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Abstract
Conventional development of multi-gene expression models (GEMs) predicting therapeutic response
of cancer patients are based on analysis of patients treated with specific regimens, which limits
generalization to different or novel drug combinations. We overcome this limitation by developing
GEMs based on in vitro drug sensitivities and microarray analyses of the NCI-60 cancer cell line
panel. These GEMs were evaluated in blind fashion as predictors of tumor response and/or patient
survival in seven independent cohorts of patients with breast (N=275), bladder (N=59), and ovarian
(N=143) cancer treated with multi-agent chemotherapy, of which 233 patients were from
prospectively-enrolled clinical trials. In all studies, GEMs effectively stratified tumor response and
patient survival independent of established clinical and pathologic tumor variables. In bladder cancer
patients treated with neoadjuvant MVAC (Methotrexate, Vinblastine, Doxorubicin, Cisplatin), the
3-year overall survival for those with favorable GEM scores was 81% vs. 33% for those with less
favorable scores (p=0.002). GEMs for breast cancer patients treated with FAC (Fluorouracil,
Doxorubicin, Cyclophosphamide) and ovarian cancer patients treated with platinum-containing
regimens also stratified patient survival (5-year overall survival 100% vs. 74% (p=0.05) and 3-year
overall survival 68% vs. 43% (p=0.008), respectively. Importantly, clinical prediction using our in
vitro GEM was superior to that of conventionally-derived GEMs. We demonstrate a facile yet
effective approach to GEM derivation that identifies patients most likely to benefit from selected
multi-agent therapy. Use of such in vitro-based GEMs may provide a robust and generalizable
approach to personalized cancer therapy.
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INTRODUCTION
Most cancer patients with advanced tumors undergo combination pharmacotherapy. A
challenge in treating these patients is predicting which individuals will respond to a specific
therapy. Recent studies have demonstrated the potential that tumor response to
chemotherapeutics can be predicted using multivariate Gene Expression-based Models
(GEMs).(1, 2) Such GEMs are developed using a training microarray set from tumors of human
patients with known clinical responses to the drug(s), allowing selection of optimal marker
genes and respective expression levels to construct such models.(3, 4) These are then evaluated
in separate patient cohorts to determine their predictive ability. While validation is
straightforward, formulation of such GEMs is lengthy, expensive, and requires human tumor
tissue from patients treated with the specific drug regimen for which the GEM prediction is
desired. In addition, this approach does not permit a priori prediction of responses to single or
combination therapy that has never been clinically used, limiting the pairing of novel agents
to their optimal disease types, thus hindering identification of novel applications of established
agents.

To overcome these limitations, two recent studies derived GEMs based on biomarkers of in
vitro drug sensitivity of cancer cell lines in the NCI-60 panel (5, 6) and demonstrated that such
GEMs can predict the clinical outcome in patients who received systemic therapy. While
promising, these reports did not provide validation of unaltered GEMs on multiple independent
patient data sets. If such GEMs can maintain a robust prediction in this setting, this approach
has the potential to revolutionize personalized cancer therapy and drug development since
forecasting the clinical effectiveness of a compound could be undertaken very early in the drug
development lifecycle.(7)

Here, we develop and apply GEMs derived from in vitro data and demonstrate the ability of
these to predict clinical responses to combination pharmacotherapy regimens in 477 patients
with three common cancer types reported in retrospective studies or prospective clinical trials.
Importantly, the patient cohorts examined came from ethnically and geographically distinct
regions.

MATERIALS AND METHODS
Patient Data Sets for Gene Expression Model (GEM) Development and Evaluation

In vitro drug activity and microarray data of the NCI-60 cancer cell panel were previously
described elsewhere.(6) Microarray gene expression data without associated treatment or
clinical outcome information from three human tumor sample cohorts were used for GEM
development including bladder cancer (N=89) (8), ovarian cancer (N=99) (9), and breast cancer
(N=251).(10) These comprise the Training set (Figure 1). For GEM evaluation, through our
own efforts and collaborations, we acquired and used seven independent Test sets in which
data from microarray gene expression could be linked to clinical outcome. Test set studies
included two bladder cancer (N=59), two ovarian cancer (N=143), and three breast cancer
(N=275) sets of patients treated with multi-agent pharmacotherapy (Table 1). Of these, 233
patients were prospectively enrolled in clinical trials (BR-TX and BR-Ger). Training and test
microarray data sets are publicly available or were obtained directly from the original authors.
When survival or tumor response data (complete (CR), partial (PR), or down-grade/stage) were
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not publicly available, this information was obtained from the original investigators. Note that
these test set studies included geographically and ethnically diverse populations with various
tumor stages and tumor sampling methodologies and did not share any patients or clinical
locations with the sets used for GEM development (Table 1 & Figure 1).

Statistical Analysis
GEM Development—The COXEN algorithm (6), originally demonstrated to predict single-
agent chemosensitivity for a cell line panel and small breast cancer sets, was expanded and
refined to derive GEMs and subsequent GEM-predicted chemosensitivity probabilities (named
“GEM Scores”) in patients with bladder, ovarian, and breast cancer (Figure 1; Supplementary
Methods). Briefly, each microarray data set was first standardized within each gene for
consistent GEM development and evaluation. Chemosensitivity biomarkers for each
compound were then identified in the NCI-60 microarray dataset by comparing each gene’s
differential expression between the sensitive and resistant cells for each compound. These
biomarkers were next triaged based on the COXEN coefficient which represents the degree of
concordance of expression between the NCI-60 set and one of three cancer patient microarray
data sets used for development---BR-251, BL-89, or OV-99.(6) This resulted in a panel of
15~95 gene probe sets per compound that were used for the GEM training of statistical
multivariate classification modeling between the NCI-60 sensitive and resistant cell lines for
that compound. Individual compound GEMs were then combined to generate the prediction
model for relevant combination pharmacotherapy, assuming the modes of action of individual
compounds in combination chemotherapy were independent. Importantly, this model
development and training did not use any clinical information or microarray data from the test
sets used for GEM evaluation, thus maintaining strict independence between training and test
data sets.(11)

GEM Evaluation—We compared the GEM scores between clinical responders and non-
responders as reported in five studies for which tumor response data after pharmacotherapy
was available (Figure 1). The significance of this score difference was evaluated using the two-
sample t-test between the responder and non-responder patient groups. In the two studies for
which tumor response data were not available, OV-GA and BR-Tai, we compared GEM scores
between actual surviving and deceased patients---the only available information of patient
outcomes in these two studies, using the absolute call of patients’ survival as a surrogate metric
for tumor response. Patient survival would have depended not only on chemotherapeutic
response but also on many other clinical factors but we simply tested whether the survivor
group was more enriched with predicted responders to chemotherapy. Once a GEM was derived
for a particular agent or combination of agents in a cancer type, it was used without any
alteration in all subsequent evaluations. Where information on patient survival time was
available, we performed Kaplan-Meier (KM) analyses on five cohorts stratified by the GEM
scores from the analyses of tumor response. In order to classify predicted responders from
predicted non-responders a priori, a Receiver Operating Characteristic (ROC) curve was
plotted (Figure S1). The optimal cutoff on the ROC curve was determined by maximizing the
so-called Youden index (=sensitivity+specificity−1), at which sensitivity, specificity, positive
predictive value, (PPV), and negative predictive value (NPV) were evaluated for each
combination GEM in stratifying patients’ clinical response.(12)

Relationship between GEM and Clinical Parameters—We examined whether our
multi-gene expression-based GEM scores are correlated with conventional clinical parameter
information such tumor stage, grade, well-known marker types e.g., ER, PR, Her2 in breast
cancer . We first calculated simple univariate (rank-based Spearman or binary) correlations
between the GEM scores and each of clinical parameters. Next, in order to see the relationship
between GEM scores and combined clinical information, we measured the correlation between

Williams et al. Page 3

Cancer Res. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the GEM scores and a published clinical variable-based breast cancer nomogram that predicts
pCR after preoperative chemotherapy based on patient age, tumor size, ER-status, tumor grade
and the type and number of chemotherapy treatments.(13)

RESULTS
GEM stratification of tumor response and absolute patient survival

Bladder cancer—Using prospectively-predicted and outcome-blinded GEM scores the
single-drug GEMs of adriamycin and cisplatin provided scores of responder patients which
were significantly higher than those of non-responders (adriamycin GEM score with two-
sample t-test p-value=0.049 and 0.061 and cisplatin GEM score with p-value=0.007 and 0.012)
both in the neoadjuvant (BL-Jap) and advanced tumor (BL-Den) studies (Table 2). The GEM
score for methotrexate and vinblastine was significantly different only in the BL-Jap study (p-
value<0.001 and =0.002). The single drug GEMs of methotrexate, vinblastine, adriamycin,
and cisplatin were then combined to formulate the combination GEM for MVAC response.
Using this combination GEM, a significant difference in scores was observed between
responders and non-responders in both studies (p-value=0.002 and 0.033). This combination
GEM provided sensitivity 83%, specificity 64%, PPV 71%, and NPV 78% at the cutoff value
maximizing the Youden index; the overall significance of ROC curve against random
classification was also extremely significant (Wilcoxen test p-value<0.001, Supplementary
Figure S1). Note again that each of these GEMs was simultaneously applied and evaluated
unaltered on the Japan (BL-Jap) and Europe (BL-Den) sets. We further examined whether the
GEM scores were correlated or overlapped with the information from conventional clinical
parameters of patients. Using a univariate analysis of rank-based correlation on the BL-Jap
cohort, we found that the GEM for MVAC response was independent of available clinical
parameters such as tumor stage, grade, age, or gender (Spearman correlation −0.14 ~ 0.07).
We also found the GEM score to be the only significant predictor of MVAC response on this
cohort by a multivariate analysis that was performed together with the GEM score and the
above clinical and tumor pathological variables (logistic regression GEM p-value=0.03; Table
3).(14) The BL-Den study was not large enough for a multivariate analysis.

Ovarian cancer—In ovarian cancer, the unaltered carboplatin GEM also showed
consistently significant results for patient response to pharmacotherapy in the OV-NC study
(p-value=0.034) and for absolute patient survival in the OV-GA study (p-value=0.047) (Table
2). In the OV-GA study, patients received carboplatin and Taxol (paclitaxel) and a large
proportion of patients in the OV-NC study were also reported to receive Taxol. We thus tested
the ability of GEM prediction for this drug to stratify the outcome in the two ovarian studies.
The scores of the Taxol GEM, in fact, correlated well with the clinical response in the OV-NC
study (p-value=0.003) and with absolute patient survival in the OV-GA (p-value=0.025) study.
When the carboplatin and Taxol (CT) combination GEM was applied, the differences in GEM
scores between responders and non-responders in OV-NC was highly significant (p-
value=0.007). Moreover, the same combination GEM significantly segregated scores between
patients who survived and deceased patients in the OV-GA study (p-value=0.008). This
combination GEM provided sensitivity 77%, specificity 56%, PPV 71%, and NPV 78% for
the OV-NC cohort at the Youden cutoff value; the overall ROC curve was also extremely
significant (p-value<0.001, Supplementary Figure S1). Together, results in ovarian cancer also
showed that the identical GEMs of individual agents and the combination were successful in
stratifying not only the measured tumor response in the OV-NC study but also absolute patient
survival (survivor vs. deceased) in the OV-GA study. In the OV-NC study, for which other
clinical parameters were available, the CT combination GEM score was found to be
independent of other clinical and pathological variables such as tumor grade and stage
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(Spearman correlation −0.15, 0.04) and the only significant predictor of tumor response to
pharmacotherapy (logistic regression GEM p-value=0.022; Table 3).

Breast cancer—The response to pharmacotherapy of patients in the neoadjuvant breast
cancer study BR-TX and survival of patients entered on the adjuvant BR-Tai breast cancer
study also correlated to our GEM scores (Table 2). For example, the identical single-drug
GEMs for adriamycin and cyclophosphamide were consistently different in tumor response to
pharmacotherapy in the BR-TX study (two-sample t-test p-value=0.019 and 0.064) and in
absolute patient survival in the BR-Tai study (p-value=0.002 and 0.052). The GEM of 5-FU
was significantly different only in BR-Tai (p-value=0.024). Nevertheless, the combination
prediction model based on the three single-drug GEMs of 5-FU, adriamycin, and
cyclophosphamide - compounds used in both studies - was significantly associated with patient
chemotherapeutic responses in BR-TX (p-value=0.021) and survival status in BR-Tai (p-
value=0.033). This combination GEM provided sensitivity 71%, specificity 53%, PPV 32%,
and NPV 85% at the Youden cutoff value; the overall ROC curve was highly significant (p-
value=0.007, Figure S1). For the neoadjuvant BR-Ger breast cancer study, all the single-drug
GEMs of gemcitabine, epirubicin, and docetaxel (p-value=0.014, 0.055, and 0.044) and the
combination prediction model based on the three single-drug GEMs were significantly
different between responders and non-responders to pharmacotherapy (p-value=0.003) (Table
2). In the BR-TX study, the only breast cancer trial both with patients’ chemotherapeutic
response and other clinical variable information, the GEM for TFAC response was independent
from other clinical and pathological parameters (Spearman correlation −0.07 ~ 0.13). We also
compared our GEM scores with a previously-published nomogram prediction of
chemotherapeutic response based on the clinical characteristics of the patient and tumor.(13)
We found that the Taxol GEM scores are weakly correlated with the nomogram (Pearson
correlation = 0.24) and the FAC GEM scores are not correlated (Pearson correlation = 0.07).
In multivariate prediction modeling, both ER status and GEM score were found to be significant
predictors of tumor response in this cohort, implying potentially improved predictability by
combining GEM and clinical parameter information (logistic regression p-value <0.001,
=0.032; Table 3).

Utility of GEM scores in stratifying actuarial patient survival
Unaltered GEMs evaluated above were then examined for their ability to stratify actuarial
patient survival. Using the selected score cutoffs for the combination GEMs, patient survival
time was stratified in the Kaplan-Meier analysis for all five studies with patient survival time
information across the three tumor types. With the stratification by the combination GEM of
MVAC in bladder cancer, the 3-year overall survival rates were 81% for predicted responders
compared to 33% for predicted non-responders on the BL-Jap study (log-rank test p-
value=0.002), and 61% vs. 16% on the BL-Den study (p-value=0.015), (Figure 2A). In ovarian
cancer, the combination GEM of carboplatin and Taxol also effectively stratified patient
survival time in both OV-NC (log-rank test p-value=0.008) and OV-GA (p-value=0.028)
studies (Figure 2B). In this analysis, patient stratification by the GEM scores provided a
difference in 3-year overall survival of 68% vs. 43% in OV-NC and >95% vs. 23% in OV-GA.
In breast cancer, based on the combination GEM of FAC, we performed the Kaplan-Meier
analysis on the BR-Tai study, the only breast cancer set with patient survival time information.
This GEM stratification was also significant (p-value=0.05) with the 5-year overall survival
rates ~100% vs. 74% between the predicted responders and predicted non-responders (Figure
2C).

Predictive performance of in vitro COXEN based compared to classical GEMs
An important advantage of COXEN-based chemosensitivity prediction is efficient
development of GEMs for any single drug or combination with observed effects on cell lines
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in vitro. However, an important question is whether this technique sacrifices predictive
performance compared to classical patient sample-trained GEMs that may reflect in vivo
activities and/or synergistic effects of certain compounds. We thus compared whether
COXEN-derived GEMs were equally effective as previous GEMs developed using a training
microarray set from human patients with known clinical responses to the drug(s). For example,
in the BL-Jap study, the original authors reported a 14-gene signature GEM, which we call the
Takata-GEM, predictive of patients’ response to MVAC combination chemotherapy.(15) This
Takata-GEM was developed from the initial set of 18 patients and evaluated on an additional
set of 27 patients (total 45) from the same center. We compared the performance of the
COXEN-based MVAC combination GEM, COXEN-GEM, to Takata-GEM for patients’
disease-free survival time stratification. Both GEMs were first evaluated both with the test
subset of BL-Jap (N=27) and the whole BL-Jap cohort (N=45). Finally, both GEMs were
evaluated for their predictive ability on a third independent set, BL-Den.(16) COXEN-GEM
was found to be an effective predictor of patient outcome in the whole BL-Jap set (Figure 3A
upper panel) as well as its test subset (Figure 3A lower panel). Takata-GEM was certainly
able to stratify patients’ outcomes well when applied to the whole BL-Jap cohort (Figure 3B
upper panel). However, when this model was used to predict the test subset independent from
its GEM training, its statistical significance became considerably weaker (p-value=0.078;
Figure 3B lower panel). When applied to the independent BL-Den set, the COXEN-GEM
retained its prediction performance (Figure 3C) while the Takata-GEM was unable to stratify
the patient outcome in this independent cohort (Figure 3D).

DISCUSSION
The conceptual framework and the high potential of in vitro drug activity-based GEMs for
predicting patient response to chemotherapy has been laid out in previous studies.(6) In this
study we demonstrated two major breakthroughs in GEM-based prediction for patients’
chemotherapeutic responses: 1) concordant prediction performance of unaltered in vitro-based
GEMs on geographically and ethnically diverse cancer patient cohorts in three different cancer
types, and 2) simultaneous use of multiple, parallel historical patient data sets for efficient
GEM assessment. Together, we believe these provided a highly encouraging possibility in
applying such in vitro-based GEMs to guide patients with more effective chemotherapies.

Some recent GEMs initially reported with their superior prediction performance failed to
perform well by an independent group’s validation.(11) This may be due to the so-called
selection bias when such multi-gene predictors were trained both with modeling and applying
microarray datasets of numerous candidate genes. Our current study has avoided this pitfall by
independently testing multiple geographically- and ethnically-diverse patient sets and by
consistently predicting both clinical tumor response and patient survival outcome of 477
patients across three different cancer types. Therefore, we believe the prediction performance
of the in vitro-based GEMs here will be highly likely realized in clinical practice even though
the statistical power of some of these GEMs may appear to be a bit lower than those reported
in other recent studies applied only to a single patient set at a time.(17)

We found that the GEM score was independent of conventional clinical parameters and was
always a significant predictor of tumor response to pharmacotherapy even when all other
clinical variables were considered together, suggesting that the GEMs are not simply surrogates
of standard tumor characteristic variables. Also, GEMs generated by various different training
sets that contained distinct stages of bladder cancer successfully stratified patient survival with
only a slight decrease in statistical significance whereas the accuracy to distinguish the ability
to responders from non-responders was maintained (Supplementary Figure S2). While the
assumption of independence of relevant agents was necessary due to our GEM derivation from
the single-agent drug activity data of NCI-60, our GEM scores correlated well with clinical
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responses and survival of diverse patient cohorts of the three cancer types treated with multi-
agent pharmacotherapy in this study. This demonstrated that even though our combination
GEMs could not capture synergistic drug effects, the main efficacy of combination regimens
appeared to be reflected by simple additive effects of single drug GEMs. It is conceivable that
future in vitro work on doublet or higher-order drug combinations may help in modifying the
algorithm to effectively incorporate drug synergies.(18)

We, however, note that each GEM’s reported sensitivity, specificity, NPV, PPV values, or
Kaplan-Meier curves here (derived from its ROC curve) showed its optimal performance on
the applying particular data set. This does not yet represent validation of each drug GEM’s
pre-set threshold to call a patient case + (responder) or − (non-responder), but rather shows
proof-of-a-concept, illustrating that such GEM scores are informative in stratifying patients’
responses to the agent. In order to derive an exact cutoff criterion on a specific GEM assay for
clinical use, a standard diagnosis assay platform and procedure should be developed for routine
clinical practice, from which a fixed cutoff value can be defined for a target patient population,
which, we believe, is quite feasible in the near future.

Generating GEMs using in vitro-based approaches does also have some theoretical and
practical limitations. For example, it cannot be used to develop GEMs for agents which do not
have any effect on cell lines in vitro. While this requirement is strictly embedded in the design
of the approach, the composition of the cell panel may be tailored to the expected cellular and
molecular target of the tested agent. For example, while using the NCI-60 panel may not result
in an effective generation of a drug response profile for an anti-angiogenic agent that targets
endothelial cells, carrying out such an experiment on an endothelial cell panel may provide the
necessary data which can be used for GEM development. Similarly, for agents that target the
immune system, panels composed of the appropriate cells may permit GEM development. As
we have shown above, the critical requirement for the cell panel is to provide effective dose
response information for the agent in question rather than be required to be composed of the
same histological tumor types as the human tumors whose response to therapy is assessed.
Hence, using an endothelial cell panel for an anti-angiogenic agent and generating GEMs for
the use of such an agent in bladder cancer, for example, seems to be justified.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic Overview of GEM development and evaluation.
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Figure 2. GEM prediction of overall patient survival
GEM score stratified Kaplan-Meier analysis. (A) for the BL-Jap and BL-Den studies, (B) for
the OV-NC and OV-GA studies, and (C) for the BR-Tai study. P-values by log-rank test.
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Figure 3. Comparison of predictive performance of COXEN-based GEMs to conventional patient
data-derived GEMs
Patient disease-free (DFS) or overall (OS) survival prediction was performed either by the
COXEN-derived GEM stratification of MVAC (COXEN-GEM) used in Figure 2A or that
using conventional human patient-based approach (Takata-GEM).(4) Kaplan-Meier survival
analysis by (A) COXEN-GEM on the whole BL-Jap set (N=45), (B) COXEN-GEM on the test
subset of BL-Jap (N=27), (C) Takata-GEM on the whole BL-Jap set (N=45), (D) Takata-GEM
on the test subset of BL-Jap (N=27), (E) COXEN-GEM on the BL-Den set (N=14), and (F)
Takata-GEM on the BL-Den set (N=14). P-values by log-rank test.
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Table 3

Multivariate analysis on GEM and clinical variables for stratifying tumor response.

Variable Estimate Std. Error z value Pr(>|z|)

Bladder (BL-Jap)

GEM (MVAC) 2.872 1.326 2.165 0.030
Gender 0.118 0.755 0.156 0.875
Age −0.024 0.051 −0.482 0.630
Stage −0.242 0.817 −0.297 0.767
Grade 0.091 0.558 0.164 0.869

Ovarian (OV-NC)

GEM (CT) −1.425 0.626 −2.276 0.022
Stage 0.421 0.579 0.728 0.466
Grade −0.009 0.378 −0.025 0.980

Breast (BR-TX)

GEM (TFAC) 1.517 0.710 2.137 0.032
Age −0.051 0.026 −1.935 0.053
Race −0.306 0.187 −1.640 0.101
Grade 0.320 0.657 0.487 0.626
ER −2.205 0.634 −3.481 <0.001
Her2 0.656 0.548 1.197 0.231
PR −0.682 0.615 −1.110 0.267

Logistic regression analysis was performed using both GEM and other clinical and pathological parameters for each of BL-Jap, OV-NC, and BR-TX. P-
values by the significance of each parameter estimate compared to its error from each regression model.
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