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Abstract
Drug carrier particles composed of poly(ethylene glycol)-co-poly(sebacic acid) (PEG-PSA) have
been shown capable of efficient aerosolization into model lungs and the ability to rapidly penetrate
human mucus. Here, we develop PEG-PSA particles (Etop/PEG-PSA) that encapsulate up to 40%
etoposide by weight in a one step process, release it continuously for 6 days in vitro, and maintain
its cytotoxic activity against a human lung tumor cell line in vitro. We further show that Etop/PEG-
PSA injected intratumorally effectively suppress human lung tumor growth in a xenograft mouse
model, with 100% survival after 31 days. In contrast, 0% survival was observed by day 24 in animals
that received free etoposide (either intratumoral or intraperitoneal administration) or placebo particles
intratumorally. These findings support PEG-PSA as a drug delivery platform for improved local
therapy of cancer.
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Introduction
Lung cancer is the leading cause of cancer-related deaths in the United States and throughout
the world, with a higher annual death rate than prostate, colon, and breast cancers combined
and a dismal 5-year survival rate of 15% [1]. Despite more than 30 years of advancements in
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cancer detection and treatment, the primary modality of treatment for lung cancer patients
remains systemic chemotherapy. The limited effectiveness of systemic chemotherapy for lung
cancer has often been attributed to dose-limiting side effects [2,3]. Local sustained therapy, as
could potentially be achieved by inhalation of drug-loaded controlled-release particles, offers
the potential to reduce side effects and improve efficacy by maintaining drug concentrations
at effective levels for extended time periods within the lungs.

Biodegradable polymer drug carriers, especially polyesters and polyanhydrides, are widely
used to encapsulate therapeutics and deliver them in a sustained fashion [4-7]. Polyanhydrides
are a class of biodegradable polymers that undergo surface erosion to provide continuous drug
release rates that are roughly proportional to polymer erosion rate [7]. Our lab has developed
poly(ether-anhydrides) composed of poly(ethylene glycol) and sebacic acid (PEG-PSA) for
the delivery of therapeutics following injection [8] or inhalation [9,10], and demonstrated that
PEG-PSA particles can provide sustained release of a variety of molecules [11]. We also
recently demonstrated that PEG-PSA nanoparticles diffuse rapidly through undiluted human
mucus (Tang et al., unpublished results), a robust barrier that typically traps and quickly
removes foreign particles from the lung airways [12,13]. Here, we sought to test whether PEG-
PSA particles could provide efficient encapsulation and sustained release of a relevant
chemotherapeutic for the potential treatment of lung cancer. Etoposide, a front line
chemotherapeutic drug for lung, ovarian and testicular cancers, was used as a model drug.

Materials and Methods
PEG-PSA synthesis and characterization

PEG-PSA polymer (10% w/w PEG) was synthesized by melt polymerization of poly(ethylene
glycol) and sebacic acid prepolymers, as previously described [10]. Weight-average molecular
weights were determined relative to polystyrene standards (Fluka, Milwaukee, WI) by gel
permeation chromatography [10]. Polymer structure was verified by 1H NMR in CDCl3
(Bruker, Madison, WI) and FT-IR in potassium bromide pellets (Perkin-Elmer, Wellesley,
MA). The mass ratio between PEG and SA was estimated by the area ratios of PEG protons
to SA protons from NMR. 1H NMR (CDCl3): δ 3.65 (s, OCH2CH2), 2.45 (t, CH2), 1.67 (m,
4H, CH2), 1.33 (m, 8H, CH2). IR (KBr, cm-1): 1807, 1741 (anhydride).

Etoposide particle preparation and characterization
Etoposide (NetQem, Durham, NC) and PEG-PSA were dissolved in chloroform and emulsified
into a 1% w/w poly(vinyl alcohol) (Mw = 25 kDa, PolySciences, Warrington, PA) aqueous
solution using a Silverson homogenizer at 8,000 RPM for 2 minutes (L4RT, Silverson
Machines, East Longmeadow, MA). Particles were hardened by allowing chloroform to
evaporate at room temperature while stirring for 2 hr. Particles were collected and washed three
times with double distilled water via centrifugation at 2,600 × g for 15 min (International
Equipment Co., Needham Heights, MA). Particle size distribution was determined using a
Coulter Multisizer IIe (Beckman). Particles were resuspended in double distilled water and
added dropwise to 100 ml of ISOTON II diluents (Beckman) until the coincidence of the
particles was between 8% and 10%. Greater than 100,000 particles were sized for each batch
of microparticles to determine the mean particle size and size distribution. Particle morphology
was evaluated by scanning electron microscopy (SEM) using a cold cathode field emission
SEM (JEOL JSM-6700F, Peabody, MA). Particles were lyophilized, resuspended in 100%
ethanol and dried onto SEM mounts at room temperature. Particles were then sputter coated
with platinum (300 s at 1500 amps, Quorum Technologies, Newhaven, England).
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Loading and release of etoposide
Etoposide loading into PEG-PSA particles was determined by dissolving particles in
chloroform and measuring absorbance at 284 nm in triplicate (Cary 50 Bio Spectrophotometer,
Varian, Palo Alto, CA), the maximum absorption of pure etoposide in chloroform [14].
Absorbance of blank particles dissolved in chloroform at the same polymer concentration was
subtracted to account for polymer interference. Release kinetics were obtained by suspending
5.0 mg of particles in 1.0 mL phosphate buffered saline (PBS, pH 7.4) and incubating at 37°
C on a platform shaker (140 rpm). Supernatant was collected at predetermined intervals by
centrifugation at 13,500 × g for 5 minutes (Micro A Marathon centrifuge, Fisher Scientific,
Pittsburgh, PA). Drug-containing supernatant was collected and particles were resuspended in
1 mL of fresh PBS. Etoposide concentration in the collected supernatant was assayed via
absorbance at 284 nm (Cary 50 Bio Spectrophotometer) in triplicate for each sample (n=3).

Cytotoxicity assay
NCI-H82 human small cell lung cancer cells (ATCC, Manassas, VA) were cultured in RPMI
1640 (Gibco, Carlsbad, CA) supplemented with 10% FBS (Invitrogen, Carlsbad, CA) and
penicillin/streptomycin (Sigma) in a humidified environment (37°C, 5% CO2). Cells were
seeded into 96 well plates at 1×105 cells per well and treated for 5 days before assaying viability
with a colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay (Sigma). Briefly, 50 μl of 2 mg/ml MTT in PBS was added to each well and incubated
at 37°C for 2 hr. Cells were collected (92 × g for 5 min), dissolved in 200 μl DMSO and
absorbance at 570 nm was measured, n=6 wells per condition (SpectraMax Plus
Spectrophotometer, Molecular Devices, Sunnyvale, CA). Controls included untreated cells (no
cell death) and wells containing only media (complete cell death), n=6 wells per condition.
Cell viability was determined from a linear fit between the absorbance of the two controls.
Released etoposide was collected from particles as described above and lyophilized before
dissolving in whole media and adding to cells. Stock etoposide was prepared by dissolving
etoposide directly in whole media.

Animals
Animal protocols were approved by the Institutional Animal Care and Use Committee at The
Johns Hopkins Medical Institutions. Four to six week old female Hsd:Athymic Nude-
Foxn1nu mice (Harlan, Indianapolis, IN) were allowed to acclimate for 1 week prior to
handling. Animals were injected subcutaneously in the right flank with 1×106 NCI-H82 cells
suspended in 50% Matrigel (BD Biosciences, San Jose, CA) and tumors were allowed to
establish to 6-7 mm in diameter before treatment [15]. Etoposide was administered locally
(intratumoral, IT) and systemically (intraperitoneal, IP) at 12 mg/kg/day in PBS for 3
consecutive days. Etoposide-loaded polymer particles and placebo (blank) particles were
injected once intratumorally after resuspension in PBS at 36 mg/kg or equivalent polymer load
for placebo particles. Tumor sizes in two dimensions were measured with digital calipers, and
volumes were calculated with the formula (0.5 × L × W × W), where L is length and W is width
[16]. Tumor volumes were normalized by initial tumor volume. The Kaplan-Meier log-rank
test was used to compare survival between mice that received Etop/PEG-PSA treatment versus
those that received placebo particles or free drug. A p value less than 0.05 was considered
statistically significant.

Results and Discussion
PEG-PSA synthesis and characterization

Poly(ethylene glycol)-co-poly(sebacic acid) (PEG-PSA) copolymers were prepared via melt
polycondensation of prepolymers of sebacic acid and polyethylene glycol. The resulting
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polymer was characterized by 1H NMR and FT-IR spectroscopy. The NMR spectra exhibited
a single peak at 3.65 ppm, indicative of the presence of PEG in the polymer, and peaks at 2.45,
1.67, and 1.33 ppm corresponding to sebacic anhydride. The weight fraction of PEG in the
polymer (10.2%) matched the feed fraction of 10.0%, as determined by the area ratios of PEG
to SA protons. The typical anhydride IR double peaks appeared at ~1807 and 1741 cm-1. The
weight-average molecular weight was 18 kDa (determined by GPC), with no peak
corresponding to the weight of free PEG, thereby confirming PEG incorporation into the
polymer.

Loading and release kinetics of etoposide
Etoposide was loaded into spherical PEG-PSA particles (Etop/PEG-PSA, Figure 1A) by a
single oil/water emulsion method [17]. Etop/PEG-PSA particles possessed rough surfaces,
which has been correlated with improved aerosolization efficiency of PEG-PSA particles
compared to particles with smooth surfaces (due to decreased particle-particle contact area,
leading to reduced interparticle adhesive forces) [11]. Particles possessed fairly narrow size
distributions (Figure 1B), with a mass mean diameter of 1.8 μm for both polymer-only
(placebo) and etoposide-loaded particles. The geometric standard deviation (GSD) of particle
size was calculated for Etop/PEG-PSA and placebo particles as described previously [11].
GSD=1.7 for both Etop/PEG-PSA and placebo particles, which is within the typical range for
aerosol particles (1.3-3.0) [18, 19]. High etoposide encapsulation efficiency (71% of initial
drug was encapsulated into particles) and high drug loading (41% of particle mass was drug)
were achieved.

Poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) microspheres (~45 μm) can
entrap etoposide with high efficiency, however, usually only at low drug:polymer ratios [20,
21]. Low drug:polymer ratios (e.g., 5% w/w drug) result in encapsulation efficiencies >80%
in PLGA and PCL, whereas encapsulation efficiency decreases as the drug:polymer ratio is
increased (<30% encapsulation efficiency for formulations of 33% w/w drug:polymer in feed)
[21]. Lipid nanocarriers composed of hydroxystearates and glycerides have also been used to
entrap etoposide, with particle sizes ranging from 27 to 400 nm [20,22]. Reported encapsulation
efficiencies for these lipid nanocarriers are high (>85%), but the drug loading is low, ranging
only from 0.1% to 5%.

In addition to efficiently encapsulating drug with high loading, drug delivery systems must be
able to release active drug in a controlled manner in order to achieve improved efficacy.
Controlled release formulations have the potential to maintain drug concentrations within the
therapeutic window, which can increase efficacy and minimize harmful side effects while
protecting the drug against hydrolytic and enzymatic degradation [23]. PEG-PSA particles
released encapsulated etoposide in vitro at physiological pH and 37°C in a continuous fashion
over 6 days with no burst release (Figure 2). Several other chemotherapeutics, including
doxorubicin, gemcitabine and paclitaxel were also efficiently encapsulated and released in a
sustained and controlled manner from PEG-PSA particles (data not shown). Etoposide release
occurred as a result of polymer erosion; no particles remained after etoposide was completely
released. Released etoposide exhibited equivalent cytotoxicity compared to freshly prepared
drug in vitro against NCI-H82, a human small cell lung cancer cell line (Figure 3). Differences
in cytotoxicity between freshly prepared etoposide and released etoposide were determined to
be statistically insignificant. Placebo PEG-PSA particles and degraded polymer were not toxic
to cells (data not shown).

Controlled release of etoposide (half life of ~4 hr [24]) has been demonstrated with PLGA and
PCL microspheres designed for intramuscular depot administration (~45 μm) [21]. With low
etoposide loading (<5%), the drug could be released over a period spanning several weeks.
However, these formulations were not designed for potential inhalation (they are too large)
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and they provided an initial burst of up to 14% of the drug load within the first day. Polyesters,
such as PLGA and PCL, typically degrade on the order of weeks to years, but release drugs in
shorter time frames, which can lead to undesired accumulation of polymer upon repeat
administration [25-27]. Second, an acidic core can develop in PLGA particles as they undergo
bulk degradation [28], which accelerates the degradation of pH sensitive drugs. PEG-PSA
particles undergo surface erosion as a result of their highly water labile anhydride bonds and
high diffusion rates of soluble fragments from the particle, which lessens the effect of acidic
build-up [29,30]. Particle erosion times for polyanhydrides can be tuned from hours to weeks,
with steady release of drug as the particle erodes [9].

Efficacy in lung tumor mouse model
We next tested the efficacy of Etop/PEG-PSA particles in a subcutaneous xenograft model of
an aggressive human small cell lung cancer (NCI-H82). NCI-H82 small cell lung cancer cells
were inoculated ~14 days prior to treatment and animals were treated when tumor volume
reached ~50 mm3 (Day 0). Treatment groups included: (i) single intratumoral injection of Etop/
PEG-PSA particles, (ii) single intratumoral injection of blank particles (negative control), (iii)
multiple intraperitoneal injections of free drug (systemic delivery, positive control) and (iv)
multiple intratumoral injections of free drug (local delivery, positive control). A single
intratumoral dose of Etop/PEG-PSA particles reversed tumor growth and significantly reduced
the volume of established tumors by Day 3, and then suppressed tumor growth for over 20
days (Figure 4). During this period, the tumor volume remained at or below its size at the time
of treatment. In contrast, fractionated dosing of etoposide (daily for 3 days) locally or
systemically (gold standard positive control) did not suppress tumor growth appreciably.
Likewise, tumor size was not affected by treatment with blank PEG-PSA particles administered
intratumorally. All animals receiving Etop/PEG-PSA treatment survived at least 31 days,
whereas all animals in control groups required humane sacrifice by day 24 (Figure 5). The
median survival times increased from 11-16 days for local or systemic delivery of free
etoposide to 47 days for mice receiving a single Etop/PEG-PSA bolus treatment (Table 1).

The substantial improvement in suppressing tumor growth is likely due to sustained
concentrations of etoposide at the tumor site achieved with Etop/PEG-PSA particles. Despite
multiple dosing, free etoposide is rapidly absorbed systemically and thus cleared from the
tumor site, leading to inadequate drug exposure and negligible tumor shrinkage. In contrast,
the continuous drug release provided by Etop/PEG-PSA maintains effective drug levels within
the tumor over periods long enough to attack tumor cells as they asynchronously undergo DNA
synthesis, the point in the cell cycle at which etoposide exerts cytotoxic activity [31]. Despite
the prolonged suppression of tumor growth, a single dose of Etop/PEG-PSA did not mediate
complete tumor eradication, as evident by the re-proliferation of tumor cells after Day 25.
Tumor relapse may be attributed to incomplete killing of the existing tumor due to insufficient
dosing, incomplete distribution within the tumor, or to a subpopulation of etoposide-resistant
tumor cells. Repeated administration of drug loaded particles may lead to prolonged
suppression or possibly tumor eradication, but was not tested here.

In addition to high drug loading and sustained release kinetics, PEG-PSA may offer a number
of advantages for pulmonary delivery. First, PEG-PSA particles have been shown to efficiently
aerosolize into an Anderson Cascade Impactor model of the lungs [11]. The hydrophilic nature
of PEG enables it to partition to the particle surface during particle formulation [8,11,32], which
decreases interparticle adhesion leading to improved deaggregation upon aerosolization
compared to particles that do not contain PEG [11]. Second, mucus barriers efficiently trap
and remove most foreign particles from the eyes, respiratory tract, gastrointestinal tract, and
female reproductive tract [33]. Particles are typically immobilized upon contact with mucus
by forming adhesive interactions with the hydrophobic “naked protein” domains on mucins,
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leading to their clearance from the mucosal organ on the order of seconds in the eyes to a few
hours in the lungs or gastrointestinal tract [34]. Recently, we demonstrated that a dense coating
of low MW PEG on latex nanoparticle surfaces effectively minimizes particle-mucus adhesive
interactions and, thereby, allows particles as large as 500 nm to diffuse rapidly through human
mucus [35,36]. We then showed that PEG-PSA particles also possess a dense enough surface
PEG coating to allow them to readily diffuse in fresh human mucus at rates comparable to
densely coated latex beads; PEG-PSA nanoparticles diffused >250-fold faster than
nanoparticles composed of PLGA or PSA (Tang et al., unpublished). Efficient aerosolization
and the ability to diffuse through mucus barriers may allow PEG-PSA particles to provide
prolonged local release of drugs in the lung airways.

An orthotopic lung cancer model provides the most ideal setting to evaluate local sustained
therapies for lung cancer, with physiologically relevant barriers against efficient and effective
pulmonary delivery as well as appropriate tumor-stroma interactions for cancer growth [37,
38]. Non-small cell lung cancer represents the majority of current orthotopic lung cancer
models [39,40]; however, the tumors establish in the lower airways, where the mucus barrier
is typically not present. In contrast, small cell lung cancer (SCLC) predominantly establishes
in the major airways where access to the tumor is limited by the mucus barrier [41]. Thus, an
orthotopic small cell lung cancer model would be ideal for the evaluation of potential inhaled
sustained therapies; unfortunately, such SCLC models do not exist in the literature. Future
studies are aimed at encapsulating etoposide within mucus-penetrating PEG-PSA
nanoparticles for testing against an orthotopic SCLC tumor model recently developed by our
labs (unpublished).

The potential benefits of localized therapies have led to increased testing of inhalation-
mediated delivery of chemotherapeutics to the lungs. For example, the inhalation of free
doxorubicin, paclitaxel and 5-fluorouracil in dogs and lung cancer patients all demonstrated
reduced systemic toxicity and minimal local toxicity compared to systemic administration
[42,43]. In a preliminary study, 6 of 10 advanced stage lung cancer patients responded
positively to inhaled 5-fluorouracil, with two complete responses [43]. In contrast, the highest
response rates of advanced lung cancer patients with systemic therapy using cytostatic agents
such as 5-fluorouracil and doxorubicin lie around 20% [44]. However, the efficacy of inhalation
of free drug is limited by rapid absorption and mucus clearance [45], so inhalation therapy of
lung cancer may be improved in the future by sustained drug release from mucus penetrating
particle systems.

Conclusion
PEG-PSA particles were shown capable of efficient encapsulation and sustained delivery of
etoposide in a fashion that suppressed growth of a lung cancer xenograft in mice. Drug-loaded
PEG-PSA nanoparticles offer a potential new method for localized sustained drug delivery to
treat lung cancer.
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Figure 1.
(A) Scanning electron micrographs of etoposide-loaded particles (Etop/PEG-PSA); bars
represent 1 μm. (B) size distribution by volume of blank particles (○) and etoposide loaded
particles (●).
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Figure 2.
Etoposide release kinetics from PEG-PSA particles. Etoposide release was obtained by
suspending particles in PBS (pH 7.4), incubating at 37°C, and assaying supernatant at various
time points using UV absorbance. Error bars representing standard error (n=3) are smaller than
the symbol.
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Figure 3.
Cytotoxicity of released etoposide (●) compared to freshly prepared stock etoposide (○) on
H82 cells. H82 cells were exposed to treatment for 5 days before assaying with MTT for
viability. Difference between treatments is not statistically significant at any concentration
(p > 0.05 by Students t-test). Error bars represent standard error (n=6).
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Figure 4.
Response of subcutaneous H82 xenograft in nude mice to treatment. 5-6 animals per treatment
group. IT - intratumoral; IP - intraperitoneal. Particle mass-mean diameter is 1.5 μm. Tumor
inoculation was on day 0; non-encapsulated etoposide was administered on days 0, 1, and 2.
Polymer particles administered once, on day 0. IT etoposide particles provide significantly
improved tumor control (p<0.05) compared to other treatments starting day 4.
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Figure 5.
Kaplan-Meier curves for survival of mice bearing subcutaneous H82 xenografts. 5-6 animals
per treatment set. IT - intratumoral; IP - intraperitoneal. Particle mass-mean diameter is 1.5
μm. Animals were sacrificed when tumor volume reached 1 cm3 per guidelines for humane
treatment.
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Table 1

Median survival times from date of human small cell lung tumor inoculation. Free etoposide was administered
on days 0, 1, and 2, whereas particles were administered on day 0 only. Mice were sacrificed when tumors reached
1 cm3

Treatment Administration Route# Median survival time (days) n

Blank PEG-PSA particles IT 13 5
Free etoposide IT 16 5
Free etoposide IP 11 5

Etoposide in PEG-PSA particles IT 47* 6

#
IT = intratumoral; IP = intraperitoneal

*
statistically significant compared to other treatments (p < 0.05).
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