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systems and thereby to feedback on theoretical considerations 
(Strogatz, 2001; Amaral and Ottino, 2004). Many complex sys-
tems can be represented using tools drawn from graph theory as 
networks of nodes linked by edges. Such networks have been used 
to represent a broad variety of systems, ranging from genetic and 
protein networks to the World Wide Web. The huge size of some 
of these systems (∼10 billion nodes in the WWW) has driven the 
development of new statistical tools in order to characterize their 
topological properties (Newman, 2003).

A quantity called modularity has been introduced in order to 
measure the decomposability of a network into modules (Guimerà 
et al., 2004; Newman and Girvan, 2004). Modularity can be used 
as a merit function to fi nd the optimal partition of a network. The 
resulting partition has been shown to reveal important network 
community structures in a variety of contexts, e.g. the global air 
transportation network (Guimerà et al., 2005) and gene expression 
interactomes (Oldham et al., 2008) are two diverse examples of 
complex systems with topological modularity. However, in sys-
tems having an intrinsic hierarchical structure, fi nding a single 
partition is not satisfactory. Several approaches have therefore been 
proposed in order to allow for more fl exibility and to uncover com-
munities at different hierarchical levels. Among those multi-scale 
approaches, there are algorithms searching for local minima of 

INTRODUCTION
Almost 50 years ago, Herbert Simon wrote an essay entitled “The 
architecture of complexity” (Simon, 1962). In this prescient analysis, 
he argued that most complex systems, such as social, biological and 
physical symbolic systems, are organized in a hierarchical manner. He 
introduced the notion of “nearly-decomposable systems”, i.e. systems 
where elements have most of their interactions (of any kind) with 
a subset of elements in some sense close to them, and much less 
interaction with elements outside this subset. In mainstream contem-
porary parlance, Simon’s near-decomposability is closely analogous 
to the concept of topological modularity: nodes in the same module 
have dense intra-modular connectivity with each other and sparse 
inter-modular connectivity with nodes in other modules (Newman, 
2004, 2006). Simon argued that near-decomposability was a virtually 
universal property of complex systems because it conferred a very 
important evolutionary or adaptive advantage. Decomposability, 
or modularity, accelerates the emergence of complex systems from 
simple systems by providing stable intermediate forms (component 
modules) that allow the system to adapt one module at a time without 
risking loss of function in other, already-adapted modules.

Our understanding of complexity has progressed considerably 
since that time, partly due to the availability of large data-sets that 
now allow us to explore empirically the architecture of complex 

Hierarchical modularity in human brain functional networks

David Meunier1,2, Renaud Lambiotte3, Alex Fornito1,2,4, Karen D. Ersche1,2 and Edward T. Bullmore1,2,5*

1 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
2 Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK
3 Institute for Mathematical Sciences, Imperial College, London, UK
4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, VIC, Australia
5 GSK Clinical Unit Cambridge, Addenbrooke’s Hospital, Cambridge, UK

The idea that complex systems have a hierarchical modular organization originated in the early 
1960s and has recently attracted fresh support from quantitative studies of large scale, real-
life networks. Here we investigate the hierarchical modular (or “modules-within-modules”) 
decomposition of human brain functional networks, measured using functional magnetic 
resonance imaging in 18 healthy volunteers under no-task or resting conditions. We used a 
customized template to extract networks with more than 1800 regional nodes, and we applied 
a fast algorithm to identify nested modular structure at several hierarchical levels. We used 
mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in 
different subjects, and to identify the individual network that is most representative of the group. 
Results show that human brain functional networks have a hierarchical modular organization 
with a fair degree of similarity between subjects, I = 0.63. The largest fi ve modules at the 
highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and 
fronto-temporal systems; occipital modules demonstrated less sub-modular organization than 
modules comprising regions of multimodal association cortex. Connector nodes and hubs, 
with a key role in inter-modular connectivity, were also concentrated in association cortical 
areas. We conclude that methods are available for hierarchical modular decomposition of 
large numbers of high resolution brain functional networks using computationally expedient 
algorithms. This could enable future investigations of Simon’s original hypothesis that hierarchy 
or near-decomposability of physical symbol systems is a critical design feature for their fast 
adaptivity to changing environmental conditions.

Keywords: graph theory, brain, network, modularity, hierarchy, near-decomposability, information

Edited by:

Marcus Kaiser, 
Newcastle University, UK

Reviewed by:

Roger Guimera, 
Northwestern University, USA
Pedro Valdes-Sosa, Cuban 
Neuroscience Center, Cuba

*Correspondence:

Edward T. Bullmore, Brain Mapping 
Unit, Herchel Smith Building, Robinson 
Way, Cambridge CB2 0SZ, UK. 
e-mail: etb23@cam.ac.uk



Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 37 | 2

Meunier et al. Hierarchical modular human brain networks

the modularity landscape (Sales-Pardo et al., 2007) or modifying 
the adjacency matrix of the graph in order to change its typical 
scale (Arenas et al., 2008). Another class of methods consists in 
modifying modularity by incorporating in it a resolution param-
eter (Reichardt and Bornholdt, 2006). This allows one to “zoom 
in and out” of a modular hierarchy in order to fi nd communities 
on different levels; for example, the resolution parameter can be 
interpreted as the time scale of a dynamical process unfolding on 
a network (Lambiotte et al., 2009).

There is already strong evidence that brain networks have a 
modular organization; see Bullmore and Sporns (2009) for review. 
Some support comes from non-human data, like the anatomical 
networks in felines and primates (Hilgetag et al., 2000) or func-
tional networks in rodents (Schwarz et al., 2008). Recently, human 
neuroimaging studies have also provided evidence for comparable 
modular organization in both anatomical (Chen et al., 2008) and 
functional (Ferrarini et al., 2009; Meunier et al., 2009) brain net-
works. However, a limitation of these previous neuroimaging stud-
ies has been the computational time required to derive a modular 
decomposition (Brandes et al., 2006), thus limiting the size of the 
networks under study. In addition, these studies were limited to 
studying modularity at one particular level of community structure, 
neglecting consideration of possible sub-modular communities at 
lower levels. Finally, it has been a taxing problem to quantify the 
topological similarity between two or more modular decomposi-
tions, with most investigators simply examining modularity on the 
basis of an averaged connectivity matrix estimated from a group 
of individuals.

In this study, we report on progress towards addressing each 
of these issues. We applied a recently developed, computationally 
effi cient algorithm (Blondel et al., 2008) to derive a hierarchical, 
modular decomposition of human brain networks measured using 
functional magnetic resonance imaging (fMRI) in 18 healthy vol-
unteers. By providing rapid decomposition, the algorithm enabled 
us to study the modular structure of whole brain networks on a 
larger scale (thousands of equally sized nodes) than previously pos-
sible (tens of differently sized nodes), with concomitant improve-
ments in the spatial or anatomical resolution of the network, while 
simultaneously avoiding biases associated with using a priori ana-
tomical templates that are inevitably somewhat arbitrary in their 
 defi nition of regions-of-interest (Tzourio-Mazoyer et al., 2002). 
Thus, the method enabled rapid, high-resolution, hierarchical 
modular decomposition of brain functional networks constructed 
from individual fMRI datasets. In addition, we present a method 
for comparing the similarity or mutual information between two 
modular community structures obtained for different subjects, and 
use it to identify the single, “most representative” subject whose 
brain network modularity was most similar to that of all the other 
networks in a sample of 18 healthy participants.

MATERIALS AND METHODS
EXPERIMENTAL DATA
Study sample
Eighteen right-handed healthy volunteers (15 male, 3 female) 
were recruited from the GlaxoSmithKline (GSK) Clinical Unit 
Cambridge, a clinical research facility in Addenbrooke’s Hospital, 
Cambridge, UK. All volunteers (mean age 32.7 years ± 6.9 SD) had a 

satisfactory medical examination prior to study enrolment and were 
screened for any other current Axis I psychiatric disorder using the 
Structured Clinical Interview for the DSM-IV-TR Axis I Disorders 
(SCID). Participants were also screened for normal radiological 
appearance of structural MRI scans by a consultant neuroradiolo-
gist, and female participants were screened for pregnancy. Urine 
samples were used to confi rm abstinence from illicit drugs and 
breath was analysed to ensure that no participant was under the 
infl uence of acute alcohol intoxication. All volunteers provided 
written informed consent and received monetary compensation 
for participation. The study was reviewed and approved by the 
Cambridge Local Research Ethics Committee (REC06/Q0108/130; 
PI: TW Robbins).

Functional MRI data acquisition
Whole-brain echoplanar imaging (EPI) data depicting BOLD con-
trast were acquired at the Wolfson Brain Imaging Centre, University 
of Cambridge, UK, using a Siemens Magnetom Tim Trio whole 
body scanner operating at 3 T with a birdcage head transmit/
receive coil. Gradient-echo, EPI data were acquired for the whole 
brain with the following parameters: repetition time = 2000 ms; 
echo time = 30 ms, fl ip angle = 78°, slice thickness = 3 mm plus 
0.75 mm interslice gap, 32 slices parallel to the inter-commissural 
(AC-PC) line, image matrix size = 64 × 64, within-plane voxel 
dimensions = 3.0 mm × 3.0 mm.

Participants were asked to lie quietly in the scanner with eyes 
closed during the acquisition of 300 images. The fi rst four EPI 
images were discarded to account for T1 equilibration effects, 
resulting in a series of 296 images, of which the fi rst 256 images 
were used to estimate wavelet correlations.

Functional MRI data preprocessing
The images were corrected for motion and registered to the 
standard stereotactic space of the Montreal Neurological Institute 
EPI template image using an affi ne transform (Suckling et al., 
2006). Time series were then extracted using a whole brain, high 
resolution, regional parcellation of the images, implemented in 
the following manner; see Figure 1A. First, a binarized version 
of a commonly used template image (Tzourio-Mazoyer et al., 
2002) was used as a broad grey matter mask. Second, each 8 mm3 
voxel in this mask was downsampled by a factor of 4 such that 
each equally sized region in the parcellation comprised 4 × 4 × 4 
voxels of the original image. This initial parcellation included 
some regions of the image which were not largely representa-
tive of grey matter: these were excluded from further analysis 
by applying the criteria that each region must be at least 50% 
overlapping with the grey matter mask and must contain at least 
80% voxels having BOLD signal (defi ned operationally as mean 
signal intensity >50). To be included in the defi nitive parcella-
tion scheme (which comprised 1808 regional nodes), a region 
had to satisfy these two inclusion criteria for every individual 
dataset in the sample.

The mean time series of each region was extracted and wave-
let-fi ltered using Brainwaver R package1 (Achard et al., 2006; 
Achard and Bullmore, 2007). The wavelet correlation coeffi cient 

1http://cran.r-project.org/web/packages/brainwaver/index.html
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partition P of a network. In its original defi nition, an unweighted 
and undirected network that has been partitioned into communi-
ties has modularity (Newman and Girvan, 2004):
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where A is the adjacency matrix of the network; m is the total 
number of edges; and k Ai j ij= ∑  is the degree of node i. The indices 
i and j run over the N nodes of the graph. The index C runs over 
the modules of the partition P. Modularity counts the number 
of edges between all pairs of nodes belonging to the same com-
munity or module, and compares it to the expected number of 
such edges for an equivalent random graph. Modularity therefore 
evaluates how well a given partition concentrates the edges within 
the modules.

A popular method for discovering the modules of a network 
consists in optimizing modularity, namely in fi nding the partition 
having the largest value of Q. However, it is typically impossible 
computationally to sample modularity exhaustively by enumer-
ating all the possible partitions of a network into communities. 
Several heuristic algorithms have therefore been proposed to pro-
vide good approximations, and so to allow for the analysis of large 
networks in reasonable times. The computational expediency of 
the algorithm has become a crucial factor due to the increasing size 
of the networks to be analysed.

More recently, methods to study hierarchical modularity, also 
called nested modularity, have been introduced (Sales-Pardo et al., 
2007; Arenas et al., 2008; Rosvall and Bergstrom, 2008). In this 
case, each module obtained at the partition of the highest level 
can further be decomposed into sub-modules, which in turn can 
be decomposed into sub-submodules, and so on. Here, we will use 
a multi-level method which was introduced very recently in order 
to optimize modularity (Blondel et al., 2008); see Figure 1B. The 
primary advantages of this method are that it unfolds a complete 

was  estimated for each of four wavelet scales between each pair 
of nodes, resulting in a {1808 × 1808} association matrix, or fre-
quency-dependent functional connectivity matrix, for each wavelet 
scale in the  overall frequency range 0.25–0.015 Hz. In what follows, 
we will focus on results at wavelet scale 3, subtending a frequency 
interval of 0.06–0.03 Hz.

This choice of frequency interval was guided by the fact that 
prior work on resting-state fMRI functional connectivity has found 
that the greatest power in connectivity occurs in frequency bands 
lower than 0.1 Hz (Cordes et al., 2001). However, analysing very 
low frequency scales in limited time series such as those acquired 
with fMRI can reduce precision in estimating inter-regional wave-
let correlations (Achard et al., 2006). So scale 3 was chosen for 
the focus of this study as representing a reasonable compromise 
between retaining suffi cient estimation precision while measuring 
low frequency network properties.

Each association matrix was thresholded to create an adjacency 
matrix A, the a

i,j
th element of which is either 1, if the absolute value 

of the wavelet correlation between nodes i and j, w
i,j
, exceeds a 

threshold value τ; or 0, if it does not. We have chosen here to take 
a high threshold, leading to very sparse networks comprising 8000 
edges, i.e. with a connection density of 0.5% of all possible edges 
in a network of this size. Modularity of neuroimaging networks is 
typically greater (Meunier et al., 2009), and computational costs 
are lower, when the networks are more sparsely thresholded. Up 
to 10% of nodes were disconnected from the rest of the network 
at this threshold.

GRAPH THEORETICAL ANALYSIS
Hierarchical modularity
In recent years, many methods have been proposed to discover 
the modular organization of complex networks. A key step was 
taken when Girvan and Newman popularized graph-partitioning 
problems by introducing the concept of modularity. Modularity is 
by far the most widespread quantity for measuring the quality of a 

FIGURE 1 | Methods. (A) Downsampled template. Starting from a binary 
version of the AAL template (left), the downsampling procedure will produce a 
template of small (64 voxels), equal size regions covering the original template 
(right). (B) Illustration of the Louvain method on a simple hierarchical graph. The 
algorithm starts by assigning a different module to each node (16 modules of 
single nodes). The method then consists of two phases that are repeated 
iteratively. The fi rst phase is a greedy optimization (GO) where nodes adopt the 
community of one of their neighbours if this action results in an increase of 

modularity (typically, the community of the neighbour for which the increase is 
maximal is chosen). The second phase builds a meta-network (MN) whose 
nodes are the communities found in the fi rst phase. We denote by “pass” a 
combination of these two phases. The passes are repeated until no 
improvement of modularity is possible and the optimal partition is found. When 
applied on this graph, the algorithm fi rst fi nds a lowest non-trivial level made of 
four communities. The next level is the optimal level and is made of two 
communities.
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 hierarchical  community structure for the network and outperforms 
previous methods with respect to computation time. This so-called 
“Louvain method” takes advantage of the hierarchical organization 
of complex networks in order to facilitate the optimization. The 
algorithm starts by assigning a different module to each node of the 
network. The initial partition of the network is therefore made of 
N communities. It then consists of two phases that are repeated itera-
tively. The fi rst phase consists in a greedy optimization where nodes 
are selected sequentially in an order that has been randomly assigned. 
When a node is selected, it may leave its community and adopt a com-
munity which is in its direct neighbourhood, but only if this change 
of community leads to an increase of modularity (GO on Figure 1B). 
The second phase builds a new network whose meta-nodes are the 
communities found in the fi rst phase (MN on Figure 1B). Let us 
denote by “pass” a combination of these two phases. These passes 
are repeated iteratively until a maximum of modularity is attained 
and an optimal partition of the network into communities is found. 
By construction, the meta-nodes, or intermediate communities, are 
made of more nodes at subsequent passes. The optimization is there-
fore done in a multi-scale way: among adjacent nodes at the fi rst pass, 
among adjacent meta-nodes at the second pass, etc. The output of 
the algorithm is a set of partitions, one for each pass. The optimal 
partition is the one found at the last pass. It has been shown on sev-
eral examples that modularity estimated by this method is very close 
to the optimal value obtained from slower methods (Blondel et al., 
2008). Intermediate partitions can also be shown to be meaningful 
and to correspond to communities at intermediate resolutions (see 
Section “Discussion”). In the following, we will call “lowest non-
trivial level” the partition found after the fi rst pass.

Node roles
Once a maximally modular partition of the network has been iden-
tifi ed, it is possible to assign topological roles to each node based on 
its density of intra- and inter-modular connections (Guimerà and 
Amaral, 2005a,b; Guimerà et al., 2005; Sales-Pardo et al., 2007).

Intra-modular connectivity is measured by the normalized 
within-module degree,
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where κni
 is the number of edges linking the ith node to other nodes 

in the nth module, and k
i
 is the total degree of the ith node. Thus 

P
i
 will be close to 1 if the ith node is extensively linked to all other 

modules in the community and 0 if it is linked exclusively to other 
nodes in its own module.

The two-dimensional space defi ned by these parameters, the 
{P, z} plane, can be partitioned to assign categorical roles to the 
nodes of the network. Contrarily to our previous study (Meunier 
et al., 2009), where we used a simplifi ed defi nition of node roles, 
the higher number of nodes examined in the current study allowed 
us to adopt the original defi nitions of node roles as described for 
large metabolic (Guimerà et al., 2005) and transportation networks 
(Guimerà and Amaral, 2005b):

• The hubness of a node can be defi ned by its within-module 
degree: If a given node i has a value of z

i
 > 2.5. It is classifi ed as 

a hub, otherwise as a non-hub.
• The limits for the participation coeffi cient are different 

for hubs and non-hubs. For non-hubs, if a given node 
has value 0 < P

i
 < 0.05, the node is classifi ed as an ultra-

 peripheral node, 0.05 < P
i
 < 0.62 corresponds to a peripheral 

node, 0.62 < P
i
 < 0.80 corresponds to a connector node, and 

0.80 < P
i
 < 1.0 is a kinless node. For hubs, 0 < P

i
 < 0.30 corre-

sponds to a provincial hub, 0.30 < P
i
 < 0.75 corresponds to a 

connector hub, and 0.75 < P
i
 < 1.0 is a kinless hub.

These different categories allowed us to classify the nodes 
according to their topological functions in the network. For 
example, a provincial hub is a hub with greater intra- vs inter-
modular connectivity, thus having a pivotal role in the function 
realized by its module, whereas a connector hub will play a central 
role in transferring information from its module to the rest of 
the network.

The results of modular decomposition were visualized in ana-
tomical space using Caret software for cortical surface mapping2, 
and in topological space using Pajek software3.

Similarity measure
To compare the different modularity partitions obtained at differ-
ent hierarchical levels in the same subject, or at the same hierar-
chical level in different subjects, we used the normalized mutual 
information, as defi ned in Kuncheva and Hadjitodorov (2004). 
For two given partitions A and B, with a number of communities 
denoted C

A
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where N
ij
 is the number of nodes in common between modules i 

and j, the sum over row i of matrix N
ij
 is denoted N

i
, and the sum 

over column j is denoted N
.j
. If the two partitions are identical then 

I(A,B) takes its maximum value of 1. If the two partitions are totally 
independent, I(A,B) = 0.

The initial application of this quantity was to evaluate different 
modularity partition algorithms (Danon et al., 2005). The similar-
ity index was used to compute how closely the partitions obtained 

2http://brainmap.wustl.edu/register.html
3http://vlado.fmf.uni-lj.si/pub/networks/pajek
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from different algorithms matched the “target” partition of a given 
test network, i.e. a network whose modular structure was known 
a priori. Here the application was different, since we wanted to 
compare partitions obtained for different subjects in a group. Since 
the equation is symmetric in A and B, it is however possible to use 
the index without a target partition.

The networks constructed for each individual had the same 
number of nodes N, so the partitions of each subject have the same 
number of nodes. However, due to the high threshold applied 
to construct the adjacency matrix, the number of disconnected 
nodes in the networks can be different for each subject. One solu-
tion is to consider each disconnected node as a single module. In 
this case, each node (disconnected or not) of the network will be 
in the set of modules of each subject. However, it introduces artifi -
cially high values in the similarity values, especially if the networks 
of two subjects have similar sets of disconnected edges. So we have 
chosen to remove the disconnected nodes from the partitions 
and study only the partitions obtained on the giant component 
of each network, but keeping the value of N in the equation as 
the total number of nodes. This leads to a value of similarity 
slightly lower than if the disconnected nodes were included in 
the partitions, but is more representative of the relevant set of 
connected modules.

RESULTS
SIMILARITY AND VARIABILITY OF MODULAR DECOMPOSITIONS
It was possible to defi ne a hierarchical modular decomposition 
for each of the 18 subjects in the sample. At the highest hierarchi-
cal level, the mean brain functional network modularity for the 
group was 0.604, with SD = 0.097. By comparison, modularity 
at the highest level for 18 random networks with an equivalent 
number of nodes (1808) and edges (8000) was 0.303 (SD = 0.003). 
There was a signifi cant increase in brain network modularity com-
pared to random network modularity (Kolmogorov–Smirnov test, 
D = 1, P ∼ 2−10).

The similarity of network community structure between each 
pair of subjects, at each level of the hierarchy, was calculated 
using Eq. 4. The resulting similarity matrices for level 3 (the 
highest level) and level 1 (the lowest non-trivial level) are shown 
in Figure 2.

The average pairwise similarity was 0.57 at level 3 and 0.63 at 
level 1, indicating a reasonable degree of consistency between sub-
jects in modular organization of functional networks. The similarity 
between subjects was highly correlated over levels of the modular 
hierarchy: for example, if a pair of networks had a similar modular 
partition at the highest level, the sub-modular organization at lower 
levels was also similar.

Simply by summing the pairwise similarity scores for each row 
of the similarity matrix, it was possible to identify the individual 
subject (number 2) that was most similar to all other subjects in 
the sample, i.e. the most representative subject, and the subject (4) 
that was least similar to the rest of the sample. In what follows, we 
will focus attention on the modular decomposition of the most 
representative subject.

HIERARCHICAL MODULARITY
The hierarchical modular decomposition of the most representa-
tive subject’s brain functional network is shown in Figure 3. At 
the highest level of the hierarchy (level 3), there were eight large 
modules, each comprising more than 10 nodes. At the lowest level 
of the hierarchy (level 1), there were 57 sub-modules. The largest 
fi ve modules (with putative functional interpretations) and their 
sub-modular decomposition are briefl y described below; some 
additional details are provided in Table 1.

• Central module (somatosensorimotor): The largest high level 
module comprised extensive areas of lateral cortex in premo-
tor, precentral and postcentral areas, extending inferiorly to 
superior temporal gyrus, as well as to premotor and dorsal cin-
gulate cortex medially. At a lower hierarchical level, medial and 

FIGURE 2 | Variability and similarity of brain functional network 

community structure between 18 different subjects. (A) Matrix showing 
the between-subject similarity measure for community structure at the 
highest level of the modular hierarchy. The pairwise similarity scores for the 
most representative subject are highlighted by a black rectangle. (B) Matrix 

showing the between-subject similarities for community structure at the 
lowest level of the modular hierarchy. (C) Scatter plot showing strong 
correlation of between-subject similarities at high and low levels of the 
modular hierarchy. Red points are similarities for the most 
representative subject.
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lateral cortex were segregated in different sub-modules and, 
within lateral cortex, precentral and postcentral areas were 
segregated from superior temporal cortex.

• Parieto-frontal module (default/attentional): This module 
 comprised medial posterior parietal and posterior cingulate cor-
tex, extending to medial temporal lobe structures inferiorly, and 

FIGURE 3 | Hierarchical modularity of a human brain functional network. 

(A) Cortical surface mapping of the community structure of the network at the 
highest hierarchical level of modularity, showing all modules that comprise more 
than 10 nodes. (B) Anatomical representation of the connectivity between nodes 
in colour-coded modules. The brain is viewed from the left side with the frontal 

cortex on the left of the panel and the occipital cortex on the right of the panel. 
Intra-modular edges are coloured differently for each module; inter-modular edges 
are drawn in black. (C) Sub-modular decomposition of the fi ve largest modules 
(shown centrally) illustrates that the medial occipital module has no major sub-
modules whereas the fronto-temporal modules has many sub-modules.

Table 1 | The fi ve largest modules of the human brain functional network in a representative normal volunteer, indicating the number and type of 

nodes and sub-modules.

Module description # Nodes Connector nodes Provincial hubs Connector hubs Sub-modules Size of sub-modules

Central (sensorimotor) 239 8 1 4 11 115, 96, 8, 4, 3 (2), 2 (5)

Parieto-frontal (default/attention) 138 10 1 0 10 115, 3 (5), 2 (4)

Medial occipital (primary visual) 132 3 0 0 1 132

Lateral occipital (secondary visual) 101 7 0 1 1 101

Fronto-temporal (symbolic) 89 0 2 3 24 19, 8, 6, 5 (2), 4, 3 (6), 2 (12)
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areas of inferior parietal and dorsal prefrontal cortex laterally.
• Medial occipital module (primary visual): This module 

 comprised medial occipital cortex and occipital pole, inclu-
ding primary visual areas.

• Lateral occipital (secondary visual): This module comprised 
dorsal and ventral areas of lateral occipital cortex, including 
secondary visual areas.

• Fronto-temporal module (symbolic): This module comprised 
dorsal and ventral lateral prefrontal cortex, medial prefrontal cor-
tex, and areas of superior temporal cortex. It was less  symmetrically 
organized than most of the other high level modules and was 
decomposed to a larger number of sub-modules at lower levels.

Note that most high level modules are bilaterally symmetrical, 
comprise both lateral and medial cortical areas, and tend to be spa-
tially concentrated in an anatomical neighbourhood. Sub- modular 
decomposition sometimes resulted in a dominant sub-module, 
comprising most of the nodes in the higher level module, with some 
much smaller sub-modules each comprising a few peripheral nodes. 
For example, this was the pattern for the occipital modules. An 
alternative result was a more even-handed decomposition of a high 
level module into multiple sub-modules; this was the pattern for the 
prefronto-temporal module. In Simon’s terminology, the number of 
sub-modules into which a module can be decomposed is its span of 
control, and so we can describe occipital modules as having a greater 
span of control than, say, the fronto-temporal module.

NODE ROLES
On the basis of the highest level (level 3) of modular decomposi-
tion, we assigned topological roles to each of the regional nodes. 
A node was defi ned as a hub or non-hub (more or less highly con-
nected) with a provincial, connector or kinless role (depending on 
its  balance of intra- vs inter-module connectivity). Provincial hubs 
will play a key role in intra-modular processing; connector hubs 
will play a key role in inter-modular processing.

Figure 4 displays an example of the node roles obtained from the 
most representative subject. Figure 4A shows the participation coef-
fi cient (P, our measure of inter-modular connectivity) vs the intra-
modular degree (z, our measure of hubness) for each regional node 
in the network. Most nodes (416, 53%) have no inter-modular con-
nections P = 0, but some (28, 4%) have a high proportion of inter-
modular connections, qualifying for connector status. Figure 4B 
is a spatial representation of the node roles, the locations of the 
nodes corresponding to their position in three-dimensional stere-
otactic space. Figure 4C is a topological  representation obtained 
by applying the Fruchterman–Reingold algorithm (Fruchterman 
and Reingold, 1991) to the network displayed in Figure 4B. In this 
representation, the distances between the nodes are not related to 
their spatial location, but to how strongly linked connected they 
are to their neighbours. The main idea is to start from an initial 
random placement of the nodes, and replace the edges by springs, 
letting the equivalent mechanical system evolve until it reaches a 
stable mechanical state. Thus, this representation locates nodes with 
similar connectivity patterns closer together in space.

We can see that most nodes (743, i.e. 95% of the nodes) have 
either the role of ultra-peripheral nodes or peripheral nodes and 
a small minority (39, i.e. 5% of the nodes) have the topologically 

important roles of hubs and/or connector status. Inter-modular 
connections, and the connector nodes and hubs which mediate 
them, are most numerous in posterior modules containing regions 
of association cortex; the fronto-temporal module is sparsely con-
nected to other modules and the medial occipital module also has 
relatively few connector nodes.

METHODOLOGICAL ISSUES
This work is a fi rst attempt to uncover the hierarchical organiza-
tion of brain functional networks and to compare the stability of 
hierarchical modular decompositions across individuals. There are, 
however, three possible weaknesses in our analysis that we would 
like to address in this section.

Validation of the algorithm
A fi rst consideration concerns the choice of the Louvain method 
(LM) in order to uncover nested modules in the brain networks. 
LM was fi rst proposed in order to uncover optimal partitions of a 
graph by maximising modularity. This is a greedy method which is 
known to be very fast and very precise (Blondel et al., 2008), albeit 
less precise than much slower methods such as simulated annealing 
(SA). It is interesting to note, however, that this lack of precision 
may be an advantage, in practice, as it may avoid some of the pitfalls 
of modularity analysis such as its resolution limit (Fortunato and 
Barthélemy, 2007). For instance, it has been recently shown that LM 
performs much better than SA when applied to benchmark networks 
with unbalanced modules comprising different numbers of nodes 
(Lancichinetti and Fortunato, 2009). We therefore believe that there 
is good evidence that the top level partitions uncovered by LM are 
valid. The validity of the intermediate hierarchical levels identifi ed 
by the algorithm is, however, more arguable, as it has not been stud-
ied in detail yet. In order to show the validity of these intermediate 
levels, we need to verify that the method uncovers all the signifi cant 
partitions present in the network and only those.

To do so, we have tested LM on a benchmark network with 
known hierarchical structure (Sales-Pardo et al., 2007); Figure 5A). 
This benchmark network is made of 640 nodes with three levels 
of organization: small modules comprising 10 nodes, medium-
size modules comprising 40 nodes and large modules comprising 
160 nodes. The cohesiveness of the hierarchy between levels is tuned 
by a single parameter σ, i.e. the larger the value of σ, the more dif-
fi cult it is to fi nd the sub-modules. When applied on this benchmark 
network, the algorithm fi nds with an excellent precision the fi rst 
two levels (16 modules and 64 modules), but does not uncover the 
partition into 4 modules. This result is to be expected because this 
partition into four modules is sub-optimal in terms of modularity 
and can therefore not be uncovered by an aggregative method. This 
shows that the method can at best uncover the partition optimis-
ing modularity and fi ner partitions. In order to uncover coarser 
partitions, one needs to decrease the resolution of the method, 
which can be done by following Reichardt and Bornholdt (2006), 
or Sales-Pardo et al. (2007), for instance.

On the same benchmark network, the algorithm typically fi nds 
two levels (one corresponding to 64 modules and one corresponding 
to 16 modules) but it may occasionally fi nd three levels (one level 
corresponding to 64 modules and two levels similar to the partition 
into 16 modules). When σ = 1.0, for instance, over 100 realizations 
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of the graph, the algorithm fi nds two levels on 86 realizations, 
and three levels on 14 realizations. This result is encouraging as it 
suggests that the algorithm only produces signifi cant partitions. 
However, it is possible to fi nd situations where it is not the case, 
e.g. random graphs. It is therefore still necessary to verify the sig-
nifi cance of intermediate partitions, as we will discuss below.

Comparison with a random graph
A second consideration concerns the comparison of the partition 
of the original network with randomized data, as the algorithm 
also gives a hierarchical decomposition for randomly generated 
networks. To show that the representative brain network under 
study (subject ID 2) displays a non-random hierarchical modular 
structure, we have randomized the original data and processed 

the hierarchical structure of randomized networks, with two kind 
of randomization. First, by computing 100 randomizations of the 
time points in the original time-series (in green on Figure 5B) and, 
second, by randomising the original adjacency matrix 100 times (in 
blue on Figure 5B). Note that the two kinds of randomization lead 
to networks with different sizes: in the randomized time-series net-
works, almost all the nodes are connected, thus leading to networks 
with 1808 nodes and 8000 edges. Whereas starting from the original 
adjacency matrix leads to networks of 844 nodes and 8000 edges. 
The modularity obtained for the lowest and highest partitions of 
the original network are displayed in Figure 5B. The modularity 
values are clearly reduced in the randomized networks, relative to 
the original data, indicating that our results on real brain networks 
are not trivially reproduced in random networks.

FIGURE 4 | Topological roles of network nodes in intra- and inter-modular 

connectivity. (A) All nodes are plotted in the {P − z} plane of intra-modular 
degree z vs participation coeffi cient P; the solid lines partition the plane 
according to criteria for hubs vs non-hubs and connector, provincial, peripheral 
or kinless nodes. (B) Anatomical representation of the provincial hubs 
(circles), connector hubs (large squares) and connector nodes (small squares) 

of each of each of the fi ve largest modules at the highest level of the 
modular hierarchy. (C) Topological representation of the network in using 
Fruchterman–Reingold algorithm (Fruchterman and Reingold, 1991) to 
highlight topological proximity of highly connected nodes; colour and shape 
of the nodes represent their modular assignment and topological role as 
above and in Figure 2.
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In order to show that the intermediate levels considered in this 
paper are signifi cant, we have followed the argument that signifi cant 
partitions should be robust, in the sense that they should only be 
weakly altered by a modifi cation of the optimization algorithm. As 
argued by Ronhovde and Nussinov (2009), comparing the optimal 
partitions found by the algorithm for different orders of the nodes 
is a way to test their robustness and therefore their validity. We 
have therefore optimized the modularity of the representative brain 
network 100 times by choosing the nodes in a different order, and 
focused on the fi rst non-trivial partition found by the algorithm. 
The mutual information between pairs of partitions obtained for 
each different order is then computed. The average mutual infor-
mation among those pairs is very high (0.89) compared to what is 
obtained for a comparable random network (0.44), thereby sug-
gesting that partitions obtained at the lowest non-trivial levels are 
relevant for the network under study.

Dependence on the number of edges
A third consideration concerns the number m of edges that we have 
chosen in order to map the correlation matrices onto unweighted 
graphs. This is a known problem when dealing with fMRI data and 
building brain networks. If m is too small, i.e. keeping the top most 
signifi cant links, the network will be so sparsely connected that it 
will be made of several disconnected clusters. If m is too large, in 
contrast, the network will be very densely connected, but mainly 
made of unsignifi cant links. In these two extremes, the network 
structure is a bad representation of the correlation matrix. This 
is still an open problem that requires the right trade-off between 
these two competing factors. In order to show the robustness of 
our results, we propose to look at the resilience of the hierarchi-
cal modular organization under the tuning of the value of m. 
Meaningful values of m are identifi ed by intervals over which the 
structure of the network is preserved. We have applied this scheme 

FIGURE 5 | Methodological issues in analysis of hierarchical modularity. 

(A) Validation of the Louvain method for hierarchical decomposition on a 
benchmark network defi ned in Sales-Pardo et al. (2007). The network is naturally 
made of 64, 16 and 4 modules of 10, 40 and 160 nodes respectively. The 
separability of different levels of the benchmark network is controlled by the 
parameter ρ. We calculate the normalized information between the lowest non-
trivial level partition and the natural partition of 64 modules (solid curve), and 
between the second level partition and the natural partition of 16 modules 
(dashed curve). After averaging over 20 different realizations of the network, our 

simulations show an excellent agreement as mutual information is above 0.95 
for values of ρ up to 1.5 for the lowest non-trivial and intermediate levels. 
(B) Modularity values at the highest and lowest levels of hierarchical community 
structure in a representative brain network (Subject ID 2, in red) and for 
networks obtained from 100 randomizations of the original time-series (in 
green), and for networks obtained by 100 randomizations of the original 
adjacency matrix. (C) Similarity measures between highest level partitions (left) 
and non-trivial lowest level partitions (right) obtained by thresholding the original 
network to retain different number of highest correlations as edges.
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to the optimal partitions of the most representative subject (Subject 
2), over a wide range of threshold (2000–14000 edges, with a step 
of 200 edges). Our results show that partitions are very similar 
(in terms of mutual information) over the range (6000–11000) 
for both highest level (left on Figure 5C) and non-trivial lowest 
level (right on Figure 5C), indicating our results are robust to the 
specifi c choice of threshold.

DISCUSSION
In this study, we have applied recently developed tools for char-
acterizing the hierarchical, modular structure of complex systems 
to functional brain networks generated from human fMRI data 
recorded under no-task or resting state conditions. Where previ-
ous comparable work was limited by the computational expense 
of available modularity algorithms, meaning that only one or a 
few relatively low resolution networks (comprising 10 s of nodes) 
could be analysed, here we were able to obtain modular decom-
positions on a larger number of higher resolution networks (each 
comprising 1000s of nodes). In addition, we used an information-
based measure to quantify the similarity of community structure 
between two different networks and so to fi nd a principled way 
of focusing attention on a single network that is representative 
of the group.

HIERARCHICAL MODULARITY
There was clear evidence for hierarchical modularity in these 
data and the community structure of the networks at all levels 
of the hierarchy was reasonably similar across subjects (I ∼ 0.6), 
suggesting that brain functional modularity is likely to be a rep-
licable phenomenon. This position is further supported by the 
qualitative similarity between the major modules identifi ed at the 
highest level of the hierarchy in this study and the major modules 
or functional clusters identifi ed in comparable prior studies on 
independent samples (Salvador et al., 2005; Meunier et al., 2009). 
As previously, the major functional modules comprised function-
ally and/or anatomically related regions of cortex and this pattern 
was also evident to some extent at sub-modular levels of analysis. 
For example, the central module comprising areas of somatosen-
sorimotor and premotor cortex was segregated at a sub-modular 
level into a medial component, comprising supplementary motor 
area and cingulate motor area, and a lateral component, com-
prising precentral and postcentral areas of primary motor and 
somatosensory cortex.

Another plausible aspect of the results was the clear evidence 
for a symmetrical posterior-to-anterior progression of cortical 
modules. This was seen most clearly on the medial surfaces of 
the cerebral hemispheres in terms of their division into medial 
occipital, parieto-frontal and central modules. A posterior-to-ante-
rior organization of cortical modules in adult brain functional 
networks is arguably compatible with the abundant evidence from 
neurodevelopmental studies which have shown rostro-caudal 
modularity of the spinal cord, brain stem, hind brain and dien-
cephalon defi ned by segmented patterns of gene expression (Redies 
and Puelles, 2001). This speculative link between the topological 
modularity of adult brain networks and the embryonic modular-
ity of the developing nervous system presents an interesting focus 
for future studies.

NODE ROLES IN INTER-MODULAR CONNECTIVITY
One important potential benefi t of a modular analysis of complex 
networks is that it allows us to be more precise about the topo-
logical role of any particular node in the network. For example, 
rather than simply saying that a particular region has a high 
degree we may be able to say that it has a disproportionately 
important role in transfer of information between modules, 
rather than within a module. In these data, the location of con-
nector nodes and hubs with a prominent role in inter-modular 
communication was concentrated in posterior areas of associa-
tion cortex. The fronto-temporal module, on the other hand, 
was rather sparsely connected to other modules. One possible 
explanation for these anatomical differences in inter-modular 
communication may relate to the stationarity of functional con-
nectivity between brain regions. Our measure of association 
between brain regions (the wavelet correlation corresponding 
to a frequency interval of 0.03–0.06 Hz) provides an estimate 
of functional connectivity “on average” over the entire period of 
observation (8 min 35 s). If there is signifi cant variability over 
time in the strength of functional connections between modules 
this may be manifest in terms of reduced connectivity on aver-
age over a prolonged period. Thus one possible explanation for 
the sparser inter-modular connections of the fronto-temporal 
module is that the interactions of this system with the rest of 
the brain network may be more non-stationary or labile over 
time. This interpretation could be tested by future studies using 
time-varying measures of functional connectivity, such as phase 
synchronization (Kitzbichler et al., 2009).

DEALING WITH MORE THAN ONE SUBJECT
One of the challenges in analysis of network community struc-
ture is the richness of the results (every node will have a modular 
 assignment and a topological role) and the diffi culties attendant 
on properly managing inter-individual variability in such novel 
metrics. In previous work, we estimated a functional connectivity 
matrix for each subject, then thresholded the group mean associa-
tion, and explored the community structure of the group mean 
network. This allows us to focus attention on a single network but it 
neglects between-subject variability and, like any use of the mean in 
small samples, it is potentially biased by one or more outlying values 
for the functional connectivity. Here we have explored an alterna-
tive approach, using an information-based measure of similarity to 
quantify between subject differences in network organization and 
to identify the most representative subject in the sample. One can 
imagine that this measure could be combined with resampling based 
approaches to statistical inference in order to estimate, for example, 
the probability that the community structure identifi ed in a single 
patient is signifi cantly dissimilar to a reference group of brain net-
works in normal volunteers. However, it fair to say that there are a 
number of technical challenges to be addressed in using modularity 
measures for statistical comparisons between different groups.

RETURNING TO SIMON’S HYPOTHESIS
As this is the fi rst study to attempt a hierarchical modular decompo-
sition of human brain functional networks, there is little guidance 
in the existing literature as to what the correct structure of the net-
work should resemble. Our results are encouraging in that they have 
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been able to identify well defi ned neuroanatomical  systems, but 
they remain empirical and require further validation in appropriate 
animal models. However, our analysis of simulated data (Section 
“Discussion”) indicates that our algorithm does indeed identify the 
correct structure of a hierarchical, modular network, which lends 
confi dence to our results.

In Simon’s theoretical analysis, near-decomposability was con-
sidered to be a ubiquitous property of complex systems because it 
conferred advantages of adaptive speed in response to evolutionary 
selection pressures as well as shorter-term developmental or envi-
ronmental contingencies. In relation to the modularity of human 
brain systems, this view prompts a number of questions. Perhaps the 
most immediately addressable, at least by functional neuroimaging, 
is the question of how the modularity of brain  network organization 
relates to cognitive performance and the capacity to shift attention 
rapidly between different stimuli or tasks. According to Simon’s the-
ory, this key aspect of the brain’s cognitive function should depend 
critically on modular or sub-modular components and the rapid 
reconfi guration of inter-modular connections between them. Future 
studies, applying graph theoretical techniques to modularity analysis 
of fMRI data recorded during task performance (rather than in no-
task state) may be important in testing this prediction.

CONCLUSION
We have described graph theoretical tools for analysis of  hierarchical 
modularity in human brain functional networks derived from fMRI. 
Our main claims are that these techniques are  computationally fea-
sible and generate plausible and  reasonably consistent descriptions 
of the brain functional network  community structure in a group 
of normal volunteers. The potential importance theoretically of 
this analysis has been highlighted by reference to Simon’s seminal 
theory of hierarchy and decomposability in the design of informa-
tion processing systems.
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