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Simulation of Cyclic Dynein-Driven Sliding, Splitting, and Reassociation
in an Outer Doublet Pair

Charles J. Brokaw*
Division of Biology, California Institute of Technology, Pasadena, California

ABSTRACT A regular cycle of dynein-driven sliding, doublet separation, doublet reassociation, and resumption of sliding was
previously observed by Aoyama and Kamiya in outer doublet pairs obtained after partial dissociation of Chlamydomonas flagella.
In the work presented here, computer programming based on previous simulations of oscillatory bending of microtubules was
extended to simulate the cycle of events observed with doublet pairs. These simulations confirm the straightforward explanation
of this oscillation by inactivation of dynein when doublets separate and resumption of dynein activity after reassociation.
Reassociation is augmented by a dynein-dependent ‘‘adhesive force’’ between the doublets. The simulations used a simple
mathematical model to generate velocity-dependent shear force, and an independent elastic model for adhesive force. Realistic
results were obtained with a maximum adhesive force that was 36% of the maximum shear force. Separation between a pair of
doublets is the result of a buckling instability that also initiates a period of uniform sliding that enlarges the separation. A similar
instability may trigger sliding initiation events in flagellar bending cycles.
doi: 10.1016/j.bpj.2009.09.022
INTRODUCTION

In cilia and eukaryotic flagella, dynein motor enzymes,

arrayed along the nine outer doublets of the axoneme,

produce interdoublet sliding that can generate a wide variety

of bending movements. How the action of these dyneins is

coordinated to produce useful bending patterns is still not

understood. In particular, the fundamental mechanism for

oscillation to produce cyclic bending has not been estab-

lished. However, there is one situation in which dyneins

produce oscillatory movements that appear to be easily

explained. These movements are found in partially disinte-

grated flagella, where the outer doublets remain attached

together at the basal end of the flagellum. Dynein activity

on just one doublet can produce sliding between a pair of

doublets. If the doublets were to remain closely associated,

the pair would be expected to bend and ultimately stabilize

with the active shear force balanced by the elastic resistance

of the bent doublets. With partially disintegrated doublets,

the sliding is accommodated more easily by splitting of the

doublet pair on the basal side of the sliding region. Further

sliding enlarges the separation between the doublets. The

distal end of the separated region propagates to the distal

end of the doublets, and the doublets separate completely.

This is followed by reassociation, beginning from the basal

end. This cycle of sliding, separation, reassociation, and

more sliding can be repeated at a regular frequency. This

behavior was described in detail for Chlamydomonas flagella

by Aoyama and Kamiya (1) after earlier observations (2,3).

A somewhat similar cyclic behavior was observed in sea

urchin sperm flagella (4). These examples of oscillation
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were explained by the simple assumption that dyneins are in-

activated by separation between the doublets and resume

activity when the doublets reassociate.

In these experimental situations, the partial dissociation of

the doublets appeared to result from breakage of elastic inter-

doublet linkages (sometimes referred to as nexin linkages)

by proteases. After protease treatment, the dyneins may be

the remaining source for the forces that hold two doublets

together, as well as for producing sliding. To better under-

stand these dynein functions, computer programming

was developed to simulate the oscillatory behavior seen

in the experiments with partially dissociated flagella. This

computer modeling considers dyneins on just one outer

doublet (referred to as doublet A) interacting with sites on

another outer doublet (doublet B). In the examples studied

by Aoyama and Kamiya (1), doublet B was not straight,

although there was very little bending of doublet B during

the cycle, while doublet A underwent extensive bending

and movement. The work presented here considers only

the case in which doublet B does not bend during the cycle.

The case in which both doublets can bend will require

substantially new computational methods and a separate

study. In this study, dynein force generation was simulated

by simple and independent mathematical relations for a

velocity-dependent shear force and an elastic adhesive force.

Modeling with more realistic kinetic models for dynein

force generation also remains to be performed in future

studies.

METHODS

As in previous work, beginning with that of Machin (5), the bending move-

ment of a long flexible filament is obtained by solving a moment balance

equation. This work considers a two-dimensional model, with two outer

doublets represented by two thin filaments that remain in a single plane as
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they bend. It is convenient to describe the shape of a filament by its curva-

ture, k (s), where s is the distance measured along the filament. Given a shape

at time t, the moment balance equation is solved to obtain rates of bending,

vk(s)/vt, and the shape can then be updated to time tþ Dt by k(tþ Dt)¼ k(t)

þ vk(s)/vt Dt. Repeated iterations then lead to a complete history of bending

of the filament through time. For numerical analysis, the length of the fila-

ment is divided into segments of length Ds, and k and vk/vt are defined at

the joints between each segment. This converts the moment balance equa-

tion from a partial differential equation to a set of linear equations that is

solved to obtain the values of vk/vt. Each filament is clamped at its basal

end, so that no displacement or rotation of its basal end can occur. Conse-

quently, the distance (60 nm) between the filaments at the basal end remains

constant, with no shear between filaments at the basal end. In flagellar

modeling, a constant distance between doublets at all points along the length

is assumed, and active dynein force density is easily converted to active

shear moment density, which is integrated along the length to obtain active

bending moment. For a single doublet, or for a doublet pair with variable

interdoublet spacing, the relationship between the dynein force and the

active bending moment on each filament is determined by the shape of the

filament. This procedure was described in an earlier modeling study of

bending movements of individual microtubules over a surface coated with

motor enzymes (6).

Dynein sliding forces can be simulated by a simple mathematical model

used in earlier studies (6–9). When there is no sliding, this model produces

a tangential force density per unit length along doublet A, f0. A short sliding

displacement at a velocity VL causes a reduction in force, as if the force were

produced by an elastic resistance: df/dt¼�f0 ESCB VL, where ESCB is a stiff-

ness constant equal to the reciprocal of the sliding distance required to

reduce the force to 0. When f is less than f0, the force recovers toward f0
with a first-order rate constant k. If f0 and VL are constant, the steady-state

solution gives the force density, f:

f ¼ f0ð1� ESCB VL=kÞ:

The force decreases linearly with sliding velocity to zero, where the sliding

velocity V0 ¼ k/ESCB. The moment balance equations can be developed

with the steady-state solution, where the velocity-dependent term acts

like a longitudinal viscous resistance, and f0/V0 is simply added to the longi-

tudinal viscous drag coefficient, CL, in the equations. A non(steady-state)

version used in previous modeling studies (6–8) was also examined, with

ESCB ¼ 0.1 nm�1. Both versions give nearly identical results over most of

the range of parameters examined, and unless stated otherwise, the reported

results represent the results from both methods. The steady-state version

effectively assumes dynein kinetics that rapidly follow changes in switching,

whereas the rate constant k in the non(steady-state) version introduces a

delayed response to switching. Agreement between the two versions

suggests that this simple model for force generation is acceptable. When

the two versions do not agree, the results must be considered tentative,

pending future exploration of models that incorporate realistic kinetics for

dynein attachment to and detachment from substrate sites.

If doublet A is perfectly straight, a longitudinal force will produce no

bending moments, and the doublet will remain straight indefinitely. To avoid

this situation, all of the simulations include a small symmetry-breaking

curvature, usually 1 � 10�8 rad mm�1. A more complete presentation of

these methods is provided in the Supporting Material.

New features required for modeling an interacting
doublet pair

In this work, the dynein shear force constant, f0, is assumed to be modulated by

the distance between the two filaments, such that it is completely eliminated

when this distance becomes too great. There is also assumed to be force

normal to filament A, which attempts to maintain a constant spacing between

the filaments. This force has been termed the adhesive force (10,11), and is

suspected to be provided by the dyneins. This force is derived from a linear

elastic resistance constant, EN. Functional relationships between these forces
Biophysical Journal 97(11) 2939–2947
and the separation distance between the filaments, measured normal to doublet

A and relative to the fixed separation at the basal end, are governed by four

constants: C1 is the separation distance at which f0 increases from 0 (for sepa-

rations<C1) to a constant value; C2 is the separation distance at which f0 starts

to decrease linearly to 0 at separation distance C3; and C4 is a multiplier of EN

for separation distances<0. EN is constant from separation¼ 0 to C2, and then

also falls to 0 at C3. Values used for these constants are given in Table 1.

Modulation of dynein forces over a range of 8 nm is guided in part by obser-

vations of 10 nm differences in interdoublet spacing between bent and straight

regions of Chlamydomonas flagella (12). The primary new development in

this work is that the separation distance and relative velocities between inter-

acting regions of the two filaments, each described by its own k(s) variables,

are computed. This is described in detail, along with computer code for the

core portions of the programming, in the Supporting Material.

RESULTS

Typical results

Configuration series from typical simulations with a doublet

length of 12 mm are shown in Fig. 1. Movies in the Support-

ing Material provide a more complete picture of the move-

ment. These examples are designed to simulate the results

previously obtained with a dissociated Chlamydomonas
flagellum, as shown in Fig. 2 and Movie S1 of Aoyama

and Kamiya (1). Example A (Fig. 1 A and Movie S1) shows

the results obtained when doublet B is straight. This restric-

tion creates a simpler situation in which the effects of the

model parameters can be understood more easily. For

example B (Fig. 1 B and Movie S2), doublet B is given

a constant curvature of 0.05 rad mm�1, and the elastic rest

position of doublet A is concentric to doublet B, with a radius

that is 60 nm greater. These specifications are not sufficient

to precisely match the experimental results, because there is

some bending of doublet B during the cycles of bending

observed by Aoyama and Kamiya (1). The parameters

used for the simulations in Fig. 1 are given in Table 1.

For their experimental example, Aoyama and Kamiya (1)

also presented a plot (their Fig. 4) showing the propagation

of association and dissociation points along the doublets as

a function of time. Similar plots for simulation examples A

and B are shown in Fig. 2. For an association transition, these

points are taken to be the points at which the separation

TABLE 1 Parameter values used for examples A and B

Elastic bending resistance, EB (pN nm2) 1 � 107

Dynein adhesive elastic constant, EN (pN nm�2) 0.005

Longitudinal viscous drag coefficient, CL (pN s nm�2) 3.24 � 10�9

Active sliding force density, f0 (pN nm�1) 0.11

Doublet length (nm) 12000

Drag coefficient ratio, CN/CL 1.8

Active sliding velocity at 0 force, V0 (nm s�1) 14000

Lower separation limit for active force, C1(nm) �2

Separation at which dynein active force and elasticity start to

decrease, C2(nm)

8

Separation at which dynein active force and elasticity

become 0, C3 (nm)

16

Dynein elasticity multiple for separation < 0, C4 40
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between the doublets causes the dynein shear force density f0
to switch from below half to above half of its full value.

Similarly, the dissociation points are for switching of f0 in

the opposite direction. There is probably only an approxi-

mate relationship between these criteria and those used to

distinguish transitions in the previous video recordings (1).

The movement cycle has three distinct phases. Phase A

(images 1–4 in Fig. 1, A and B) is the ‘‘Association phase’’

that begins after the complete dissociation of the doublets at

their distal ends, which occurs between images 0 and 1. A

combination of elastic straightening against the viscous

resistance of the fluid environment and adhesive force that

develops when the doublets are sufficiently close together

then causes the doublets to move closer together and reasso-

ciate, beginning at the basal end. No sliding between the

doublets occurs during phase A. Propagation of the associa-

tion transition begins slowly and then accelerates to a more

uniform velocity (Fig. 2). For comparison purposes, an
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FIGURE 1 Panel A shows a sequence of images covering one cycle of

oscillation of example A, a typical simulation of a doublet pair with doublet

B straight and stationary. Images 0 and 10 should be identical. Association,

propagation, and dissociation phases are indicated by the letters A, P, and

D, respectively. Panel B shows a similar sequence for example B, in

which doublet B has a fixed curvature of 0.05 rad mm�1. The parameters

used for these models are given in Table 1. For example A, the time

interval between images is 14.9 ms and the frequency is 6.7 s�1. For

example B, the time interval between images is 9.8 ms and the frequency

is 10.2 s�1.
average velocity of 272 mm s�1 was obtained from linear

fits of association point positions during the most constant

part of phase 1 in example A, between 4 and 7 mm from the

base. This is less than the value of about 400 mm s�1 reported

by Aoyama and Kamiya (1). In this example, phase A

occupies 41% of the cycle period, or 0.061 s. In example

B, the association transition propagates with an average

velocity of 369 mm s�1 and phase A occupies 33% of the

cycle period, or 0.033 s.

Phase P is the ‘‘Propagation phase’’ that begins with

a dynein-driven buckling event that creates a new separation

region between 1–3 mm from the base (image 5 in Fig. 1, A
and B). This new separation region has a nonpropagating

association transition at its basal end and a propagating

dissociation transition at its distal end. In example A, with

doublet B straight, phase P begins when the associated

region reaches a length of 8.2 mm. This is significantly

greater than in the experimental example, where separation

begins when the associated region appears to occupy less

than half the length of the doublets. Introducing a fixed

bend in doublet B, in example B, causes phase P to begin

earlier, when the length of the associated region is 5.2 mm.

This change, by itself, produces a small increase in cycle

frequency. During most of phase P, the previous association

transition and the new dissociation transition propagate with

reasonably similar velocities, expanding the separation

region and maintaining the intervening region of association,

which is 4.8–5.4 mm long in example A and 2.5–3 mm long

in example B. These propagation velocities are typically less

than the velocity measured for the association transition in

phase A, and this decrease in velocity can sometimes appear

before the start of phase P (see Fig. 2 A). These details of

association velocity changes were not revealed by the

lower-resolution experimental data (1), which appear to

show a near-constant association velocity over the full length

of the doublets. In example A, as the association transition

nears the distal end, it accelerates and progresses more

rapidly to the end of the doublet to terminate phase P. Phase

P occupies 7% of the cycle period, or 0.010 s, in example A,

and 18% or 0.018 s in example B.

Phase D is the ‘‘Dissociation phase’’ in which the dissoci-

ation transition propagates to the distal end, with a gradually

decreasing velocity. In example A, phase D, represented by

images 6–10, occupies 52% of the cycle period (0.078 s).

For comparisons, a velocity obtained from dissociation tran-

sition points between 7 and 10 mm was used. The average

dissociation point velocity in this range is 80 mm s�1 for

example A and 83 mm s�1 for example B. The dissociation

phase of example A is not identical to the experimental

results in Fig. 4 of Aoyama and Kamiya (1). The experi-

mental results show a large increase in the propagation

velocity of the dissociation transition during the latter part

of phase D. This feature was introduced into example B

by specifying that the adhesive elasticity constant, EN,

decreases linearly to 0 in the terminal 1.5 mm of doublet A.
Biophysical Journal 97(11) 2939–2947
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FIGURE 2 Positions of transition points on doublet A,

plotted as a function of time, for simulation examples A

and B. The positions of association transitions, at the basal

end of a separated region, are shown as open circles. The

positions of dissociation points, at the distal end of a sepa-

rated region, are shown as solid circles. The solid vertical

lines demarcate the A, P, and D phases for one cycle of

oscillation. These plots can be compared with Fig. 4 of

Aoyama and Kamiya (1).
This specification decreases the duration of phase D to

0.049 s, or 49% of the cycle period, and causes a substantial

increase in the cycle frequency. There is an additional

frequency increase because the decreased duration of phase

D reduces the separation amplitude, so that elastic straight-

ening in phase A requires less time. However, this specifica-

tion does not introduce the high degree of variability in

propagation of the dissociation point seen in the experi-

mental data (1), and only slightly decreases the acceleration

of propagation of the association point during the latter part

of phase P. During phase D, the amplitude of the separation

increases as a result of sliding in the distal associated region.

The final amplitude is best quantified by the total shear

displacement accumulated at the distal end by the end of

phase D. Plots of shear displacement during phase D for

examples A and B are shown in Fig. 3. For example A, the

final shear is 1.15 mm. For example B, the final shear is less
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FIGURE 3 Shear displacement in segment 98 of 100, plotted against time,

for typical cycles of examples A (open circles; cycle period 0.149 s) and B

(solid circles; cycle period 0.98 s). For examples A and B, a least-squares

linear fit gives a velocity of 13.53 mm s�1 and 13.67 mm s�1, respectively.

Shear resulting from the fixed curvature of doublet B has been subtracted

from the shear values for example B.
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(0.9 mm) because the duration of phase P is less. Fig. 3 shows

sliding occurring at a nearly constant rate during phase P.

However, this simply indicates that the force required to

maintain the bend in the separated region is much less than

the force required to initiate a separation, so the sliding

velocity is very close to V0, the velocity at 0 force. In these

examples, the average velocity is 0.98 V0. With the linear

force model used here, the steady-state force density should

be proportional to the difference between the observed

sliding velocity and V0, or 0.02 f0. A more detailed examina-

tion of the difference between the observed sliding velocity

and V0 indicates that the force density is not perfectly

constant, but does not change in a manner that would

compensate for the decreasing length of the associated

region, to maintain a constant total force.

A length of 12 mm was used for these simulations based on

measurements obtained with Chlamydomonas flagella (13).

The doublets examined by Aoyama and Kamiya (1) appear

to be at least 11 mm long, but the ends of the doublets are

not resolved clearly enough to determine the exact length.

The elastic bending resistance of the sea urchin sperm

axoneme is 1 � 108 pN nm2 (14). For one doublet, a value

of EB ¼ 0.1 � 108 pN nm2 was used. The active shear force

density constant, f0, of 0.11 pN nm�1 corresponds to 11 pN

for the repeating group of dyneins in a 96 nm length of

axoneme. This value is equivalent to a value used in

modeling flagellar movement (7). The value for the longitu-

dinal viscous drag coefficient, CL, in Table 1 is 1.5 times the

value used in simulations of flagellar movement (7,8). Some

factors, such as the small doublet diameter and higher

temperature, suggest that a lower value might be appropriate.

On the other hand, the shorter bend length and, more impor-

tantly, the small separation between doublets A and B

suggest a higher value (15,16). The 1.5 factor was largely

chosen to increase the relative duration of phase A, to better

match the experimental results. Note that multiplying all of
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the first four parameters in Table 1 by a constant factor will

not change any results. The values of CL, V0, and EN were

chosen for these examples to give a cycle frequency for

example B similar to the experimental results (9 s�1), with

roughly similar separation amplitude and relative durations

for the three phases. The sliding velocity parameter, V0 ¼
14 mm s�1, is somewhat less than the value of 18.5 mm s�1

reported for sliding velocity during axonemal disintegration

under similar conditions (17). Using V0 ¼ 18.5 mm s�1, it

was possible to obtain a frequency of 9 s�1 for the bent

doublet B case (as in example B) by increasing the relative

value of external viscous resistance by 38%, but this caused

the ratio of durations of phase A and phase D to increase to

1.4, compared to 0.7 for example B (see Fig. 2 B), which is

closer to the experimental results.

Effects of changing the zero-force sliding
velocity, V0

Varying the value of V0 in the range of 1–14 mm s�1 changes

the cycle frequency, as shown in Fig. 4 B, and the dissocia-

tion velocity measured during phase D, as shown in Fig. 4 A.

There is a relatively small change in association velocity,

which was not detected in the experiments (1). The change

in dissociation velocity can be compared with changes

caused by variations in ATP concentration, shown in

Fig. 5 of Aoyama and Kamiya (1). Those authors reported

a nonlinear Michaelis-Menten-type relationship between

dissociation velocity and ATP concentration, with a Km of

0.107 mM. Using this value and the value of Km¼ 0.177 mM

for V0 reported from the same laboratory (17), the expected

relationship between dissociation velocity and V0 can be

calculated, and is shown by the line through the dissociation

velocity points in Fig. 4 A. This is not a very sensitive test

because the difference between the two Km values is small.

The line and the data points are only slightly different

from a linear proportionality between dissociation velocity

and V0. However, the difference indicates that dissociation

velocity does not decrease as rapidly as V0, which means

that phase D allows more time for sliding to produce a larger

final shear, so that the shear amplitude, shown in Fig. 4 B,

does not decrease as rapidly as V0.

The changes in shear amplitude, which produce changes

in the amplitude of the separation, are also illustrated for

extreme values of V0 in Fig. 5. As V0 is decreased, both

the cycle frequency and the amplitude decrease, along with

a relative decrease in the duration of phase P. When V0 is

%1 mm s�1, a secondary bending pattern appears (Fig. 5 A),

which does not divide into three phases as in the primary

pattern. Instead, soon after the appearance of a new separa-

tion, the association transition at its basal end begins to prop-

agate at a constant velocity, resulting in a cycle with a higher

than expected frequency. This secondary pattern has

a frequency that is highly dependent on the computational

time step, Dt, and can only be consistently obtained with
the steady-state force model. The secondary pattern might

be dismissed as a computational artifact, except that this

pattern of cycling occurs in the real world, as illustrated by

the example shown in Fig. 6 and Movie S2 of Aoyama

and Kamiya (1). For comparison, Movie S3 shows a simula-

tion result for example B, with V0 reduced to 1 mm s�1 as in

Fig. 5 A. Further exploration of this bending pattern will

require a more realistic model for dynein force generation.

With high values of V0 (above the maximum V0 of

19 mm s�1 expected at saturating ATP concentration (17),

if V0 ¼ 14 at 0.5 mM ATP), there is a large bend in the sepa-

ration region (Fig. 5 B), and after complete separation (image

1), doublet A has to move a considerable distance against

the fluid viscosity until reassociation can begin (images

4 and 5 in Fig. 5 B). Phase A includes images 1–7 in
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FIGURE 4 Effects of varying the unloaded sliding velocity, V0, generated

by the active sliding system. Except for variations in V0, all other parameters

are the same as given in Table 1 for example A. (A) Propagation velocities

for the association (upper points) and dissociation (lower points) transition

points. Solid circles are from simulations with the non(steady-state) dynein

model; open circles used the steady-state dynein model. The line through

the dissociation point velocities is the calculated relationship between disso-

ciation velocity and sliding velocity obtained from experimental data, with

Km for dissociation velocity vs. [ATP] of 0.107 mM (1) and Km for V0 vs.

[ATP] of 0.177 mM (17), assuming [ATP]¼ 0.5 mM for the standard condi-

tions where V0 ¼ 14 mm s�1. This line diverges only slightly from the linear

relationship expected if Km is the same for both variables, so that the disso-

ciation rate is proportional to V0. (B) Cycle frequency (solid circles) and final

shear attained in the distal associated region, at the end of phase D (open

circles). Note that the results for V0 ¼ 18 and 24 mm s�1, at the right ends

of the curves, are beyond the range accessible in the experiments (1).
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Fig. 5 B. Phase P is very short, and only its very end is

captured in image 8. Phase D is reduced and is represented

only by images 9 and 10.

Effects of changing the adhesive elasticity
constant, EN

The normal elastic resistance constant, EN, is a new parameter

that has not been used in previous modeling. The value of EN

¼ 0.005 pN nm�2 was used for the examples in Fig. 1 to simu-

late the experimental result in Fig. 2 of Aoyama and Kamiya

(1). Other values of EN were explored, with C4 adjusted to

maintain EN ¼ 0.2 pN nm�2 for the compression resistance

at less than normal separations. With low values of EN, a

short associated region can initiate separation (see image 7

in Fig. 6 A), and the propagating associated region between

the basal and distal separated regions is also very short

(images 8 and 9 in Fig. 6 A). The cycle frequency increases

to 8 cycles s�1 when EN ¼ 0.001 to 0.0025 pN nm�2, and

then decreases to 4.3 cycles s�1 with further reduction in EN

down to 2 � 10�7 pN nm�2. Even when the adhesive force

resulting from EN is nearly eliminated, the elastic bending
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FIGURE 5 Panel A shows a sequence of images covering one cycle of

oscillation of example A with V0 reduced to 1.0 mm s�1. The time interval

between images is 38.5 ms and the frequency is 2.6 s�1. Panel B shows

a sequence of images covering one cycle of oscillation of example A with

V0 increased to 48 mm s�1. Association, propagation, and dissociation

phases are indicated by the letters A, P, and D, respectively. The time

interval between images is 12.2 ms and the frequency is 8.2 s�1.
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resistance is sufficient to bring the two doublets close

together by straightening of doublet A, so that sliding force

can be reactivated. This straightening will be sufficient for

the special case in which doublet B is straight, and is also

dependent on the boundary condition at the base of doublet

A, which is rigidly clamped so that it is parallel to and at a

constant distance from doublet B. Under these conditions,

phase A is lengthened, as represented by images 1–6 in

Fig. 6 A. The very brief phase D is represented by image 10

in Fig. 6 A.

Increased values of EN increase the separation amplitude

and decrease the cycle frequency. Increasing the value of

EN makes it more difficult for buckling to generate a new

separation. With EN¼ 0.019 pN nm�2 (Fig. 6 B), a new sepa-

ration does not appear until after reassociation is completed;

there is no phase P. With EN ¼ 0.020 pN nm�2, buckling is

prevented and the doublets remain stably associated.

Requirements for initiation of separation between
the doublets

If example A is started with the active force density constant,

f0, reduced from 0.11 to 0.062 pN nm�1, the doublet pair
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FIGURE 6 Panel A shows a sequence of images covering one cycle of

oscillation of example A with EN reduced to 2 � 10�6 pN nm�2. Associa-

tion, propagation, and dissociation phases are indicated by the letters A, P,

and D, respectively. The time interval between images is 23.3 ms and the

frequency is 4.3 s�1. Panel B shows a sequence of images covering one cycle

of oscillation of example A with EN increased to 0.019 pN nm�2. The time

interval between images is 27.4 ms and the frequency is 3.65 s�1.
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remains straight for at least 10 cycle periods. With f0 ¼
0.063, cyclic behavior is obtained, similar to that shown at

high EN in Fig. 6 B. The effect of reducing EN was explored

using a constant value of EN ¼ 0.2 pN nm�2 for separations

< 0. Decreasing EN by 50% allows the critical f0 to decrease

to 0.046 pN nm�1. A further decrease down to the low value

of EN ¼ 2 � 10�6 pN nm�2 used for the example in Fig. 6 A
decreases the critical f0 nonlinearly to 0.0028 pN nm�1, but

this is still well above the theoretical value of f0¼ 1.1� 10�4

pN nm�1 calculated using equations (18) for a self-loaded

column in the absence of normal forces such as EN. Other

experiments have shown that the very low force produced

by a single kinesin motor enzyme can cause buckling of

a 6 mm length of microtubule (19). The critical value of f0
can also be decreased by decreasing EB, with a 50% decrease

in EB allowing f0 to decrease to 0.043 pN nm�1, which is

a slightly greater decrease than that observed with a 50%

decrease in EN.

With bent doublets, as in example B, the minimum value

of f0 required for separation is reduced by 37%, to 0.0391 pN

nm�1. This is similar to the 37% decrease in the length of the

associated region in example B, compared to example A,

before separation begins. The reduced force requirement

can be interpreted in terms of a transverse force, or t-force

(10), that pushes the doublets apart. If some of the adhesive

elastic force is required to balance the t-force, that reduces

the amount of adhesive elasticity that is available to constrain

separation. The t-force is equal to the product of curvature

and the longitudinal force in the doublet. With a curvature

of 0.05 rad mm�1 and f0 ¼ 0.0391 pN nm�1, the t-force

increases linearly to 0.0235 pN at the base of the doublet.

With EN ¼ 0.005 pN nm�2 and C2 ¼ 8 nm, the maximum

possible adhesive force will be 0.040 pN. After the t-force

is balanced, only 41% of the adhesive force remains to

constrain separation. Similarly, when the doublets are

straight, as in example A, a 59% reduction in EN reduces

the required force density for separation by 32%.

Summary of comparisons with experimental data

In choosing the parameters listed in Table 1, it was important

to make visual comparisons with Movie S1 and Fig. 2 of

Aoyama and Kamiya (1) because there is no comprehensive

quantitative description of the experimental movement. The

best-determined result is the cycle frequency of 9 s�1 for the

experimental example in Fig. 2 of Aoyama and Kamiya (1);

10.1 s�1 for model example B was considered to be

adequately close. Inspection of their Fig. 2 shows that

doublet separation has begun in images at times 20 and

130 ms, when the lengths of the associated region are

between 4 and 5 mm. With example B, doublet separation

began when the length of the associated region was 5.2 mm,

and it then decreased to %3 mm. An inspection of Fig. 4

of Aoyama and Kamiya (1), which shows transition point

propagation, as in Fig. 2 of this work, suggests that the
duration of phase A is slightly less than the duration of

phase B; however, the resolution of the plot is not sufficient

to obtain a more precise value. In example B, the ratio of

these phase durations is 0.7. Transition propagation veloci-

ties, shown in Fig. 5 of Aoyama and Kamiya (1) and Fig. 4

of this work, were determined differently. It may be coinci-

dental that the association transition velocity of example B

of 369 mm s�1 is close to the value of about 400 mm s�1

for an average of eight experiments (1). It is probably not

significant that the dissociation transition velocity obtained

for example B (83 mm s�1) is smaller than the value of about

200 mm s�1 obtained for an average of eight experiments (1),

because the velocities for the model results were measured at

a later time in the cycle. It is more significant that in both the

model and the experiments, the dissociation transition

velocity decreased when the siding velocity was reduced,

with relatively little change in association transition velocity.

The final shear amplitude was not reported for the experi-

mental results, but an inspection of Fig. 2 of Aoyama and

Kamiya (1) suggests a somewhat larger value than the value

of 0.9 mm obtained with example B.

DISCUSSION

Understanding the experiments

These simulations confirm the previous interpretation of the

experimental observations of cyclic sliding, dissociation, re-

association, and sliding (1). The simulations make clear that

the association phase (phase A) is an important rate-deter-

mining phase that depends on both the elastic return of

doublet A to a position close to doublet B and an additional

adhesive force, before any active sliding is resumed. The

importance of the adhesive force can be seen by comparing

the result in Fig. 6 A (with very little adhesive force) with the

result in Fig. 1 A, which has a value of adhesive force chosen

to reproduce the experimental results (1). With this value of

EN ¼ 0.005 pN nm�2, the peak force density normal to

doublet A reached at a separation of 8 nm equals 0.04 pN

nm�1. This is considerably less than the peak active sliding

force density of 0.11 pN nm�1 used for these simulations.

There does not seem to be any difficulty with the assumption

that dyneins can provide adhesive forces comparable to those

used in these simulations. The model presented here does not

replicate all experimental observations, such as the details of

the changes in association and dissociation transition veloc-

ities during the cycle. Further studies of the experimental

situation may reveal other details that will be useful for

improving the model for generation of dynein forces.

These simulations, which use only simplistic mathemat-

ical models for dynein force generation, establish a platform

for further examination of detailed models for dynein func-

tion. Flagellar simulations have been performed successfully

by including the kinetics of individual dynein motors (8,20).

Incorporation of modeling of individual dyneins into the
Biophysical Journal 97(11) 2939–2947
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programming developed here will require specification of the

adhesive forces produced by different states in the dynein

mechanochemical cycle. Doing this in a manner that can

produce results that more completely match the experimental

observations on cyclic dissociation and association may

place constraints on the dynein models that will help eluci-

date how dynein works.

Buckling and sliding initiation events

As previously recognized by Aoyama and Kamiya (1), the

initiation of a new separation between doublets is the result

of a buckling instability that occurs when the bending

moment generated by the longitudinal force in doublet A

exceeds the bending moment that can be overcome by

bending resistances. The situation is similar to a vertical

column loaded only by its own weight, which fails cata-

strophically near its base when a critical length is exceeded.

However, the situation is not sufficiently similar to allow the

use of standard equations for buckling criteria (18), because

the normal elastic resistance, EN, resists bending in a different

manner than EB. This makes the determination of the critical

load force more complicated. Buckling is also a sliding

initiation event. Sliding in the distal region reduces the longi-

tudinal force, so that the situation is a controlled collapse

rather than a catastrophic collapse. In the simulations, the

controlled collapse during phase D involves sliding at

a velocity close to the velocity for 0 force, and the system

continues to collapse even though the force is only a small

fraction of the force required to initiate buckling. The success

in simulating the movement cycle seen in the experiments

suggests that sliding during phase D of the experimental situ-

ation may have similar properties.

After the sliding initiation event, sliding is both constant in

time and uniform throughout the length, and therefore

strongly resembles what happens after a sliding initiation

event in the bend cycle of cilia and flagella (21). This obser-

vation suggests that sliding initiation events in cilia and

flagella may also be triggered by the removal of a resistance

to sliding, allowing dyneins that are already in an active state

to start producing sliding. This idea contrasts with the more

common suggestion (20,22) that a sliding initiation event

requires synchronous switching of dyneins from an inactive

state to an active state throughout an extended length of an

axoneme. No separate process that could cause such a prop-

agated activation has been identified, although considerable

attention has been given to the idea that sliding itself can

regulate dynein activity (21). A buckling event that requires

sliding might thus be able to activate a stronger sliding

response. That does not appear to be happening in the situa-

tion considered here, where full dynein activation is required

to produce the force that causes buckling, and no further acti-

vation of the force-producing system is required to continue

the cycle. However, in a complete axoneme, it could be inhi-

bition of dynein activity on one side of the axoneme resulting
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from backward sliding that is responsible for an apparent

activation of sliding.

In previous studies (23,24), cytoplasmic kinesins that

became attached to the microscope slide surface when

axoplasm was extruded from squid nerve axons were

observed to propel microtubules across the surface. Occasion-

ally, a gliding microtubule encountered an obstacle that

prevented forward movement. In such cases, the kinesin

pushing on the microtubule caused the microtubule to

bend and establish a pattern of cyclic bend initiation and

propagation (23,24). Bend initiation in this situation, as

seen in images 62–64 in Fig. 7 of Allen et al. (23) and

images 42–45 in Fig. 5 of Weiss et al. (24), is probably

similar to buckling, but is more complicated because it

involves a regular reversal of curvature at the basal end.

Although this movement has been successfully reproduced

by computer simulations (6), a detailed analysis of buck-

ling and bend initiation has not been performed. These

observations also raise the question as to whether sliding

initiation events in normal flagellar bend initiation, which

also involve a reversal of curvature (21), should be inter-

preted as buckling events, and whether this interpretation

would help us understand flagellar oscillation. There is a

major difference: with the gliding microtubules, obstruc-

tion of the basal end was required, so that propagation of

distal bends against viscous resistances produced compres-

sive forces on the basal region. This is not necessary for

flagella, where a shear resistance at the base is sufficient

for generation of new bends even when the basal end is

completely free. However, a situation in which compres-

sive forces appeared to be significant for sliding initiation

events was described by Woolley (25).

Relevance to flagellar oscillation and the
‘‘geometric clutch’’

When shear forces are applied to a doublet, curvature of the

doublet will cause the longitudinal force in the doublet to

produce a bending moment. When a pair of doublets is

bent into a curve, and the force on the outermost doublet is

directed toward the basal shear resistance, these moments

will cause the outer doublet to increase its curvature and

move away from the inner doublet. This is the basis for the

buckling separation described in this work. The separation

of the doublets can also be considered to be the result of

a transverse force or t-force that is the product of curvature

and longitudinal force (10). As shown here, buckling can

be prevented if the elastic resistance, EN, is sufficient to

produce a transverse ‘‘adhesive force’’ that exceeds the t-

force. Recognition of the t-force led to the proposal of

a ‘‘geometric clutch’’ model for regulation of flagellar oscil-

lation and bend propagation (10,11). This model proposes

that an imbalance between t-force and adhesive force will

introduce a partial separation between flagellar doublets,

which is normally limited by other interdoublet elements
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such that the doublet separation is sufficient to suppress

dynein activity but not great enough to disrupt the structure

of the axoneme. Computer simulations in which dynein

activity is modulated by the t-force have been successful in

generating realistic bending patterns for flagella and cilia

(10,11). Obviously, the idea that dynein activity can be

controlled by doublet separation is fully consistent with the

observations on cyclic sliding, separation, and reassociation

of doublet pairs. Development of programming for bending

of both doublets of a pair will facilitate further exploration of

the role of doublet separation in flagellar oscillation.

SUPPORTING MATERIAL

Three movies, methods, and a reference are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(09)01469-6.
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