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The pathogenesis of sepsis is mediated in part by the pathogen-
associated molecular pattern molecule bacterial endotoxin, which
stimulatesmacrophages tosequentially releaseearly (e.g.,TNF-a, IL-
1b) and late (e.g., high-mobility group box [HMGB] 1 protein)
proinflammatorymediators.TherecentdiscoveryofHMGB1asa late
mediator of lethal sepsis has prompted investigation into develop-
ment of several new experimental therapeutics that limit release,
either blocking HMGB1 itself or its nominal receptors. Quercetin was
recently identified as an experimental therapeutic that significantly
protects against oxidative injury. Here, we report that quercetin
attenuates lethal systemic inflammation caused by endotoxemia,
even if treatment is started after the early TNF response. Quercetin
treatment reduced circulating levels of HMGB1 in animals with
established endotoxemia. In macrophage cultures, quercetin in-
hibited release as well as the cytokine activities of HMGB1, including
limiting the activation of mitogen-activated protein kinase and NF-
kB, two signaling pathways that are critical for HMGB1-induced
subsequent cytokine release. Quercetin and autophagic inhibitor,
wortmannin, inhibited LPS-induced type-II microtubule-associated
protein 1A/1B–light chain 3 production and aggregation, as well as
HMGB1 translocation and release, suggesting a potential associa-
tion between autophagy and HMGB1 release. Quercetin delivery,
a strategy to pharmacologically inhibit HMGB1 release that is
effective at clinically achievable concentrations, now warrants fur-
ther evaluation in sepsis and other systemic inflammatory disorders.
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Sepsis, a lethal systemic inflammatory response to infection,
affects nearly 750,000 patients in the United States annually,
and has a mortality of 20 to 40% (1). The incidence is rising at
rates between 1.5 and 8% per year (1, 2). Cytokines, such as
TNF-a, IL-1b, and high-mobility group box (HMGB) 1 protein,
produced during inflammation, are critical mediators of sepsis-
related tissue injury and death (3, 4). Significant advances have
been made in understanding the role of proinflammatory
mediators in the pathogenesis of sepsis, but effective therapies

that target these inflammatory mediators have not yet entered
clinical practice (5). A major difficulty in developing therapeu-
tics that target cytokines (e.g., TNF-a and IL-1b) is that they
are released early in the development of a systemic inflamma-
tory response. This leaves a narrow therapeutic window for
administration of antagonists, and inhibitors of TNF-a and IL-
1b that are not effective when delivered after the acute cytokine
response has occurred (6).

HMGB1, a highly conserved nuclear protein, is secreted by
activated macrophages/monocytes (4, 7–10), and functions as a
crucial ‘‘late’’ mediator of lethal endotoxemia and sepsis (4, 11).
Circulating HMGB1 levels are elevated in a delayed fashion
(after 16–32 h) in septic mice (4, 12) and patients (4). Admin-
istration of recombinant HMGB1 to mice recapitulates many of
the clinical signs of sepsis, including fever, derangement of
intestinal barrier function, tissue injury, and multiple organ
failure. Extracellular HMGB1 can stimulate the release of
TNF-a, IL-1b, and other inflammatory products from macro-
phages/monocytes (13), induce chemotaxis and proliferation of
smooth muscle cells (14), and promote dendritic cell maturation
(15). Administration of anti-HMGB1 antibodies or inhibitors
(e.g., ethyl pyruvate, nicotine, stearoyl lysophosphatidylcholine,
or tanshinone IIA sodium sulfonate) significantly protects mice
against LPS-induced acute tissue injury (16, 17) and lethal
endotoxemia (4, 18–20). Notably, these anti-HMGB1 reagents
confer significant protection against delayed endotoxin lethality,
even when applied at a time after the acute-phase cytokine
responses have peaked and resolved (4, 18, 19, 21, 22), suggesting
that HMGB1-targeted therapeutic strategies might be useful.

Quercetin (3,39,49,5,7-pentahydroxyflavone dihydrate), one
of the most widely distributed flavonoids in the plant kingdom,
is ingested as a major constituent in the diet (23, 24). Quercetin
has a broad range of activities within cells (23). As an anti-
oxidant, it prevents oxidation of low-density lipoproteins and
the expression of metalloproteinase 1, thus inhibiting the dis-
ruption of atherosclerotic plaques and contributing to plaque
stabilization (25). In tumor cells, it exerts antiproliferative
effects and arrests human leukemic T cells in late G1 phase of
the cell cycle (26). Quercetin has anti-inflammatory effects,
regulating nitric oxide, IL-6, and TNF-a release (27–33),
thereby alleviating oxidative damage in the tissue (28, 34) and
inhibiting the LPS-induced delay in spontaneous apoptosis and
activation of neutrophils (35). Its role in preventing lethality in
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animals with established lethal sepsis and systemic inflamma-
tion, ability to inhibit HMGB1 release, and proinflammatory
function has not been previously demonstrated. We evaluated
its capacity to inhibit the release and cytokine activities of
HMGB1 in animal models of lethal endotoxemia.

MATERIALS AND METHODS

Animal Model of Endotoxemia

This study was approved and performed in accordance with the
guidelines for the care and use of laboratory animals at Central South
University, Changsha, China. Endotoxemia was induced in Balb/C
mice (male, 7–8 wk old, 20–25 g weight) by intraperitoneal injection of
bacterial endotoxin (10 mg/kg LPS, Escherichia coli LPS 0111:B4;
Sigma, St. Louis, MO), as previously described (4, 19, 36). Blood was
collected at different times after LPS administration, allowed to clot
for 2 hours at room temperature, and then centrifuged for 15 minutes
at 1,500 3 g. Serum samples were stored at 2208C before analysis.
Mortality was recorded for up to 3 weeks after injection to ensure that
no additional late deaths occurred.

Cell Culture and Treatment

Murine macrophage-like RAW 264.7 cells were obtained from the
Shanghai Type Culture Collection (Shanghai, China), and cultured in
RPMI medium 1,640 (Life Technologies, Carlsbad, CA) supplemented
with 10% heat-inactivated FBS, 2 mM glutamine, and antibiotic–
antimycotic mix in a humidified incubator with 5% CO2 and 95%
air. At 70% confluency, RAW264.7 cells were removed mechanically
and resuspended in serum-free Opti-MEM I medium (Life Technolo-
gies). After preincubation for 2 hours, RAW264.7 cells were treated
with LPS, recombinant TNF-a protein (Peprotech, Rocky Hill, NJ) or
recombinant HMGB1 protein (37) (kindly provided by Dr. Kevin J.
Tracey, Feinstein Institute for Medical Research, Manhasset, NY).

Quercetin and Wortmannin Solution

In experiments, the quercetin and wortmannin (Sigma) were prepared
in DMSO, as previously described (38, 39).

Cell Viability Assay

Cells were plated at a density of 104 cells/well on 96-well plates in 100 ml
RPMI. Cell viability was evaluated using the conventional MTT re-
duction assays. For the MTT reduction assay, cells of each micro well
were incubated with 20 ml 0.5% MTT for 2 hours at 378C, and the
reaction was stopped by adding 150 ml DMSO. The amount of MTT
formazan product was determined by measuring absorbance using
a micro-plate reader (Bio-Rad, Hercules, CA) at a test wavelength of
570 nm and a reference wavelength of 630 nm.

Beclin1 shRNA

Beclin-1 short hairpin RNA (shRNA) and control shRNA (Sigma)
were transfected into cells using Lipofectamine 2,000 reagent (Life
Technologies) according to the manufacturer’s instructions. At the end
of the shRNA transfection (48 h), the medium over the cells was
changed before any other treatment.

Preparation of Cellular Extracts

At the indicated time points after treatment, cells were harvested and
washed twice with cold PBS; nuclear and cytoplasmic extracts were
prepared as previously described (8, 9, 40).

Western Blotting Analysis

Proteins in the whole-cell lysate, subcellular fractions, or concentrated
cell culture supernatants were resolved on 10% SDS-PAGE gel, and
transferred to a polyvinylidene fluoride membrane. After blocking, the
membrane was incubated for 2 hours at 258C with various primary
antibodies specific for HMGB1, proliferating cell nuclear antigen
(PCNA) (BD Biosciences, San Jose, CA), b-actin, glyceraldehyde
phosphate dehydrogenase (KangChen Biotechnology, Shanghai, China),
b-tubulin (Sigma), phospho-p38 (T180/Y182; R&D Systems, Minneap-

olis, MN), phospho–extracellular signal-regulated kinase 1/2 (Thr202/
Tyr204; Upstate, Lake Placid, NY), phospho–c-Jun NH2-terminal
kinase 1/2 (Thr183/Tyr185; Cell Signaling Technology, Danvers, MA),
NF-kB p65, inhibitor of NF-kB (IkBa) (Santa Cruz Biotechnology,
Santa Cruz, CA), and microtubule-associated protein 1A/1B–light chain
3 (LC3; NOVUS, Littleton, CO). After incubation with peroxidase-
conjugated secondary antibodies for 1 hour at 258C, the signals were
visualized by 3,39-diaminobenzidine (DAB) detection (Boster Biotech,
Wuhan, China) according to the manufacturer’s instructions. The
relative band intensity was quantified by using the Gel-pro Analyzer
software (Media Cybernetics, Bethesda, MD).

Cytokine Measurements

Levels of TNF-a and IL-1b in the culture medium were determined in
ELISA kits (Boster Biotech) according to the manufacturer’s instruc-
tions. Levels of TNF-a and IL-1b mRNA were assayed by RT-PCR
analysis, as previously described (41).

Electrophoretic Mobility Shift Assay for NF-kB Activation

Nuclear extracts were prepared, and electrophoretic mobility shift
assay was performed using biotin-labeled oligonucleotides to measure
NF-kB DNA binding activity (Pierce, Rockford, IL). In brief, 10 mg
nuclear extract was incubated with biotin-labeled double-stranded
DNA fragment corresponding to the NF-kB (sense strand, 59-AGTT
GAGGGGACTTTCCCAGGC-39) at 48C in the presence or absence
of 100 3 unlabeled NF-kB and subjected to electrophoresis at 110 V
for 4 hours at 48C on a 5% polyacrylamide gel. The gels were
transferred to a nylon membrane and subjected to cross-link with an
ultraviolet lamp, and the signals were detected by chemiluminescence.
For supershift experiments, NF-kB p65 antibody (Santa Cruz Bio-
technology) was incubated with the binding reaction mixture for 30
minutes at room temperature before addition of the labeled oligonu-
cleotide.

HMGB1 Western Blotting Analysis

Levels of HMGB1 in the culture medium or serum were determined by
Western blotting analysis, as previously described (4, 8, 9). The relative
band intensity was quantified by using the Gel-pro Analyzer software.

HMGB1 Immunostaining

At 12 hours after LPS or TNF-a stimulation, cellular HMGB1 was
immunostained with anti-HMGB1 polyclonal antibodies, and nuclear
morphology was analyzed with the fluorescent dye, Hoechst 33,258
(Sigma). Images were acquired using a fluorescence microscope
(Eclipse 80i; Nikon, Tokyo, Japan), as previously described (8, 9).

Analysis of Autophagic Activities by ArrayScan

Autophagy (self-eating) is a process responsible for the bulk degrada-
tion of intracellular material that is evolutionarily conserved between
all eukaryotes. During autophagy, a cytoplasmic form of LC3-I (18 kD)
is proteolysed (near the C terminus) and conjugated to phosphatidyl-
ethanolamine to form a 16-kD product (LC3-II), which is recruited to
autophagosomal membranes. Thus, detecting LC3-II by immunoblot-
ting or immunofluorescence has become a reliable method for moni-
toring autophagic activities. Specifically, RAW 264.7 cells were seeded
in 96-well plates and cultured in the presence of stimulus for a given
time, then fixed with 3% paraformaldehyde and stained with HMGB1
and LC3 antibody (NOVUS). Secondary antibodies were goat Ig
conjugated with either Alexa 488 or Alexa 680 fluorochromes. Nuclear
morphology was analyzed with the fluorescent dye, Hoechst 33258.
Image data were collected with an ArrayScan HCS 4.0 imaging
cytometer with a 203 objective (Cellomics, Pittsburgh, PA). Arrayscan
is an automated fluorescent imaging microscope that collects in-
formation about the spatial distribution of fluorescently labeled
components in cells placed in 96-well microtiter plates. The Spot
Detector BioApplication was used to acquire and analyze the images
after optimization. Images of 1,000 cells for each group treatment
were analyzed to obtain the average nuclear and cytosolic HMGB1
intensity and LC3 fluorescence spot number per cell, as previously
described (42, 43).
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Statistical Analysis

Data are expressed as means (6SEM) of three independent experi-
ments performed in triplicate. One-way ANOVA was used for
comparison among the different groups. When the ANOVA was
significant, post hoc testing of differences between groups was per-
formed using the least significant difference test. The Kaplan-Meyer
method was used to compare the differences in mortality rates among
groups. A P value of less than 0.05 was considered significant.

RESULTS

Pretreatment with Quercetin Prevents Endotoxin Lethality

and Inhibits Release of TNF-a and HMGB1

We conducted an initial evaluation of quercetin as a therapeutic
agent in a standard model of murine endotoxemia. Balb/C mice
received a single dose of quercetin (100, 50, or 10 mg/kg,
intraperitoneally), followed 30 minutes later by an injection of
LPS (10 mg/kg LPS, intraperitoneally). Pretreatment with
a single dose of quercetin (100 or 50 mg/kg, intraperitoneally)
conferred significant protection from lethal endotoxemia (sur-
vival in quercetin-treated mice 5 12/20 or 9/20 compared with
survival in vehicle-treated mice 5 2/20; P , 0.05) (Figure 1A).
Pretreatment with this dose of quercetin prevented the de-
velopment of clinical manifestations of endotoxin morbidity,
including decreased activity, lethargy, diarrhea, piloerection,
and huddling. Late deaths in quercetin-treated animals were not
observed during the 3 weeks after endotoxin injection, in-
dicating that quercetin treatment conferred complete protection
against lethal endotoxemia, and did not merely delay the onset
of lethal pathology. A lower dose of quercetin (10 mg/kg,
intraperitoneally) provided no protection (2/20). Because en-
dotoxin induces systemic TNF-a accumulation (peaking be-
tween 1 and 2 h) before HMGB1 (peaking after 24 h) (3, 4),
we determined the effects of quercetin on circulating TNF-a
and HMGB1 at 1 and 20 hours, respectively. Pretreatment of
endotoxemic mice with quercetin (100 or 50 mg/kg, intraperito-
neally) significantly attenuated the serum levels of both TNF-a at
1 hour (Figure 1B) and HMGB1 at 20 hours (Figure 1C) after
LPS infusion.

Slight Delay in Quercetin Administration Still Prevents

Endotoxemic Lethality and Inhibits HMGB1 Release

We next assessed the therapeutic efficacy of quercetin when first
administered after the onset of endotoxemia. Treatment with
quercetin was initiated 4 hours after the onset of endotoxemia,
a time at which clinical signs of LPS-induced toxicity, including
diarrhea, piloerection, and depressed spontaneous activity
already were evident. Notably, the first dose of quercetin was
administered well after the early peak in serum TNF-a, which
occurs within the first 1 to 2 hours after the onset of endotox-
emia (44). Delayed treatment with quercetin (100 or 50 mg/kg,
intraperitoneally) beginning 4 hours after LPS injection pro-
tected mice from lethal systemic inflammation as compared with
treatment with vehicle (survival with quercetin treatment 5 8/20
or 5/20, respectively; survival with vehicle alone 5 2/20; P , 0.05)
(Figure 2A). Because treatment with quercetin began after the
early, acute-phase response to endotoxin (Figure 1B), the sig-
nificant protection conveyed by quercetin suggests that it might
target late-acting mediators of lethal systemic inflammation.
HMGB1 is a late mediator of endotoxin lethality (4), and
treatment of endotoxemic mice with quercetin beginning 4 hours
after LPS injection significantly attenuated the systemic release
of HMGB1 measured at 20 hours after the onset of endotoxemia
(Figure 2B). However, treatment of endotoxemic mice with
quercetin beginning 12 hours after LPS injection failed to protect
mice from lethal systemic inflammation, and did not attenuate

the systemic release of HMGB1 at 20 hours after the onset of
endotoxemia (Figures 2C and 2D).

Quercetin Inhibits the Cytoplasmic Translocation and Release

of HMGB1 in Macrophage Cultures

To determine the effect of quercetin on HMGB1 release by
macrophages, murine macrophage line RAW 264.7 cells were
stimulated with LPS or TNF-a for 24 hours, and HMGB1

Figure 1. Quercetin pretreatment prevents endotoxin lethality, atten-
uating TNF-a and high-mobility group box (HMGB) 1 release in vivo.

(A) Mice (n 5 20 per group) were injected with a single dose of

quercetin (Q) as indicated, followed 30 minutes later by a lethal
infusion of endotoxin (LPS, 10 mg/kg, intraperitoneally). Quercetin

conferred significant protection against lethality (#different from vehi-

cle control group, P , 0.05). The Kaplan-Meyer method was used to

compare the differences in mortality rates between groups. (B) In
a parallel group of quercetin-treated animals, circulating TNF levels

were measured by ELISA of sera prepared at 1 hour after LPS injection.

Quercetin pretreatment (50 and 100 mg/kg, intraperitoneally) signif-

icantly attenuated the release of serum TNF in response to LPS (*P ,

0.05). (C) Circulating levels of HMGB1 20 hours after LPS infusion (LPS,

10 mg/kg, intraperitoneally) were measured in a parallel experimental

group of endotoxemic animals by Western blot analysis. Pretreatment
with quercetin (100 mg/kg, intraperitoneally) attenuated serum

HMGB1 levels at 20 hours after LPS.
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measured in the conditioned medium. Administration of LPS or
TNF-a or quercetin, or both (Figures 3A and 3B) did not affect
the total levels of HMGB1 protein. However, quercetin pre-
treatment significantly inhibited LPS- and TNF-induced
HMGB1 secretion (Figures 3C and 3D). HMGB1 translocates
from the nucleus to the cytoplasm as the first step for its
extracellular secretion (7, 9, 18). Accordingly, we next analyzed
whether quercetin inhibited LPS- or TNF-induced HMGB1
cytoplasmic translocation (Figure 3E). In agreement with pre-
vious studies, fluorescence microscopy showed that HMGB1
localized predominantly in the nucleus of macrophages (7, 9,
18). LPS and TNF-a induced HMGB1 translocation to the
cytoplasm, the earliest known stage leading to its extracellular
secretion. Quercetin inhibited LPS- and TNF-induced HMGB1
cytoplasmic translocation and preserved its nuclear localization,
suggesting that quercetin specifically inhibits the release of
HMGB1 without affecting its protein levels. Although concur-
rent administration of quercetin was maximally effective in
inhibiting LPS-induced HMGB1 release, significant inhibition
was still achieved when it was added 0.5 to 4 hours after LPS
(Figure 3F).

Quercetin Inhibits Cytokine Activities of HMGB1 in

Macrophage Cultures

HMGB1 can be actively secreted by activated macrophages/
monocytes, and passively released by damaged and necrotic
cells, thereby mediating an inflammatory response (11, 45, 46).
HMGB1 migration to organs/tissue sites induces several in-
flammatory cytokines, including TNF-a, IL-1a, IL-1b, IL-1
receptor antagonist, IL-6, IL-8, macrophage inflammatory pro-
tein (MIP)-1a, and MIP-1b, thereby contributing to the in-
flammatory cascade (13, 47). To determine the effect of
quercetin on HMGB1 cytokine activites, murine macrophage-
like RAW 264.7 cells were stimulated with LPS for 1 hour
or HMGB1 for 4 hours, and TNF-a and IL-1b measured in
the conditioned medium. Quercetin significantly inhibited

HMGB1-induced TNF-a and IL-1b release in macrophage
cultures in a concentration-dependent manner (Figure 4A).
Quercetin also significantly reduced intracellular levels of
TNF-a and IL-1b mRNA (Figure 4B), indicating that quercetin
not only inhibits HMGB1 release, but also suppresses the
proinflammatory activities of HMGB1. Similar to the results
of previous studies (28, 30), quercetin inhibited LPS-induced
expression and release of TNF-a (Figures 4A and 4B).

Quercetin Inhibits Signal Transduction via Mitogen-Activated

Protein Kinase and NF-kB

Quercetin-mediated inhibition of HMGB1-induced TNF-a and
IL-1b mRNA expression suggests that quercetin might modu-
late intracellular signaling events that coordinate the activity of
proinflammatory cytokines. Activation of mitogen-activated
protein kinase (MAPK) signaling cascades is an important
upstream step in HMGB1-induced expression and release of
cytokines such as TNF-a and IL-1b in macrophages, neutro-
phils, and endothelial cells (14, 47–49). We investigated whether
quercetin inhibits HMGB1-induced cytokine release partly
through interfering with MAPK pathways. HMGB1 or LPS
time-dependently induced phosphorylation of p38, c-Jun NH2-
terminal kinase, and extracellular signal-regulated kinase
MAPK in macrophages. Pretreatment with quercetin signifi-
cantly inhibited HMGB1- or LPS-induced phosphorylation of
each kinase (Figure 5).

In addition to MAPK activation, the NF-kB signal trans-
duction pathways is also involved in HMGB1-induced cellular
activation, and NF-kB–dependent transcriptional activity is
important for cytokine expression (49, 50). In quiescent cells,
NF-kB factors (p50 and p65) are sequestered as inactive trimers
in the cytosol through interaction with IkBa, the most impor-
tant member of the IkB family (51). In response to HMGB1 or
LPS stimulus, rapid IkBa degradation (by 15 min) (Figure 6A)
preceded p65 (Figure 6B) and p50 (date not shown) trans-
location into the nucleus (by 30 min) in RAW 264.7 cells.

Figure 2. Effects of delayed administration of querce-

tin on the lethality of endotoxemia and serum HMGB1

level. (A) Mice (n 5 20 per group) received a lethal

infusion of endotoxin (LPS, 10 mg/kg, intraperitone-
ally) and were treated with quercetin (as indicated) 4,

8, 12, 24, and 36 hours later. Quercetin conferred

significant protection against lethality (#different from

vehicle control group, P , 0.05). The Kaplan-Meyer
method was used to compare the differences in

mortality rates between groups. (B) In a parallel set

of endotoxemic mice, HMGB1 release was analyzed by
Western blot of serum collected at 20 hours. Slight

delayed treatment with quercetin (100 mg/kg, intra-

peritoneally) inhibited the release of serum HMGB1.

(C) Mice (n 5 20 per group) received a lethal infusion
of endotoxin (LPS, 10 mg/kg, intraperitoneally) and

were treated with quercetin (as indicated) 12, 24, and

36 hours later. Quercetin conferred no protection

against lethality (P . 0.05). The Kaplan-Meyer method
was used to compare the differences in mortality rates

between groups. (D) In a parallel set of endotoxemic

mice, HMGB1 release was analyzed by Western blot of
serum collected at 20 hours.
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However, pretreatment with quercetin significantly inhibited
IkBa degradation, and NF-kB p65 nuclear translocation (Fig-
ures 6A and 6B). Thus, after stimulation with HMGB1 or LPS,
p65, the key activator of NF-kB–regulated transcription, be-
comes available to kB-regulated genes in the nucleus, and
nuclear localization is effectively inhibited by quercetin.

We further observed the effect of quercetin on NF-kB DNA
binding activity. Indeed, HMGB1 or LPS stimulation of RAW
264.7 cells led to a dramatic increase in NF-kB DNA-binding
activity assayed by electrophoretic mobility shift assay (Figure
6C, lanes 4, 5, and 10). The DNA-binding activities were spe-
cific, as indicated by competition with cold kB probe (Figure
6C, lane 8), and the presence of p65 in the NF-kB–DNA
complexes was confirmed by a dramatic ‘‘supershift’’ in the
presence of p65-specific antibodies (Figure 6C, lanes 9 and 11).
Notably, HMGB1- or LPS-inducible DNA binding activity of
NF-kB was markedly inhibited by quercetin (Figure 6C, lanes 6

and 7). It remains unknown whether NF-kB activation is critical
in LPS-induced HMGB1 release, and whether quercetin in-
hibits LPS-induced HMGB1 release in an NF-kB–dependent
mechanism.

Quercetin and Autophagic Inhibitor, Wortmannin,

Concurrently Inhibited LPS-Induced LC3-II Production/

Aggregation and HMGB1 Translocation/Release

Autophagy has recently been shown to be an important com-
ponent of the innate immune response to LPS treatment (39, 52).
A critical step in the autophagy process is the ligation of LC3
to phosphatidylethanolamine, resulting in aggregates (spots)
of LC3 (42). Incubation of RAW 264.7 cells with LPS led
to the increase in LC3 spots and type-II LC3 (Figures 7A
and 7B). Quercetin, as well as autophagic inhibitor, wortmannin,
inhibited type-II LC3 production and aggregation (Figures
7A and 7B). Notably, wortmannin and quercetin inhibited

Figure 3. Effects of quercetin on LPS- and TNF-a-induced

HMGB1 expression, release and translocation in macro-

phage. (A–D) RAW 264.7 macrophages were pretreated

for 1 hour with quercetin at the indicated dose before
stimulation with LPS (A and C) or TNF-a (B and D) at the

indicated doses for 24 hours, cell viability was determined

by MTT assay, and expressed as the mean (6SEM) of four

experiments in duplicate. In parallel experiments, HMGB1
levels in the whole-cell lysate (A and B) or culture medium (C

and D) were determined by the relative optical intensity (in

arbitrary units [AU]) of the immunoreactive bands on
Western blots, and expressed as the mean (6SEM) of three

experiments in duplicate. *P , 0.05. (E) RAW 264.7

macrophages were pretreated for 1 hour with quercetin

(100 mM) before stimulation with LPS (500 ng/ml) or TNF-a
(5 ng/ml) for 12 hours, and monitored for HMGB1 cyto-

plasmic translocation by immunocytochemistry (E). Red,

HMGB1; blue, nuclei; original magnification, 3400. (F)

RAW 264.7 cells were stimulated with LPS, and quercetin
(100 mM) was added at 0.5, 4, and 8 hours after LPS

stimulation. Levels of HMGB1 in the culture medium were

determined at 20 hours after LPS stimulation, and expressed
(AU) as mean (6SEM) of three experiments in duplicate.
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LPS-induced HMGB1 translocation and release (Figures 7C–
7E). Moreover, knockdown beclin-1, a key regulator of autoph-
agy (53), inhibited LPS-induced HMGB1 release (Figure 7F).
These data suggest that quercetin inhibits LPS-induced
HMGB1 release, potentially through interfering with LPS-
induced autophagy.

DISCUSSION

The pathogenesis of lethal sepsis remains obscure, but is
associated with dysregulated inflammatory responses, tissue
injury, and multiple organ dysfunction. The inflammatory re-
sponse is mediated in part by bacterial endotoxin (54), which
stimulates macrophages/monocytes to sequentially release early
(TNF-a and IL-1b) and late (HMGB1) proinflammatory cyto-
kines. Although early cytokines may be protective against
infection (6), dysregulated inflammatory response sustained by
late-acting mediators (such as HMGB1) may contribute to the
development of tissue injury and organ dysfunction at the late
stage of lethal sepsis. Therefore, agents capable of selectively
attenuating systemic HMGB1 accumulation may hold potential
in the treatment of lethal sepsis. Here, we demonstrated that an
experimental pharmacological agent, quercetin, significantly
inhibits the systemic release and proinflammatory function of
both early (TNF-a and IL-1b) and late (HMGB1) cytokines
that mediate lethality of systemic inflammation.

Figure 4. Effects of quercetin on LPS- and HMGB1-induced TNF-a and

IL-1b release and expression in macrophages. (A) RAW 264.7 macro-

phages were pretreated for 1 hour with quercetin at the indicated
dose before stimulation with LPS (500 ng/ml) for 1 hour or HMGB1

(1 mg/ml) for 4 hours, and TNF-a and IL-1b levels in the culture

medium were detected by ELISA analysis. Values are means (6SEM) of
three experiments in duplicate. *P , 0.05. (B) In parallel experiments, the

mRNA expression level of TNF-a and IL-1b were detected by RT-PCR

analysis. Glyceraldehyde phosphate dehydrogenase (GAPDH) was used

as a loading control. Values are means (6SEM) of three experiments in
duplicate. *P , 0.05.

Figure 5. Effects of quercetin on LPS- and HMGB1-induced MAPKs

phosphoration in macrophage cultures. RAW 264.7 macrophages were
pretreated with quercetin (100 mM) for 1 hour before stimulation with

LPS (500 ng/ml) or HMGB1 (1 mg/ml) for 30–60 minutes, and

phosphorylated p38 (P-p38), c-Jun NH2-terminal kinase (JNK) 1/2

(P-JNK1/2), or extracellular signal-regulated kinase (ERK) 1/2 (P-ERK1/
2) protein levels in the whole-cell lysate were detected by Western

blotting analysis. GAPDH was used as a loading control. Values are

means (6SEM) of three experiments in duplicate. *P , 0.05 versus LPS
group or HMGB1 group.
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HMGB1 has recently been identified as a proinflammatory
cytokine–like molecule participating in lethal systemic inflamma-
tion (e.g., endotoxemia and sepsis), arthritis, meningitis, and local
inflammation (e.g., hepatic injury after ischemia–reperfusion and
LPS-induced acute lung injury) (11, 46, 55–57). Activated mac-
rophages release HMGB1 after a significant lag compared with
TNF, and a similar delayed kinetic is observed in the serum after
lethal endotoxemia (16). Targeting HMGB1 has been successful
in experimental models of diverse infectious and inflammatory
diseases, and these findings have renewed the clinical interest of
specific cytokine inhibitors and methods (58). Here, we observed
that quercetin significantly inhibited HMGB1 release from mac-
rophages and prevented the accumulation of serum HMGB1
levels in mice with lethal endotoxemia.

Once HMGB1 is released into the extracellular space, it may
interact with a wide range of exogenous (bacterial endotoxin, CG
sequence–DNA) (59, 60) or endogenous (IL-1b) (61, 62) proin-
flammatory mediators, thereby amplifying a rigorous inflamma-
tory response, which contributes to the pathogenesis of diverse
disorders, including sepsis, cardiovascular shock, rheumatoid
arthritis, diabetes, and cancer (58). Although HMGB1 itself may
not be injurious to animals, it may act to amplify the LPS-induced
shock response, because HMGB1 may facilitate innate recogni-
tion of bacterial endotoxin by CD14 (61), and synergistically
increase endotoxin-induced animal lethality (4). The mechanisms
underlying quercetin-mediated protection against lethal endotox-
emia may be multiple: ranging from heme oxygenase–1 induction
to scavenging of reactive oxygen species (63), to increasing
production of IL-10 (64), to LPS-induced release of proinflamma-
tory cytokines, such as TNF, IL-6, and HMGB1.

We further observed the effects of quercetin on HMGB1’s
proinflammatory function in vitro. As shown previously, HMGB1
induced the release of TNF-a and IL-1b in macrophages (13).
However, quercetin inhibited HMGB1- or LPS-induced cyto-
kine synthesis and release. It now appears that quercetin can be
explored further in the development of treatments for critical
illness and sepsis.

We further investigated the possible mechanism of quercetin’s
anti-inflammatory function by determining whether quercetin
interferes with activation of MAPK and NF-kB signal trans-
duction pathways. Macrophage activation by endotoxin, cytokines
(e.g., TNF-a and HMGB1), and products of cell injury leads to
the phosphorylation of MAPK (which increases cytokine trans-
lation efficiency [e.g., TNF-a and HMGB1] [19, 47–49, 65–67]),
and nuclear translocation of NF-kB, a transcription factor that
enhances the transcription of TNF-a and HMGB1 products of the
activated macrophage (19, 49, 50, 68). The activity of NF-kB is
mainly regulated by IkBa and p50/p65 (69). Quercetin inhibits the
phosphorylation of the IkBa induced by LPS treatment in bone
marrow–derived macrophages, hence inhibiting activation of the
NF-kB pathway (27). Here, we demonstrate that quercetin in-
hibits activity of the NF-kB pathway partly by inhibiting HMGB1-
or LPS-induced IkBa degradation, p65 nuclear translocation,
and NF-kB DNA-binding activity in macrophages.

Autophagy (self-eating) is a highly evolutionarily conserved
process in virtually all eukaryotic cells. It involves the sequestra-
tion of regions of the cytosol within double membrane–bound
compartments, and delivery of the contents to the lysosomes
for degradation. Autophagy has recently been shown to be an
important component of the innate immune response (39, 52),

Figure 6. Quercetin inhibits LPS- and HMGB1-induced

inhibitor of NF-kB (IkBa) degradation, NF-kB p65 nuclear
translocation, and NF-kB DNA binding activation in mac-

rophage cultures. (A and B) Cell pretreatment with quer-

cetin (100 mM) for 1 hour before stimulation with LPS
(500 ng/ml) or HMGB1 (1 mg/ml) for indicated times, and

IkBa level (A) in cytosolic fractions, and p65 level (B) in

cytosolic (C) or nuclear (N) fractions were detected by

Western blotting analysis. GAPDH, actin, or PCNA was
used as a loading control. (C) Activities of transcriptional

factor NF-kB in cells pretreated with quercetin (100 mM)

for 1 hour in the absence or presence of LPS (500 ng/ml)

or HMGB1 (1 mg/ml). At 1 hour after LPS or HMGB1
stimulation, NF-kB activities were determined by electro-

phoretic mobility shift assay with biotin-labeled NF-kB

probe, and unlabeled (Cold) NF-kB probe. Specificity was

determined by addition of p65 antibody to the nuclear
extracts. All blots shown are representative of three

experiments with similar results.
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and can be induced by LPS in primary human macrophages and
murine macrophage RAW 264.7 cells in the absence of cell death
(52). Here, we demonstrate that LPS-induced macrophage
autophagy is associated with HMGB1 cytoplasmic translocation
and release. Quercetin and phosphoinositide 3-kinase (PI3K)
inhibitor, wortmannin, concurrently inhibited LPS-induced type-
II LC3 production/aggregation and LPS-induced HMGB1 trans-
location/release. Indeed, class-III PI3K has been shown to be
required for both autophagic vesicle formation and vesicular
transport to the lysosome (70). As a broad-spectrum protein
kinase inhibitor, quercetin can bind to PI3K ATP site and block
PI3K activation (71). In light of the observation that HMGB1-
containing secretory endolysosomes can be fused with the cyto-
plasmic membrane (72), it will be important to determine whether
PI3K activation plays a role in the regulation of HMGB1 release.

Thus, quercetin may have therapeutic potential for diseases
mediated by systemic release of the proinflammatory cytokines,
TNF-a and HMGB1. The molecular target of quercetin action
is enigmatic, but it is an effective inhibitor of HMGB1 release

and proinflammatory function in macrophage cultures in vitro
and in animal models of lethal endotoxemia in vivo. The doses
of quercetin used here, which were not associated with toxicity,
significantly inhibited serum HMGB1 release and conferred
protection against endotoxemia lethality. Indeed, quercetin is
a relatively nontoxic food compound, widely studied as an anti-
oxidant, and the protective effects occurred in therapeutically
achievable, safe doses. It will be of interest to assess the pharma-
cological activity of quercetin as an inhibitor of HMGB1 release
in other models of local and systemic inflammation, including
arthritis and sepsis induced by cecal ligation and puncture.
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