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Abstract
We explored the role of 20-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (20-HETE) in oxygen-
induced vasoconstriction in a normal renin form of hypertension [the 1 kidney-1 clip Goldblatt
hypertensive rat (1K1C)] and a high renin form of hypertension [the 2 kidney-1 clip Goldblatt
hypertensive rat (2K1C)]. A silver clip was placed around the left renal artery of adult Sprague-
Dawley males. The right kidney was removed in the 1K1C group and left intact in the 2K1C group.
Arteriolar responses to elevation of O2 concentration in the superfusion solution from 0% O2 to 21%
O2 were determined in the in situ cremaster muscle before and after inhibition of cytochrome P450
4A ω-hydroxylase (CYP450 4A) with N-methyl-sulfonyl-12, 12-dibromododec-11-enamide
(DDMS). Arteriolar constriction to elevated PO2 was enhanced in the chronic 1K1C but not the acute
1K1C or 2K1C. DDMS eliminated O2-induced arteriolar constriction in the 9 week 1K1C, but had
no effect in the 2 wk 1K1C, and only partially inhibited O2-induced constriction of arterioles in the
4 wk 2K1C rat. These findings indicate that although the CYP4A/20-HETE system contributes to
arteriolar constriction in response to elevated PO2 in the established stage of 1K1C renovascular
hypertension, physiological alterations in other mechanisms are the primary determinants of O2-
induced constriction of arterioles in the early and developing stages of 1K1C and 2K1C hypertension.

Keywords
renovascular hypertension; 20-HETE; cytochrome P450 ω-hydroxylase; oxygen; cremaster muscle

INTRODUCTION
Arterioles of many vascular beds constrict when exposed to elevated oxygen levels (Bak et al.,
2007; Gilmore et al., 2005; Kolbitsch et al., 2002; Mak et al., 2002; Rossi and Boussuges,
2005; Rousseau et al., 2007; Sirinyan et al., 2006; Tsai et al., 2003; Yamazaki, 2007). While
multiple chemical mediators have been proposed to contribute to vascular responses to changes
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in O2 availability (Cabrales et al., 2006; Drenjancevic-Peric et al., 2003; Frisbee et al., 2001;
Frisbee et al., 2002; Jackson et al., 1986; Mak et al., 2002; Messina et al., 1994; Rubanyi and
Vanhoutte, 1986; Sirinyan et al., 2006), a number of recent reports suggest that 20-hydroxy-5Z,
8Z, 11Z, 14Z-eicosatetraenoic acid (20-HETE), a vasoactive metabolite of arachidonic acid
produced by the enzymatic activity of the cytochrome P450-4A ω-hydroxylase (CYP450 4A)
family of enzymes, is a likely candidate to serve as a tissue oxygen sensor (Harder et al.,
1996; Kunert et al., 2001a; Kunert et al., 2001b; Lombard et al., 2004; Lombard et al., 1999).

There are multiple reports of enhanced vasoconstrictor sensitivity to elevated PO2 in arterioles
of animals with genetic and experimentally-induced hypertension compared to their respective
normotensive controls (Drenjancevic-Peric et al., 2003; Kunert et al., 2001b; Lombard et al.,
1984; Lombard et al., 1986; Lombard and Stekiel, 1988; Rafi and Boegehold, 1993). Because
angiotensin II (ANG II) has been proposed to increase the formation and release of 20-HETE
(Alonso-Galicia et al., 2002; Carroll et al., 1997; Carroll et al., 1996; Croft et al., 2000), the
present study investigated the role of 20-HETE in O2-induced constriction of cremasteric
arterioles in non-genetic models of normal renin hypertension ([the 1 kidney-1 clip Goldblatt
hypertensive rat (1K1C)] and high-renin hypertension [the 2 kidney-1 clip Goldblatt
hypertensive rat (2K1C)].

MATERIALS AND METHODS
Experimental Animal Groups

Male Sprague Dawley rats were anesthetized with sodium pentobarbital (60mg/kg). The left
kidney was accessed through a left lateral incision and a 0.20 mm silver clip was placed around
the left renal artery. In the 1K1C rat, the right kidney was accessed through a right lateral
incision and removed after tying off the renal artery and vein. 1K1C rats and their sham operated
controls (SOC) were studied 2 wks post surgery (1K1C, 11±0.2 wks, 311±7 g, n=17 and SOC,
11±0.3 wks, 317±7 g, n=18) and 9 weeks post surgery (1K1C 19±0.4 wks, 413±10 g, n=23
and SOC 18±0.3 wks, 423±7 g, n=18). 2K1C rats and their SOC were studied 4 weeks post
clipping (2K1C 11±0.4 wks, 349±9 g, n=13 and SOC 12±0.4 wks, 364±9 wks, n=13). All rats
were housed with free access to food and water in an animal care facility at the Medical College
of Wisconsin (MCW), which is approved by the American Association for Accreditation of
Laboratory Animal Care. All protocols were approved by the MCW IACUC.

In Vivo Experiments
On the day of the experiment, the rats were anesthetized with sodium pentobarbital (60mg/kg,
i.p.), and an in situ transilluminated cremaster muscle was prepared for measurement of internal
diameters of third-order arterioles via television microscopy, as described previously (Baez,
1973; Hill et al., 1990). The tissue was superfused at 35°C at a rate of 3–5ml/minute with a
bicarbonate-buffered (pH 7.35) physiological salt solution (PSS), equilibrated with 0% O2, 5%
CO2, 95% N2 gas mixture, to ensure that O2 delivery to the tissue was controlled entirely by
the microcirculation and that no O2 was delivered from the superfusate. Under these conditions,
PO2 in the rapidly flowing layer of the superfusate is 3–5mmHg, while tissue PO2 is higher,
due to O2 supply from the microcirculation. Arterioles for study were selected by indentifying
a second-order arteriole in a clearly visible region of the cremaster muscle and tracking along
its length to find a third order arteriolar branch that was located in a region of the muscle that
was away from any incision, had clearly discernible vessel walls, a brisk flow velocity, and
active tone, as verified by the occurrence of a brisk dilation following topical application of
10−4 M adenosine.
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Evaluation of Vascular O2 Sensitivity
After a 30 minute to 1 hour equilibration period, control measurements of arteriolar diameter
and mean arterial pressure (carotid artery cannula) were obtained each minute for 5 minutes
during 0% O2 superfusion. Arteriolar responses to increased O2 availability were then tested
by measuring arteriolar diameters for 10 minutes after equilibrating the superfusion solution
with a 21% O2, 5% CO2, 74% N2 gas mixture. This gas mixture causes a significant elevation
of tissue and periarteriolar PO2, although not to the same extent as the elevation in superfusate
PO2 (Duling and Berne, 1970), and has been used in previous studies testing arteriolar O2
sensitivity (Frisbee et al., 2000). In those studies, arteriolar responses to smaller elevations in
superfusate oxygen concentration (5% O2 and 10% O2) were also potentiated in animals with
reduced renal mass hypertension, and were sensitive to inhibition of 20-HETE production
(Frisbee et al., 2000). After exposure to the 21% O2 solution, the superfusate was re-
equilibrated with the control (0% O2) gas mixture until vessel diameters recovered to their
control values. The preparation was then superfused for 30 minutes at 0.33 mL per minute with
warmed PSS containing a 50 µM solution of the selective cytochrome P450 4A ω-hydroxylase
inhibitor, N-methylsulfonyl-12, 12-dibromododec-11-enamide (DDMS) (Alonso-Galicia et
al., 1997) or its vehicle (a 0.1% solution of absolute ethanol added to PSS), followed by
continuous superfusion with PSS containing a 1 µM maintenance concentration of DDMS
(DDMS treated animals only) for the remainder of the experiment. After application of the
DDMS, the preparation was superfused again with 0% O2 solution at the control rate of 3–5
ml/min, after which arteriolar responses to elevated PO2 were re-evaluated. Vessel responses
to 10−7 M norepinephrine were also tested to verify the ability of the arteriole to respond to
vasoconstrictor stimuli, e.g., in vessels where inhibition of the CYP4A system eliminated O2-
induced constriction of the arterioles.

Statistical Analysis
In order to determine the influence of the treatment factor and the surgical factor on the results,
data was statistically analyzed with a two way ANOVA with repeated measures and a
Bonferroni post hoc test (Figure 2 and Figure 3, GraphPad Prism) and were summarized as
means ±SEM. Data for Figure 1 (arteriolar constriction to 21% oxygen in all groups before
any treatment) was statistically analyzed with a one way ANOVA with a Student Newman-
Keuls post hoc test. A p < 0.05 was considered to be statistically significant.

RESULTS
Arterial blood pressures in the 1K1C (2 and 9 wk) and 2K1C (4 week) rats were significantly
higher than those of their respective sham-operated controls (Table 1). Treatment with vehicle
only or DDMS (Table 1) had no effect on the resting diameters (0% O2 superfusion) of
arterioles in the sham or experimental rats, 2, 9 or 4 weeks post surgery (Table 1). Treatment
with vehicle alone also had no effect on arteriolar responses to elevated PO2 in any of the
experimental groups (data not shown for clarity).

Arteriolar constriction in response to elevated PO2 in 1K1C rats (prior to vehicle or any
treatment) was similar to sham-operated controls 2 weeks post-clipping, but was significantly
larger in the hypertensive animals 9 weeks post-clipping compared to their age-matched sham-
operated controls (Figure 1). DDMS eliminated arteriolar constriction during 21% O2
superfusion in the 1K1C rats 9 weeks post clipping and in all sham operated controls, but had
no effect on O2-induced constriction of arterioles in 1K1C rats 2 weeks post clipping (Figure
2). The alternative CYP-4A inhibitor 17-octadecynoic acid (17-ODYA, 10 µM) had identical
effects on arteriolar O2 responses in both groups of 1K1C rats and their sham operated controls,
verifying that the failure of DDMS to eliminate O2-induced constriction in arterioles of 2 week
1K1C rats was not due to ineffectiveness of the inhibitor (data not shown). In 2K1C rats,
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arteriolar constriction in response to elevated PO2 was similar to that in the sham-operated
controls (Figure 1). DDMS abolished arteriolar constriction in response to 21% O2 superfusion
in the sham-operated controls, and reduced, but did not eliminate O2-induced constriction of
arterioles in the 2K1C rats 4 weeks post-clipping (Figure 3).

DISCUSSION
Plasma renin activity (PRA) is normal in 1K1C hypertensive rats after a brief rise immediately
post clipping (Ayers et al., 1977; Murphy et al., 1984), but is substantially elevated (2.5–7
times normal) 4 weeks after clipping in the 2K1C model (Amiri and Garcia, 1997; Murphy et
al., 1984; Russell et al., 1983; Welch et al., 2007; Wilcox et al., 1996). Therefore, the design
of the present study can provide insight into the possible influence of the renin-angiotensin
system on vascular responses to elevated PO2, and the ability of cytochrome P450 inhibition
to modify that response in 1K1C and 2K1C renovascular hypertension. This is important
because circulating ANG II levels have been shown to play a crucial role in maintaining normal
vascular relaxation in response to reduced PO2 and other vasodilator stimuli (Lombard et al.,
2003; McEwen et al., 2009; Phillips and Lombard, 2005).

In this study, arteriolar responses to elevated PO2 were enhanced in 1K1C rats 9 weeks after
clipping (Figure 1). However, cremasteric arterioles of 2 week 1K1C (Figure 1) and 4 week
2K1C (Figure 2) rats did not show an enhanced O2 response compared to their sham-operated
controls, even though arterial blood pressure was significantly elevated in both models of
hypertension (Table 1). The lack of an enhanced response to elevated PO2 in these groups is
surprising, and contrasts with the enhanced constriction to elevated PO2 in multiple models of
hypertension including SHR with developing hypertension (Kunert et al., 2001b;Lombard et
al., 1986), Dahl SS rats (Rafi and Boegehold, 1993), and rats in the early and established stages
of reduced renal mass (RRM) hypertension (Lombard et al., 1989). To the best of our
knowledge, this is the first documented case of a hypertensive rat model in which O2-induced
constriction of arterioles is not enhanced early in hypertension. While the reason for this
difference is not clear, it is possible that the neural, hormonal, or local mechanisms that
potentiate O2-induced constriction of arterioles in other forms of hypertension are not altered
sufficiently to enhance arteriolar O2 responses in either the 1K1C or 2K1C rats.

In contrast to sham operated controls and 1K1C rats 9 weeks post clipping, inhibition of the
CYP450 4A/20-HETE system with DDMS did not affect O2-induced constriction of arterioles
in the 2 week 1K1C rat (Figure 2) and only partially inhibited O2 induced constriction of
arterioles in the 4 week 2K1C rats (Figure 3). These observations suggest that factors other
than the CYP-4A/20-HETE system contribute to O2-induced vasoconstriction of arterioles in
the earlier phase of 1K1C or 2K1C Goldblatt hypertension, while this metabolic pathway
eventually plays a role in the enhanced response to elevated PO2 in the established stage of
1K1C Goldblatt hypertension. This finding is similar to that of a previous study showing that
inhibition of cytochrome P-450 4A ω-hydroxylase with two mechanistically different
inhibitors, 17-octadecynoic acid (17-ODYA) and N-methyl-sulfonyl-12, 12-
dibromododec-11-enamide (DDMS) attenuated arteriolar constriction to elevated PO2 in
mature (12 week old) SHR, but not in young (6 week old) SHR (Kunert et al., 2001b),
suggesting that 20-HETE mediates the oxygen-induced constriction of arterioles in SHR with
established hypertension, but not in young SHR prior to the development of established
hypertension.

The differential response to 20-HETE inhibition after different durations of 1K1C hypertension
appears to be related to vascular alterations occurring during the development of hypertension,
rather than age per se, because cytochrome P450 inhibition eliminated O2-induced constriction
of arterioles in age-matched sham-operated controls for all the groups (Figure 2 and Figure 3).

Kunert et al. Page 4

Microvasc Res. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This reduced contribution of CYP-4A enzymes and 20-HETE to arteriolar constriction in the
2 week 1K1C rats and the 2K1C rats may involve mechanisms similar to those reported by
Marvar et al. (Marvar et al., 2007), who found that chronic exposure to elevated dietary salt
intake led to a reduction in arteriolar sensitivity to elevated PO2 that was mediated by a reduced
responsiveness of the arterioles to 20-HETE.

Since plasma renin activity is normal in the early 1K1C rat but high in the 4 week post clipping
2K1C rat (Amiri and Garcia, 1997), plasma renin levels do not seem to explain the differential
response to inhibiting 20-HETE production in these models. The latter finding is consistent
with studies of SS rats versus consomic and congenic controls, where normalization of PRA
and circulating ANG II levels by introgression of the Brown Norway (Drenjancevic-Peric et
al., 2005) or Dahl R renin gene (Drenjancevic-Peric et al., 2004) does not affect vascular oxygen
responses or prevent the enhanced constriction of cremasteric arterioles in response to elevated
PO2 in salt-fed animals (even though it restores normal vascular relaxation in response to
acetylcholine).

In summary, the CYP450 4A/20-HETE system plays a role in the enhanced O2-induced
vasoconstriction in 1K1C rats with established hypertension. However, O2-induced
vasoconstriction is not enhanced in the acute phases of the 1K1C (normal renin) and the 2K1C
(high renin) models of renovascular hypertension. Inhibition of cytochrome P450 ω-
hydroxylase does not affect O2-induced constriction of skeletal muscle arterioles of rats in the
acute phase of 1K1C renovascular hypertension and only partially inhibits arteriolar
constriction in response to elevated PO2 in animals with 4 weeks of 2K/1C hypertension, but
eliminates arteriolar O2 responses in the established phase of 1K1C hypertension. Taken
together, these findings indicate that 20-HETE plays a role in the oxygen response during
steady state renovascular hypertension, but that other factors dominate during the transition to
a stabilized hypertensive state.
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Figure 1.
Decrease in cremasteric arteriolar diameter from control (0% O2 superfusion) in response to
superfusion with 21% O2 PSS before any treatment in all 1K1C rats 2 weeks post clipping
(stippled bar), all 1K1C rats 9 weeks post clipping (black solid bar) and all 2K1C rats 4 weeks
post clipping (slanted line bar) versus all their respective sham-operated controls (open bars).
Parentheses indicate number of animals in each group; * = p<0.05, significantly different from
matched sham prior to any treatment.
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Figure 2.
Decrease in cremasteric arteriolar diameter during superfusion with 21% O2 PSS before (open
bars) and after (black solid bars) the application of DDMS in 1K1C rats 2 weeks post clipping
and 9 weeks post clipping versus their respective sham-operated controls (open and slant-lined
bar, respectively). Parentheses indicate number of animals in each group; * = within group,
significantly different (p<0.01) from the response prior to treatment with DDMS; δ=between
groups, significantly different (p<0.05) from sham-operated control with same treatment.
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Figure 3.
Decrease in cremasteric arteriolar diameter during superfusion with 21% O2 PSS before and
after application of DDMS in 2K1C rats 4 weeks after clipping the left renal artery versus their
sham-operated controls. Parentheses indicate number of animals in each group; * = within
group, p<0.05 (2K1C); p<0.001(sham), significantly different from response prior to treatment
with DDMS, δ= p<0.01, between groups, significantly different from sham with same
treatment.
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Table 1
Mean arterial pressures and arteriolar diameters in 1K1C and 2K1C rats

First Column: Mean arterial pressure in 1K1C rats (2 and 9 weeks post clipping) and 2K1C rats (4 weeks post
clipping) versus mean arterial pressure in their respective sham-operated controls. The pressures represent
averages of blood pressure measurements taken via the carotid artery in each anesthetized rat throughout the
experimental protocol. Brackets indicate number of animals in each group * = p<0.05, mean arterial pressure
significantly different from sham-operated controls. Third through Fifth Column: Diameter (µm) in
cremasteric arterioles of 1K1C, 2 and 9 weeks post clipping, 2K1C, 4 weeks post clipping and in their respective
sham-operated controls at rest (initial post-equilibration diameter) and before and after the application of DDMS
with 0% oxygen in the superfusion solution (PSS). Vehicle alone had no effect on resting diameters (data not
shown to improve clarity).

Mean Arterial Pressure
(mmHg±SE) [“n”]

Animal Group Arteriolar Diameter (0% O2
Superfusion)

Initial
Diameter
(µm±SE)

Before
DDMS

(µm±SE)

After
DDMS

(µm±SE)
160±6 [17] 1K1C (2 wk) 24±0.5 25 ±1.0 26±1.0
121±4 [17] Sham (2 wk) 25±0.7 24±1.0 25±1.0
166±3 [23] 1K1C (9 wk) 24±0.6 24±0.7 24±1.0
129±4 [18] Sham (9 wk) 23±0.6 23±1.0 23±1.0
160±3 [23] 2K1C (4 wk) 20±1.3 20±1.3 20±1.3
132±5 [21] Sham (4 wk) 20±0.9 19±1.4 20±1.3
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