Skip to main content
. Author manuscript; available in PMC: 2009 Nov 27.
Published in final edited form as: J Biopharm Stat. 2008;18(6):1084–1102. doi: 10.1080/10543400802369012

Table 3.

Percentage of data sets simulated under H0 with a design of N = 40 for which each model is selected.

Method Algorithm K Model1
Mbase Mrecessive Mdominant Mmult
ANOVA FO 997 91.6 4.1 3.9 0.4
FOCE 986 90.9 3.8 4.7 0.6

Wald FO 947 68.4 11.1 16.3 4.2
FOCE 876 83.0 5.8 9.8 1.4

LRT FO 976 50.3 18.7 17.0 14.0
FOCE 951 91.3 4.0 3.5 1.2

AIC FO 999 14.9 23.2 22.4 39.5
FOCE 970 42.2 22.4 21.3 14.1

AICc FO 999 17.4 24.4 32.2 35.0
FOCE 970 48.3 20.7 20.1 9.9

CAIC FO 999 63.0 16.6 14.5 5.9
FOCE 970 95.3 2.1 2.5 0.1

BIC FO 999 55.7 19.6 16.6 8.1
FOCE 970 93.3 3.1 3.0 0.6

BICc FO 999 44.6 21.7 20.0 13.7
FOCE 970 85.6 7.0 6.0 1.2

K is the number of data sets on which the test could be performed.

1

Mbase: {β0 = β1 = β2 = 1} (CC=CT=TT) model with no gene effect.

Mrecessive: {β0 = β1 = 1, β2 ≠ 1} (CC = CT ≠ TT), reduced model.

Mdominant: {β0 = 1, β1 = β2 ≠ 1} (CC ≠ CT = TT), reduced model.

Mmult: {β0 = 1, β1β2 ≠ 1} (CC ≠ CT ≠ TT), complete model.