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Helix/Coil Nucleation: A Local Response to Global Demands

Oleg K. Vorov,† Dennis R. Livesay,‡* and Donald J. Jacobs†*
†Department of Physics and Optical Science, and ‡Department of Bioinformatics and Genomics, University of North Carolina at Charlotte,
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ABSTRACT A complete description of protein structure and function must include a proper treatment of mechanisms that lead
to cooperativity. The helix/coil transition serves as a simple example of a cooperative folding process, commonly described by
a nucleation-propagation mechanism. The prevalent view is that coil structure must first form a short segment of helix in a local-
ized region despite paying a free energy cost (nucleation). Afterward, helical structure propagates outward from the nucleation
site. Both processes entail enthalpy-entropy compensation that derives from the loss in conformational entropy on helix formation
with concomitant gain in favorable interactions. Nucleation-propagation models inherently assume that cooperativity arises from
a sequential series of local events. An alternative distance constraint model asserts there is a direct link between available
degrees of freedom and cooperativity through the nonadditivity in conformational entropy. That is, helix nucleation is a concerted
manifestation of rigidity propagating through atomic structure. The link between network rigidity and nonadditivity of conforma-
tional entropy is shown in this study by solving the distance constraint model using a simple global constraint counting approx-
imation. Cooperativity arises from competition between excess and deficiency in available degrees of freedom in the coil and
helix states respectively.
doi: 10.1016/j.bpj.2009.09.013
INTRODUCTION

According to the IUPAC Compendium of Chemical Termi-

nology (1), a cooperative transition is defined as, ‘‘A transi-

tion that involves a simultaneous, collective displacement or

change of state of the atoms and/or electrons in the entire

system.’’ For example, in a perfectly cooperative four-spin

system, only the states ([[[[) and (YYYY) can exist

because three of the spins are dependent on one reference

spin, making mixed states nonexistent. Cooperativity is the

hallmark of myriad protein folding and functional mecha-

nisms (2–4). For example, cooperativity is present in the

folding of protein domains. Most domains exhibit first-order

(i.e., two-state) folding transitions that define folding units

(5). The ensemble of accessible states at temperatures near

the melting point (Tm) is composed of a subensemble of

proteins that are native-like, and a subensemble that is

unfolded. When thermodynamic response is highly coopera-

tive, the free energy landscape can be expressed accurately in

terms of a single order parameter, and the system will exhibit

hysteresis at intermediate temperatures where two stable

basins are separated by an intermediate free energy barrier.

In the limit of a perfectly cooperative transition, every residue

in a folding unit is either folded or unfolded because the fold-

edness of each residue is 100% dependent on the others.

Folding-cooperativity within the helix/coil transition is well

described by a nucleation event, followed by a zipper-like

propagation mechanism (6–9). In these models, there is a large

conformational entropy, Sconf, cost associated with the forma-

tion of an initial helical structure within a polypeptide that is

otherwise unfolded in a coil state. Once an initial helical struc-
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ture is formed, the helix propagates more readily because the

nucleation cost has been paid already. The details of the nucle-

ation/propagation mechanism differ between various helix/

coil models, but the common element within these models is

they all use a free energy decomposition (FED) scheme.

That is, enthalpy and entropy contributions are assigned to

various local states tied to structure, such as the backbone

conformational state of a residue (6) or the presence of a

hydrogen bond (H-bond) along the backbone (8). These

models build in a high entropic cost to form an initial section

of helix, but cooperativity through local consecutive coupling

of residues overcomes improbable random noncooperative

helical formation. For example, an explicit coupling term

that favors helical structure is invoked after ~3 consecutive

helical residue states along the backbone or ~3 consecutive

H-bonds to account for nucleation. This local cooperativity

mechanism accounts for enthalpy/entropy compensation,

where the high cost in entropy associated with a large reduction

in the number of accessible conformational states is balanced

by the formation of a localized group of favorable interactions.

Further reduction in Sconf is not as severe as more favorable

interactions form to propagate helical structure.

The helix/coil transition is also qualitatively well described

by a thermodynamic argument based on a two-state model

given by Schellman (10). The assumption of a two-state

model implies perfect cooperativity, which is a global prop-

erty of the system. Therefore, without a proposed microscopic

mechanism, estimates of enthalpy and entropy of the helix and

coil states leads to an estimate for the transition temperature.

Schellmann’s approach is a global view that is independent

of the mechanistic aspects that helix/coil models offer.

Conversely, helix/coil models lose generality because they

are tied to a FED scheme limited to a specific type of localized
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coupling between residues. Yet, helix/coil models invoking

different detailed mechanisms are equivalent in their predic-

tive power for average helix content, because cooperativity

is the key aspect these models capture. The influence of the

global property of cooperativity diminishes the need for

a specific local mechanism, perhaps explaining why the

nucleation process remains unclear (11). Therefore, it is

important to evaluate carefully the thermodynamics of under-

lying mechanisms responsible for observed cooperativity.

From a thermodynamic point of view, coupling between

subsystems is the source of nonadditivity in the FED (12).

In particular, entropy has been identified as an intrinsically

nonadditive property of coupled subsystems (12,13). In

contrast, additivity in free energy and entropy of subsystems

occurs only when all subsystems are independent. Therefore,

cooperativity implies nonadditivity. This simple fact generi-

cally explains why standard additive FED schemes miss

cooperative effects, and why they are largely unsuccessful

at predicting thermodynamic behavior in proteins (12).

A distance constraint model (DCM) restores the utility of

a FED scheme by explicitly addressing the critical issue of

nonadditivity when the free energy of a system is reconstituted

(14). The DCM uses a generic FED where enthalpy and

entropy components are associated with various interaction

types. Unlike all prior FED schemes, interactions are also

associated with distance constraints. The distinct feature of

the DCM is that total free energy is not simply a sum over

all components. A nonlinear free energy reconstitution

(FER) algorithm is used to explicitly account for nonadditivity

within entropic components (14–16). Although the total

enthalpy remains additive as a sum over all enthalpic compo-

nents, only the entropic components associated with indepen-

dent constraints, as identified by efficient network rigidity

graph algorithms (17,18), are summed. Specifically, the

nonadditive aspect of the FER involves identifying a proper

subset of constraints that are independent based on the proper-

ties of network rigidity. The salient feature of the DCM is that

network rigidity is regarded as an underlying mechanical inter-

action that links mechanical and thermodynamic response as

an enthalpy-entropy compensation mechanism. In addition,

cooperativity originates from the propagation of rigidity/

flexibility through molecular structure, which depends

strongly on global properties of the system. The DCM has

been able to recapitulate a number of experimental results,

including the effects of co-solutes on helix/coil transitions

(19), protein folding/unfolding Cp curves (15,16), protein

fragment stability (20), and protein flexibility characteristics

(21–23). It was used also to explain seemingly confounding

sets of folding kinetics data from the enzyme thioredoxin (20).

The relationships between cooperativity, nonadditivity in

Sconf and rigidity have unfortunately been masked by the

complexity of solving the DCM. In this study, the helix/

coil transition is described using a DCM that is solved under

a simplifying mean-field approximation of global constraint

counting. In this approximation, fluctuations in excess or
deficiency of constraints within local regions are suppressed.

Despite model simplicity and severity of the approximation,

the helix/coil transition within a polypeptide is well described

in terms of global demands on the system in a thermodynamic

sense (i.e., minimum in free energy). Juxtaposed to the Zimm

and Bragg (8) and Lifson and Roig (6) helix/coil models, the

DCM is void of explicit nucleation and propagation parame-

ters because the nucleation-propagation mechanism is a

consequence of enthalpy-entropy compensation. We show

how available degrees of freedom (based on distance

constraints originating from interactions) are fundamentally

linked to Sconf nonadditivity, and why this connection serves

as a universal and concerted mechanism responsible for the

onset of cooperativity. As such, the nucleation event can be

considered a local response to global demands.

THE THEORETICAL MODEL

The DCM begins by constructing a FED scheme to charac-

terize interactions that impose distance constraints between in-

teracting pairs of atoms, which form a constraint network. An

entropy spectrum rank orders by entropy all interactions within

the network. The procedure to calculate total Sconf is to test

which interaction is independent starting from the lowest

entropy, and working toward the highest entropy listed in the

spectrum. Only independent constraints contribute to Sconf,

which makes the DCM mathematically complex. However,

following the approach used previously (24), we use a mean-

field approximation that assumes constraints are uniformly

distributed within the network, meaning local density fluctua-

tions are ignored. This simplifying assumption allows us to

replace the complicated rigidity algorithms that identify

independent constraints with Maxwell counting (25). This

Maxwell counting DCM will be referred to as McDCM from

here onward. Maxwell counting assumes all constraints are

independent when the constraint network is globally flexible,

whereas the network is globally rigid when the number of

constraints is equal to or greater than some threshold.

A framework, F, (i.e., graph) is used to represent a suben-

semble of conformations that span all accessible atomic

geometries that share the same set of interactions (i.e.,

same constraint topology defined by F). Whereas the frame-

works are based on short-range interactions, long-range

communication propagates through the network due to the

mechanical properties of rigidity (17). This observation has

led to many successful applications of the concept of

network rigidity based on the native structure of a protein

(18,26–28). However, the key limitation in characterizing

network rigidity of a single interaction network is that

thermal fluctuations are not modeled. Dealing with tempera-

ture in the standard way prescribed by statistical mechanics,

the DCM considers an ensemble of frameworks. The

ensemble is derived from all fluctuating interactions.

An accurate free energy is reconstituted from the FED by

accounting for the nonadditivity in Sconf during the process
Biophysical Journal 97(11) 3000–3009
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of summing over independent entropy contributions.

Assuming each interaction of type i is identical, the total

enthalpy and entropy of a framework are calculated by

HtotalðFÞ ¼
XNint

i

ni3i and StotalðFÞ ¼
XNint

i

Iisi; (1)

where 3i and si represent the enthalpy and entropy, respec-

tively, of interaction i, and Nint indicates the number of inter-

action types. In qualitative terms, 3i describes the depth of the

potential energy minima, whereas si describes the amount of

phase space associated with the breadth of the energy basin.

The total enthalpy of F is simply the sum over the contribu-

tions from each interaction type for which there are ni

instances of interaction type i. However, only the indepen-

dent constraints, Ii, corresponding to the ith interaction

type contribute to the total entropy (note that Ii % ni). In

this way, total entropy is based on a local decomposition

that is tabulated, whereas global demands are maintained

by using network rigidity to account for long-range

couplings that would otherwise be hidden.

In most works (15,16,20–23), we have used a minimal

DCM (mDCM) that only considers two types of fluctuating

interactions in the FED: H-bonds and torsion angle forces.

Salt bridges are considered a special case of H-bonds. In

addition, covalent bonds are modeled as quenched (always

present) constraints, which are important for the rigidity

analysis, but need not be parameterized in terms of enthalpy

and entropy contributions. In principle, the partition function

for the ensemble must account for all possible frameworks.

To reduce the combinatorics of calculating the partition func-

tion, only native-like H-bonds are assumed accessible.

Torsion angles are classified as either native or disordered.

Despite this Go-like simplification, the size of the partition

function state space remains much too large to completely

enumerate for proteins (~2900 for a typical 150 residue
Biophysical Journal 97(11) 3000–3009
protein). In prior work, the free energy of each macrostate

(NHB, NNT) is evaluated using a free energy functional that

takes into account nonadditivity (15,16). Monte Carlo

sampling generates distinct frameworks with NHB H-bonds

and NNT native torsions. For each framework, a rigidity

calculation is carried out to determine the conditional prob-

ability of interaction i to be independent, which is related

to Ii as the cumulative sum of these conditional probabilities.

The synopsis given above on the process used to solve the

mDCM is straightforward, but unfortunately the conceptual

link between rigidity and Sconf gets lost in the details. Within

the McDCM, Maxwell counting reduces the mathematical

analysis to a simple counting exercise that does not require

Monte Carlo sampling. This procedure maintains the essen-

tial element that rigidity is used to properly account for

nonadditivity within Sconf components of a FED. The crucial

aspect of the McDCM is that the spatial locations of

constraints within the network are not considered. Rather,

the entropy spectrum (Fig. 1 a) provides all required informa-

tion for Maxwell counting to be conducted. In addition, the

Ml defines the minimum number of constraints that need to

be present that signifies the global transition from flexible

to rigid. Based on the entropy spectrum, constraints are intro-

duced in the network according to lowest to highest entropy

rank order. When the jth constraint is placed in the network at

or below the Maxwell level (i.e., j % Ml), the constraint re-

moves an available degree of freedom (thus it is independent)

and contributes to Sconf. Constraints introduced into the

network above the Maxwell level (i.e., j > Ml) are redundant

because the network is already rigid, and do not contribute to

Sconf. Differences between exact graph rigidity calculations

used in previous work (14,15) and the Maxwell approxima-

tion are exemplified by an illustrative example in Fig. 1 b.

For a given framework, the Boltzmann weight is given by

exp(Stotal/R)exp(�bHtotal), where Stotal and Htotal are given in
FIGURE 1 (a) Generic entropy spectrum. All interac-

tions present in a network are rank-ordered by their entropy

components (from top to bottom of the spectrum, j ¼ 1 to

Nint). A cutting line defines the Maxwell level, which defines

the rigidity transition. Interactions ranked-ordered before

the Maxwell level (i.e., j % Ml) reduce Sconf, whereas inter-

actions past it (i.e., j>Ml) do not. The type of interaction is

not indicated in this schematic because sorting is based

solely on entropy ranking. (b) The Maxwell counting

approximation is explained by a simple edge-sharing quad-

rilateral in two-dimensions (rigid substructures are black,

whereas flexible substructures are gray). In the top example,

both quadrilaterals are isostatically rigid (meaning, rigid but

no redundant constraints). In this case, two identical fluctu-

ating interactions are present (shown as dashed lines), and

each pays an entropic cost (e.g., a total cost of 2g). Here,

the entropy cost calculated by Maxwell equals the true

network rigidity result due to uniformity. However, in the

bottom example, the true entropy cost is only g because

one of the interactions is redundant. However, Maxwell

assumes all interactions up to Ml are independent irrespec-

tive of their location in the network, which results in over-

prediction (again, 2g) of the Sconf cost.
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Eq. 1. In this study, the random coil defines the reference state,

whereas vacuum served as the reference state in prior works.

Therefore, it follows Stotal¼ Scoil� Scost, where Scost is associ-

ated with the entropy reduction accompanying the addition of

interactions to a flexible chain in which all dihedral angle

interactions are disordered, and no cross-linking H-bonds are

present. Thus, the entropy cost parameter for the ith interaction

is given by gi¼ sdis� si. Only interactions that satisfy sdis>
si need to be considered, because otherwise they will never pay

an entropy cost. In other words, sdis> si implies gi> 0, which

indicates that this interaction will reduce Sconf (relative to the

coil state) provided other interactions have not already rigidi-

fied its local region. In all previous work, we directly used si

as characterizing the absolute entropy of the interaction with

respect to the vacuum state. Although there is no mathematical

difference, this change was made to conceptually emphasize

there is greater entropy reduction associated with stronger

interactions. Consequently, positive values reported here for

gi indicate a loss in entropy, and, in applying Maxwell count-

ing, constraints associated with greatest entropy loss are placed

in the network before other constraints having lower entropy

loss. Because Scoil is constant, we set it to zero with no loss

of generality in calculating thermodynamic response func-

tions, such as average energy or heat capacity. Therefore, the

Boltzmann weight for a given framework within the McDCM

simplifies to exp(�Scost/R)exp(�bHtotal). Note that we need to

use the correct value of Scoil only to calculate absolute entropy

and absolute free energy.

The McDCM presented here has a similar FED to the

mDCM described above. Namely, the fluctuating interaction

types are based on fluctuating H-bond and native torsion

force interactions. Each H-bond is modeled as consisting

of three constraints, whereas each native torsion force inter-

action is modeled as one constraint. Each native torsion force

constraint contributes energy 3NT, and when independent,

there is an entropy cost of gNT. To keep the McDCM pre-

sented in this study to be as simple as possible, all H-bonds

are treated as identical, having energy 3HB, and each of its

constraints, when independent, are associated with an

entropy cost of gHB. Unlike the mDCM, the energy param-

eter for H-bonds implicitly accounts for a competition with

H-bonds to solvent. In general, a DCM can account for addi-

tional free energy components using a more complete FED.

For example, as we have done previously for polypeptides

(19) and proteins (15,16), solvent terms that are expected

to be independent can simply be added to the enthalpy and
entropy expressions in Eq. 1. Here, all solvent effects are

implicitly expressed by the four effective model parameters

(e.g., 3HB describes that net enthalpy change from forming

an intramolecular versus solvent H-bond).

It is instructive to introduce two preliminary examples

of extreme limits where all fluctuating interactions are

either: 1), 100% independent; or 2), 100% redundant.

For a system having 100% independent constraints, each

interaction contributes to the total Sconf cost, so the

Boltzmann weight of a given framework is given by

exp½� ðNNTgNT þ 3NHBgHBÞ exp½� bðNNT3NT þ NHB3HBÞ�� .

Conversely, in the case of 100% redundant constraints, the

Boltzmann factor is given by exp½�bðNNT3NT þ NHB3HBÞ�
because redundant constraints pay no entropic cost. The latter

case serves only as a hypothetical example because not all fluc-

tuating constraints can be redundant because the coil state is

flexible, not rigid. It is convenient to introduce elementary

statistical weights, where ex¼ exp(�b3x) and gx¼ exp(�gx)

for x ¼ HB or NT. The Boltzmann weight must take into

account that both independent and redundant constraints are

present. For example, the Boltzmann weight of a protein that

contains NHB H-bonds and NNT native torsion force interac-

tions, for which IHB H-bond distance constraints and INT native

torsion constraints are independent, is given by ½gNT�INT

½gHB�IHB ½eNT�NNT ½eHB�NHB , where the macrostate is given by

(NHB, NNT). In the McDCM, the Boltzmann weight of a micro-

state is expressed solely as a function of its macrostate (NHB,

NNT) because constraint locations are irrelevant. Thus, the

McDCM partition function is calculated by considering all

possible arrangements of constraints to obtain degeneracy

factors related to entropy of mixing (e.g., which H-bond is

present or absent given there are NHB H-bonds in the network).

The general strategy of solving the partition function, Q,

within the McDCM is to express it as a sum of Boltzmann

factors, all being some powers of elementary statistical

weights. The expression must count all accessible permuta-

tions of constraint networks for which the fluctuating interac-

tions can explore. In addition, the number of independent

constraints (i.e., IHB and INT) must be related to Ml, which

can be determined based on the entropy spectrum. Within

an a-helix, the maximal number of H-bonds, nHB, is equal

to Nres � 4, whereas the maximal number of native torsion

angle forces is given by nNT ¼ 2Nres � 2. The helix becomes

rigid on introduction of all native torsion interactions, thus

Ml ¼ 2Nres � 2. The complete McDCM partition function

is compactly expressed as:
Q ¼

8<
:
X½Ml

b �

k¼ 0

�
nHB

k

�
gkb

HBek
HB

 XMl�kb

i¼ 0

�
Ml

i

�
gi

NTei
NT þ gMl�kb

NT

XMl

i¼Ml�kbþ 1

�
Ml

i

�
ei

NT

!9=
;

þ

8<
:

XnHB

k¼½Ml
b �þ 1

�
nHB

k

�
gMl

HBek
HB

XMl

i¼ 0

�
Ml

i

�
ei

NT

9=
;;

(2)
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where b¼ 3 represents the number of constraints per H-bond

and the square brackets indicates that the ratio (a real

number) is truncated to the proceeding integer. This expres-

sion enumerates all constraint networks in the ensemble

making use of the permutation factors, while appropriately

grouping powers of the elementary Boltzmann weights.

The expression of Eq. 2 assumes gHB R gNT, meaning a

H-bond constraint reduces Sconf more than restricting a dihe-

dral to native-like fluctuations. The free energy of a particular

framework of a polypeptide is obtained by exploring acces-

sible rigidity states. In the context of Maxwell counting,

Fig. 2 illustrates some examples of accessible macrostates

that the partition function of Eq. 2 captures, which is calcu-

FIGURE 2 Schematic showing global dependence of Boltzmann factors

due to Maxwell counting. Dashed lines represent torsion force constraints.

Solid lines represent H-bond constraints, for which there are three per

H-bond. Because H-bond constraints have greater entropy cost than torsion

force constraints, they are placed in the network first. Six example cases

(a–f) show different macrostates accessible to the polypeptide. Constraints

are independent when the polypeptide is globally flexible (white) and redun-

dant for a rigid polypeptide (gray). The left-hand bracket of Eq. 2 accounts

for example cases a–e. (a) No constraints are present, which defines the

random coil reference state. (b) No H-bonds formed, but some helical struc-

ture is present. (c) No helical structure formed, despite some H-bonds have

formed. (d) Both helical structure and H-bonds have formed. In cases a–d
the polypeptide is flexible with as many available degrees of freedom given

by the gap between where the last independent constraint is shown, and the

Maxwell level. (e) All H-bonds are independent, but the torsion force

constraints associated with helical structure exhibit a mixture of being inde-

pendent and redundant. (f) All torsion force constraints are redundant,

but the H-bond constraints exhibit a mixture of being independent and

redundant.
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lated analytically by Maple. Once the partition function is

calculated, the free energy is given by G ¼ �RTlnQ, and

Cp is obtained by appropriate derivatives of the free energy.

RESULTS AND DISCUSSION

The McDCM reproduces heat capacity

The excess Cp for the helix/coil transition quantifies equilib-

rium fluctuations in energy that occur over an ensemble of

polypeptide conformations. Therefore, measured Cp is an

excellent thermodynamic response function to parameterize

the McDCM. Because the McDCM presented in this study

does not discriminate between residues, its four free param-

eters {3HB, gHB, 3NT, gNT} are associated with an effective

homogenous polypeptide. These parameters must be

obtained by fitting to some experimental data (helix content

or, as done here, Cp). This approach of fitting to experimental

data on a case-by-case basis (due to nontransferable param-

eters) is exactly the same as used by the classic helix-coil

models of Lifson and Roig (6) and Zimm and Bragg (8).

We find that experimental Cp data are reproduced markedly

well via fitting by inspection using Maple. Four typical

examples using published Cp data for the A4, V5, and A6

polypeptides (29) and peptide I (30) are shown in Fig. 3.

The McDCM parameters obtained by fitting to these exper-

imental data are summarized in Table 1. Although there is

enough freedom in the McDCM to fit well to a given Cp

curve, the model is too simple for transferability in parame-

ters. Specifically, parameter differences reflect portions of

the FED that are not explicitly considered (i.e., solvent

effects) and the accuracy of the homogeneous polypeptide

assumption. Interestingly, the parameters of the A4, V5,

and A6 polypeptides (that are of similar amino acid compo-

sition, length, and are from identical solvent conditions) are

nearly transferable. Conversely, the parameters are signifi-

cantly shifted in Peptide I to account for its increased length,

alternate composition (specifically, altered spacing between

Glu and its basic residue), and differing solvent conditions.

Considering FED differences between our various models

and systems (i.e., b-hairpin, a-helix, and a diverse variety

of proteins), the parameters obtained here are within ranges

that are qualitatively consistent. Parameter transferability is

expected to increase as more complete FEDs are developed.
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a b c d FIGURE 3 McDCM fits to excess heat

capacity markedly well. Open circles

denote experimental Cp data for the (a)

A4, (b) V5, and (c) A6 polypeptides

(29). In each case, the solid line is the cor-

responding McDCM best fit. (d) Light

gray open circles denote experimental

Cp data for peptide I from Scholtz et al.

(30), and the solid line is the correspond-

ing McDCM best fit.
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TABLE 1 McDCM parameters used in this study*

Parameter Physical interpretation

A4 Y(AEARA)4

Nres ¼ 21

V5y Y(XEARA)6

Nres ¼ 31

A6 Y(AEARA)6

Nres ¼ 31

Peptide I Ac-Y(AEAAKA)8F

Nres ¼ 50

3HB H-bond energy �0.83 �0.83 �0.60 �1.14

3NT Native torsion force energy �0.50 �0.40 �0.45 �0.09

gHB H-bond pure entropy cost 1.19 1.13 1.07 0.94

gNT Native torsion force pure entropy cost 0.75 0.75 0.90 0.35

*Values were determined by fitting to the DSC data in Richardson and Makhatadze (29) for A4, V5, A6, and Scholtz et al. (30) for peptide I. The fits are shown

in Fig. 3. The units of the energy parameters are kcal/mol, and the entropy parameters are unitless.
yIn the V5 polypeptide, X ¼ A in repeats 1–4 and 6, whereas X ¼ V in the fifth repeat.
Nucleation emerges as a local response
to global demands

In our previous work on the helix/coil transition, an exact

transfer matrix method was used to solve the DCM

(14,19,31) where the FED followed closely the original

model of Lifson and Roig (6). That is, each residue was

considered to be in a helix or coil state. If in a helix state,

then both the PHI and PSI angles were considered to simul-

taneously have a native torsion force constraint present. The

helix or coil conformational state for each of three consecu-

tive residues defined a local cooperative unit. Moreover,

H-bonds were modeled in a similar way as done in the Zimm

and Bragg model (8), and a local relationship for the energy

and entropy parameters of a spanning H-bond as a function

of the local conformational state of each of the three residues

the H-bond spanned was constructed. The important point to

note here is that the helix/coil FED used in our prior works

was designed to provide accuracy and transferability of

parameters, but it sacrificed simplicity. In contrast, in the

FED used here, a H-bond does not couple to native torsions

within residues that it spans, and all H-bonds are treated to be

identical, independent of their local environment. The PHI

and PSI torsion interactions within a residue are independent

of one another. Moreover, Maxwell counting removes all

spatial correlations. Taken together, all local couplings are

eliminated. The McDCM can only exhibit cooperativity

from global properties. Note that we are not implying that

global demands made by rigidity are the only important

aspect to nucleation and folding. Rather, the simplified

McDCM is valid in a certain limit that allows us to under-

stand the hidden nature of nucleation and cooperativity as

a universal mechanism.

We first verify that there is no transition and no cooperativ-

ity if rigidity is ignored. The affect of network rigidity is easily

removed by modifying the statistical weights in Eq. 2 to

produce two hypothetical cases. Although interactions can

form when all constraints are treated as independent, they

now always give rise to a reduction of Sconf (that is, of course,

incorrect). This is equivalent to changing Ii in Eq. 1 to ni,

which is the standard FED assumption of additivity. Second,

we treat all constraints as redundant, which is equivalent to

ignoring entropy effects altogether (i.e., gHB ¼ gNT ¼ 0).

We then proceed to account for the observed helix-coil tran-
sition using only the two free energy parameters {3HB, 3NT}.

In both incorrect cases, the quality of the Cp fits shown in

Fig. 3 was unattainable. It is noted that a similar null result

would occur if the nucleation parameter were eliminated

from the Zimm and Bragg (8) or Lifson and Roig (6) model.

These results show the DCM and traditional helix/coil models

exhibit cooperativity as a direct manifestation of free energy

nonadditivity, regardless of its origins (local versus global).

However, there is an important difference when the origin

of cooperativity is identified. The nucleation/propagation

models are not applicable to anything but the helix/coil tran-

sition. In contrast, the concerted (not sequential) origin of

cooperativity in the DCM is a universal mechanism, and the

McDCM is useful to highlight how cooperativity emerges

as a consequence of a global enthalpy/entropy mechanism

related to concerted properties of network rigidity.

Cooperativity requires nonadditivity

The two hypothetical cases above are analyzed further to

glean insight into limiting behavior of the McDCM in states

that are globally rigid or flexible. The case that all constraints

are treated as 100% independent may be an acceptable

approximation when the polypeptide is in the coil state. In

fact, many published results of FEDs are given in tables that

suggest additivity is, at times, an acceptable assumption

(32,33). Therefore, we calculate the partition function using

the same parameters from the McDCM given in Table 1 for

the A6 polypeptide, but treating all constraints as indepen-

dent. Fig. 4 shows the free energy landscape from this calcu-

lation has only one basin. It is seen that there is too much of

a Sconf cost to allow the helix state to be a competitive alterna-

tive in minimizing the free energy of the system. Using the

same parameters in the second case that all constraints are

treated as redundant, we again calculate the partition function.

Again, Fig. 4 shows the free energy landscape from this calcu-

lation has only one basin. No entropy cost is required to form

favorable interactions; therefore, no entropy can be gained

when these interactions break. As a result, there is no mecha-

nism to gain enough Sconf to promote the transition by over-

coming the energy cost when favorable interactions break.

The free energy landscapes associated with these two extreme

limits shift in location (number of constraints at the bottom of

the basin) by a small amount as temperature changes.
Biophysical Journal 97(11) 3000–3009
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The corresponding Cp curves in the above limits do

exhibit a peak (data not shown). A peak appears because

of the combinatorial factors that are part of the partition func-

tion. These combinatorial factors play a critical role in

defining the parabolic shape of each of the single free energy

basins considered, and they represent the mixing entropy

related to how many different ways Nhb H-bonds and Nnt

native torsions can be arranged within the structure.

However, as is well known, finding a peak in the heat

capacity is not a foolproof indicator of a phase transition.

A peak in Cp only reflects when the energy fluctuations are

the greatest, but this does not necessarily imply cooperativity

or a change of state. Tracking the free energy landscape as

a function of temperature confirms that no transition occurs

when the constraints are assumed to be either 100% indepen-

dent or 100% redundant.

Informatively, the two limiting cases each mimic a specific

aspect of the McDCM, which correctly predicts a first-order

phase transition. Fig. 4 shows that there is considerable over-

lap between the 100% independent free energy basin and the

coil basin of the McDCM. In addition, there is overlap

between the 100% redundant free energy basin and the

a-helix basin of the McDCM. The high degree of overlap

in the two basins has important implications. Formation of

H-bonds and native torsion forces in the coil state generally

pay a high entropy cost. The high overlap with the single

basin free energy landscape characterizes a flexible structure

in a noncooperative environment where additivity prevails.

In the a-helix state, H-bonds do not generally pay an
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FIGURE 4 One-dimensional free energy landscapes at fixed temperature

(T ¼ 302 K) are shown as a function of number of constraints. All curves

were generated with McDCM parameters for the A6 polypeptide. The

(black, gray) curves show free energy landscapes with a single basin

centered on the (left, right) side when all constraints are modeled as either

(independent, redundant). Open circles show a free energy landscape with

a double basin predicted by the McDCM, indicating cooperativity arises

from a competition between microstates that are primarily flexible in the

coil state and rigid in the a-helical state. The vertical dash-dotted line

denotes the Maxwell level (i.e., the number of constraints needed to make

the polypeptide just rigid), which indicates the polypeptide is globally (flex-

ible, rigid) to its (left, right).
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entropic cost on formation because of the cooperativity

that is created by having many H-bonds present in the struc-

ture. Although the physical reason why the a-helical state is

stable is because of the cooperativity among interactions

(i.e., dense formation of H-bonds along the backbone and

native torsion forces) the mathematical exercise of enforcing

100% redundancy is analogous to enforcing the presence of

the helix state, irrespective of how many H-bonds are

present. As such, under this hypothetical situation, the

change in free energy on formation of a H-bond is indepen-

dent of whether other H-bonds are present or not. Thus, the

single basin free energy landscape describing the case when

all constraints are 100% redundant represents a noncoopera-

tive environment, where all free energy components are

additive.

A statistical mechanical model of enthalpy/
entropy compensation

Conceptually, perfect cooperativity can be thought to arise

from the competition between two thermodynamic states,

each representing a subensemble of conformations, where

one state has low enthalpy and low entropy, whereas the

other state has high enthalpy and high entropy. At low

temperatures, the enthalpic stabilization of forming many

interactions outweighs the entropic cost of forming those

interactions. The situation is reversed as temperature

increases, which gives rise to the abrupt (cooperative) transi-

tion between folded and unfolded states. This two-state

thermodynamic description was used by Schellman (10) to

successfully explain the helix/coil transition. Schellman

gave remarkably good estimates for the enthalpies and entro-

pies for the coil and helical states as a function of chain

length to explain the dependency of melting temperature

on chain length. By working with global stability estimates

of end states (coil or helical structure) a model for the

nucleation mechanism is not needed. Although McDCM

is a statistical mechanics model, it captures the essence of

Schellman’s thermodynamic approach because it does not

incorporate local cooperativity effects responsible for a local

nucleation event. Nevertheless, as shown in Fig. 4, the free

energy landscape (near the Tm) predicted by the McDCM

exhibits a classic profile that contains two basins separated

by a barrier. Finally, a traditional indicator of cooperativity

in the helix/coil transition is that the Tm increases as a func-

tion of chain length until a point of saturation. Schellman ex-

plained the reason for this length dependence by carefully

taking into account boundary effects, which in part relies

on knowing the maximum number of H-bonds that can

form in the a-helical structure is four less than the number

of residues in the chain (10). The important point is that co-

operativity can be captured as a global property of the system

(total enthalpies and entropies) without invoking a micro-

scopic mechanism for nucleation. As shown in Fig. 5,

McDCM predicts Tm increases as the chain length increases
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until a saturation length is reached. The details of this length

dependence are buried in Eq. 2 because the chain length

affects the Ml, Maxwell counting and the degeneracy factors

that appear in the partition function. However, the McDCM

predicts the same trend as Schellman did, namely the effects

of the ends become less important as the chain length

increases.

Perfect cooperativity, as Schellman approximated using

a two-state model, does not exist in the McDCM because

the partition function of Eq. 2 accounts for all possible

constraint arrangements, consisting of a total of 23Nres-6

accessible states. The convex shape of the basins arises

from combinatorial factors that account for mixing, but this

does not diminish the accuracy of a two-state model. More

interestingly, the a-helix basin does not completely trace

the minimum of the corresponding noncooperative limiting

case. This is an indication that microstates with appreciable

fraction of independent constraints appear. The asymmetry

in shape between the basins is a consequence that there is

no natural symmetry in the problem. Of potential concern

is that the a-helix basin is broader (having less curvature)

than the coil basin. This is abnormal because greater fluctu-

ations are represented in a broader basin. Prior works with

the mDCM (15,16) typically result in the unfolded and

folded basins to be broader and narrower, respectively. It

is the favorable coupling interactions that are present in

real polypeptides that suppress fluctuations in the a-helix

basin. However, no local coupling interactions are modeled

in the McDCM to void any type of local cooperativity.

The McDCM recapitulates the thermodynamic reasoning

Schellman used to explain the helix/coil transition nearly 55

years ago, which remains sound. Thermodynamic arguments

are often the most powerful because they are independent of

knowing specific microscopic mechanisms. On the other

hand, statistical mechanics models provide greater insight

into why the thermodynamics works the way it does. The
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FIGURE 5 Dependence of cooperativity on chain length. Based on

parameters for the A6 polypeptide, the McDCM predicts the melting temper-

ature initially increases with chain length, until a saturation level is reached.
McDCM has been specifically designed here as a simple,

yet informative statistical mechanics model that focuses on

the microscopic reason for the cooperative behavior that is

observed in thermodynamic response. Global stability issues

have been demonstrated to be directly linked to network

rigidity, its role in reconstituting total free energy of a system,

with cooperativity being a consequence of nonadditivity

appearing in Sconf via enthalpy/entropy compensation.

Network rigidity places a global demand on a system to

form a local nucleation event. This is because once the avail-

able degrees of freedom become marginal, near Ml, a small

group of interactions forming or breaking will become highly

cooperative. More generally, beyond the Maxwell counting

mean-field approximation, fluctuations in constraint density

play a critical role in how the global demands manifest

themselves in local response.

Transition state and the rigidity threshold

As shown in Fig. 4, the McDCM predicts a transition state at

the apex of the free energy barrier separating the two basins.

The interesting feature is that the transition state is located

precisely at Ml. The system is less stable close to the rigidity

threshold separating the system from being globally rigid

or globally flexible. The mechanism of enthalpy/entropy

compensation is too balanced, and small fluctuations will

fiercely drive the system to one basin or the other to obtain

a lower free energy. The McDCM will always associate

the rigidity threshold to the thermodynamic transition state,

for the reasons just described. However, we showed previ-

ously that the rigidity threshold and the thermodynamic tran-

sition state are generally not collocated (15,16,23). The

rigidity threshold can appear on either side of the transition

state. In particular, network rigidity will have fluctuations,

where some regions will be rigid, whereas other regions

will be flexible. Different regions will exhibit different

degrees of cooperativity depending on the nature of how

rigidity/flexibility propagates through the molecular struc-

ture. These latter details manifest into a cooperativity mech-

anism specific to a given polypeptide (14,19,31) or protein

(15,16,21–23), but the universal aspect is the link between

thermodynamic and mechanical response.

Beyond a two-state model

The Maxwell counting approximation forces the entire

system to be 100% rigid or 100% flexible, but this enforce-

ment is artificial. Although lifting this mean-field approxima-

tion makes solving the DCM mathematically complicated,

the approach remains tractable and computationally efficient.

Network rigidity provides a universal mechanism to track

nonadditivity within component entropies, thus leading to

cooperative behavior. The McDCM is maximally coopera-

tive (compared to prior DCMs) because spatial fluctuations

within constraint placement, which suppress cooperativity,

are not considered (cf. Fig. 1 b). In fact, the general DCM
Biophysical Journal 97(11) 3000–3009
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does not force two-state behavior, as both continuous and

multi-phasic transitions have been successfully predicted.

Across length scales (i.e., polypeptides to protein

complexes), cooperativity naturally arises by accounting

for nonadditivity within Sconf. The McDCM presented in

this study provides an intuitive enthalpy/entropy compensa-

tion mechanism that occurs from the competition between

redundant and independent states. As shown here for the

McDCM, the driving force within all DCMs, despite their

nuanced differences, is that nucleation emerges as a local

response to global demands.

CONCLUSIONS

The DCM is a unique modeling paradigm that restores the

utility of FED schemes. By accounting for Sconf nonadditivity,

the general DCM strategy provides a universal mechanism for

the concerted (not sequential) onset of cooperativity. Specif-

ically, the DCM uses rigidity graph algorithms to identify

(independent, redundant) constraints that (contribute, do not

contribute) to the total Sconf. Although conceptually straight-

forward, previous DCMs are couched in a rather mathemati-

cally complex formulism that obfuscates its simplicity. As

such, we have developed a mean-field DCM based on the

Maxwell counting approximation that considers all con-

straints to be uniformly distributed throughout the system.

Application of this McDCM to the helix/coil transition

problem clearly highlights how cooperativity concertedly

results from a competition between a collapsed state with

many redundant constraints and an extended coil state

where most constraints are independent. Despite its

simplicity, the McDCM retains the essential physics to quan-

titatively reproduce experimental Cp curves. Namely, thermo-

dynamic stability is directly linked to network rigidity, which

serves as a universal mechanism for reconstituting the total

free energy of a system. Cooperativity is a manifestation of

nonadditivity appearing in Sconf via enthalpy/entropy

compensation governed by propagation of rigidity and flexi-

bility though molecular structure. Due to the long-range

nature of rigidity, helix nucleation is a local response to global

demands.
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