutagenesis;
exposure times of 5 or 15 minutes were ineffective (Figure 3). Similar to Figure 1, an
intermediate response was observed with the 30 minute exposure (30-min compared to
background, p=0.001; 30-min compared to 1-hr, p=0.018), again showing that the bystander
effect is not all-or-nothing, but can exhibit a graded response.

Dilution of bystander signals
Two experiments were conducted to investigate how the levels of bystander signal could be
modulated to affect the induction of gene mutations. Figure 4 shows that the bystander signal
produced by 2 Gy of γ-rays to 2 million cells, harvested at 2 hours after irradiation, easily could
be diluted away to ineffective levels. In fact a 4-fold dilution was sufficient to eliminate
bystander mutagenesis. However, Figure 4 also shows that when progressively fewer cells
were irradiated to produce bystander signal, it was required to reduce the number of cells in
the irradiated sample by >20-fold (i.e., from 2 × 106 to ≤ 5 × 104) to observe a reduced level
of bystander mutagenesis. This leads us to speculate that under the defined experimental
conditions, the amount of bystander signals reach a plateau. In other words, treatment of 105

to 2 × 106 cells with 2 Gy resulted in the same levels of bystander signal in the medium.

Bystander effects and the adaptive response
Experiments then were done to determine how bystander signals affect the adaptive response.
Figure 5A shows “classical” adaptation. WTK1 cells were pretreated with 0.05 Gy γ-rays as
the priming dose, and these cells were challenged with 2 Gy at various times afterwards. The
priming dose of 0.05 Gy of γ-rays did not induce a measurable change in the MF, but as can
be seen, a dose of 2 Gy was significantly less mutagenic when administered 4–24 hr after the
adapting dose (p<0.01); at earlier time points there was no effect. The 4-hr time point yielded
an intermediate response, as it was significantly different from both the 2-hr and the 6-hr points
(p=0.002 for both comparisons).

Figure 5B shows a similar experiment, in which it was demonstrated that the 0.05 Gy priming
dose also renders cells resistant to a subsequent challenge with bystander medium (p < 0.01
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for 0, 1 or 2 compared to 4, 6, 12 or 24 hr). The kinetics were different in that the 2-hr point
did not exhibit an intermediate response. This experiment suggests that cells can adapt after
ionizing radiation exposure to be protected against deleterious bystander effects.

A series of control experiments also were done to insure that cell handling did not induce
adaptation. Here, sham irradiations simulating the 0.05 Gy priming dose were done at various
times prior to irradiations with 0 or 2 Gy of γ-rays. To accomplish this, cells were removed
from the incubator for 10 minutes (a time equivalent to that needed to do the transport to and
from the irradiator and perform the irradiations), during which time they cooled down to
approximately 34°C and likely became more oxygenated due to the unavoidable shaking of
flasks. Cells were challenged with 0 or 2 Gy at 0, 1, 2, 4, 8 or 24 hr later. These treatments had
absolutely no effect on the background or on radiation-induced mutant fractions (data not
shown).

In the final set of experiments, the ability of bystander signal to induce adaptation was
examined. Medium containing bystander signal was prepared by irradiating aliquots of cells
with 2 Gy of γ-rays, and the media were harvested 2 hours later. The priming treatment
consisted of exposing cells to that conditioned medium for 5, 30 or 120 minutes. The challenge
dose was 2 Gy of γ-rays, 0–24 hours after the end of the priming dose. These results are shown
in Figure 6. Clearly the 5-min priming treatment was sufficient to produce adaptation, when
at least 4 hr was allowed for development (compared to γ-rays alone, for 4 to 12 hrs all p <
0.02). However, bystander-induced adaptation was not as persistent as that for ionizing
radiation, since protection was not evident at the 24 hr point. Interestingly, all of the mutation
frequencies for the 30-min priming were approximately equal (compared to γ-rays alone, all
p>0.10), and for the 2-hr priming time, mutation frequencies were uniformly higher (compared
to γ-rays alone, all p < 0.05), but none were different from one another (comparisons among
primed cells, all p > 0.15). Here, bystander mutagenesis and direct γ-ray-induced mutagenesis
appeared to be additive, without adaptation. This is reminiscent of what has been seen for
ionizing radiation, where higher doses (> 0.5 Gy) generally do not induce the adaptive response.

4. DISCUSSION
The experiments presented in this paper investigate key kinetic aspects of radiation-induced
bystander mutagenesis, and leads to the overall conclusion that both directly irradiated cells
and unirradiated cells can adapt over time to bystander signals.

Bystander mutagenesis plateaus
A simple model for bystander-induced mutagenesis would be that the bystander effectors are
DNA damaging agents such as ROS. If this were true, then one would expect that increasing
the time of exposure of unirradiated cells to bystander signal ought to increase the mutational
yields, at least for as long as the signal was still present. From Figure 2, it can be seen that the
signal remained active for more than 6 hours, and therefore one might predict that the mutation
frequencies ought to have increased with exposure time in the range of 1 to ≥6 hours. However,
as seen in Figure 3, the kinetics of induction of bystander mutagenesis seems to follow a
sigmoid-shaped curve, and in fact the bystander effect plateaus with time of treatment with
medium containing bystander signal.

One possible explanation would be that the processes of bystander-induced mutagenesis and
bystander-induced adaptation were competing and essentially canceling each other out. In other
words, at longer exposure times, even though mutagenic bystander signals were present,
additional mutagenic damage was not induced because the adaptive response had also been
activated and was protective. However, this idea is inconsistent with the data in Figure 6, where
there was no evidence of adaptation in the cells exposed to higher levels of bystander signal
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for longer times. An alternative explanation would be that the sigmoid-shaped curve actually
reflects the induction of a mutagenic process in bystander cells rather than the direct production
of DNA damage. To fit our data, that mutagenic process would need to be a damped effect;
i.e., cells would have to become resistant to continued receipt of bystander signal. We do not
have any evidence of what that mutagenic process might be. One possibility would be a burst
of reactive oxygen species from the mitochondria. Recent data have in fact predicted a role for
mitochondria in bystander responses [13–17], but mainly this has regarded the generation of
signal from the irradiated cell. One of these reports did show that cells depleted of mitochondria
could still respond to bystander signals, as measured by DNA damage/repair-related focus
formation [15], and this would argue against the hypothesis of a burst of reactive oxygen species
in the bystander cells. But perhaps even a very small remaining mitochondrial compartment
could be sufficient to generate enough ROS to induce mutations, without overtly increasing
the frequency of foci. Clearly this will be an area for future research.

Bystander-feedback inhibition
We performed two ‘dilution’ experiments, one of bystander-medium and one of the number
of cells available to produce bystander signal (both in Figure 4). It is quite interesting that
although dilution of medium containing bystander signal rapidly eliminated the ability of that
medium to induce mutations, a much greater dilution of the cell number available to produce
bystander signal was required to reduce the ability of the transferred medium to induce
mutation. One possible explanation for this is that there may be some kind of feedback
mechanism operating. In other words, once the bystander signal reached a certain
concentration, it prevented the production and/or release of further signal.

Bystander mutagenesis probably contributes to the overall mutation frequencies observed
in directly irradiated cell populations

In these experiments, the fact that it took 4 hours for cells irradiated with 0.05 Gy to become
resistant to bystander signals suggests the following. An acute mutagenic response to a single
high dose of ionizing radiation, where all cells are directly damaged, is likely to include two
components. First would be the effects of the direct radiation damage, and second would be
the bystander signals secreted from and returning to the irradiated cells. This idea is consistent
with our previous observation that extracellular catalase appeared to slightly reduce the
mutagenicity of γ-irradiation [12].

Adaptation develops from bystander signaling
We have shown that bystander signals induce the adaptive response, which protects these
human lymphoblast cells from radiation mutagenesis. Bystander-induced adaptation also has
been reported by others [47–49]. This could provide a new importance for the adaptive
response. In theory, exposure of a cell to a very low dose of ionizing radiation (the ultimate
low dose being a single photon) could generate extra-cellular bystander signals which in turn
could affect up to hundreds of cells. In one study, a low γ-ray dose of 5 mGy, which was
probably fewer than 10 photons per cell, induced a bystander effect for cell killing [48]. If
passage of a single photon can induce bystander signals, then a fairly large proportion of cells
in the body could be adapted at any given time, from background radiation (which can be
expected to hit each cell in the body 1 – 3 times per year). Then it would become significant
that there is inter-individual variability in the human population as to whether the adaptive
response functions or not. In fact there are reports that the proportion of people who exhibit
adaptation varies; in limited studies, 50–80% of individuals have shown a reduction after the
challenge dose, while the remainder have not [39,56–58]. Variation is likely to derive from
genetic factors [56–59]. Thus it will be important to determine whether individuals without an
adaptive response are actually more sensitive to the deleterious effects of ionizing radiation.
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In the adaptation experiments (Figure 6), minimal exposure to bystander signal appeared to be
protective while longer exposures were ineffective or detrimental, at least for the endpoint of
mutagenesis. Thus the bystander effect can be expected to vary dramatically, depending on the
specific conditions present. This could account for some of the disparate results in the literature.
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Figure 1. Kinetics of bystander signal production after ionizing radiation treatment: Time required
for cells to generate sufficient bystander signal to induce significant levels of gene mutation
Aliquots of WTK1 cells were irradiated with 2 Gy of γ-rays, and the medium was harvested
by centrifugation at the indicated times. It was applied to naïve cells for 24 hours, and the
mutant fractions were subsequently determined. BMF is background mutation frequency. Data
are mean of three experiments and error bars are SD.
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Figure 2. Kinetics of appearance of bystander signal in medium, after irradiation
Aliquots of WTK1 cells were irradiated with 2 Gy of γ-rays. The 0–6 hr sample was the medium
collected by centrifugation after 6 hr. For the 6–12 hour sample, cells were centrifuged after 6
hr, and fresh medium was added; at t=12 hr, this medium was removed and applied to naïve
cells. An identical approach was used to collect the 12–24 and 24–30 hour samples. Mutant
fractions were subsequently determined. Data are mean of three experiments and error bars are
SD.
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Figure 3. Length of exposure to bystander signal required to induce significant levels of gene
mutation
Aliquots of WTK1 cells were irradiated with 2 Gy of γ-rays, and the medium was harvested 2
hr later. Aliquots were used to treat naïve WTK1 cells for the indicated times, and the mutant
fractions were subsequently determined. Data are mean of three experiments and error bars are
SD.
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Figure 4. Dilution of bystander signal
Dilution of medium containing bystander signal. (○) Aliquots of WTK1 cells were irradiated
with 2 Gy of γ-rays, and the medium was collected by centrifugation 2 hr later. These medium
samples were diluted as indicated, with fresh complete medium at 37°C, pH 7.2, and applied
to naïve cells for 24 hr. Mutant fractions were subsequently determined. Data are mean of three
experiments and error bars are SD.
Variation in bystander effects induced by treatment of varying cell number. (•) Aliquots of
WTK1 cells at various cell numbers were irradiated with 2 Gy of γ-rays, and the medium was
collected by centrifugation 2 hr later. These medium samples were applied to naïve cells for
24 hr. Mutant fractions were subsequently determined. Data are mean of three experiments
and error bars are SD.
BMF (▾) is the background mutant fraction.
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Figure 5. Ionizing radiation-induced adaptive response in WTK1 cells
Fig. 5A shows the “classical” ionizing radiation-induced adaptive response, for direct radiation
mutagenesis. The leftmost bar represents untreated cells and is the background mutant fraction;
next is cells treated with 0.05 Gy of γ-rays only, and the third bar is cells treated with 2 Gy of
γ-rays only. The rightmost seven bars represent cells that first received a 0.05 Gy priming dose,
followed by a 2 Gy challenge dose at the indicated time. Mutant fractions were subsequently
determined.
Fig 5B also shows an ionizing radiation-induced adaptive response; however, this time the
challenge dose was bystander medium harvested from WTK1 cells, 2 hr after treatment with
2 Gy of γ-rays. As in 5A, the leftmost bar represents untreated cells, the background mutant
fraction; next is cells treated with 0.05 Gy of γ-rays only, and the third bar is cells treated with
bystander medium only (2 hr). The rightmost seven bars represent cells that first received the
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0.05 Gy priming dose, followed by the bystander medium challenge dose (delivered for 2
hours) at the indicated time. Mutant fractions were subsequently determined. Data are means
of three experiments and error bars are SD.
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Figure 6. Bystander signal-induced adaptive response in WTK1 cells
In this experiment, WTK1 cells were primed with bystander signal, which had been generated
by exposing WTK1 cells to 2 Gy of γ-rays and harvesting 2 hr later. These media with bystander
signals were used to prime cells: they were applied to naïve cells for 5 minutes (•), 30 minutes
(○), or 2 hours (▾). The primed cells were treated with 2 Gy of γ-rays at the indicated times
after priming. Mutant fractions were subsequently determined. Data are mean of three
experiments and error bars are SD.
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