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Introduction

The concept of suppression mediated by T cells is
nearly as old as the discovery of T cells as a separate
lineage of lymphocytes. Already in the early 1970s, it
was proposed that suppressor T cells would be capable
of inhibiting other T cells, and thereby mediate immu-
nological tolerance and self ⁄ non-self discrimination [1–
3]. Suppressor T cells, which were characterized by
expression of the CD8 (Lyt-2) cell surface marker, have
been the topic of more than 1000 scientific publica-
tions. However, the existence of suppressor T cells as a
distinct lineage of T cells has been very controversial
[4]. In fact, the concept of suppressor T cells was lar-
gely abandoned by the end of the 1980s, essentially
because of the poor characterization of the cells and the
lack of specific markers [4, 5].

In the mid-1990s, a new subpopulation of suppressor
T cells was proposed which expressed CD4 and which

was named regulatory T (Treg) cells [5]. Accordingly,
CD4+ T cells are now commonly divided into two dis-
tinct lineages: Treg cells and conventional T helper (Th)
cells. Conventional Th cells control the adaptive immu-
nity by activating, in an antigen-specific fashion, other
effector cells such as CD8+ cytotoxic T cells, B cells and
macrophages. Treg cells are defined as T cells in charge
of suppressing potentially deleterious activities of Th
cells. Treg cells represent nowadays a large field of
research and a long list of Treg-associated suppressive
mechanisms have been reported [6, 7]. However, many
central aspects of Treg cell biology remain obscure and
hotly debated [8–18]. The present review will focus on
CD4+ Treg cells and will not discuss the older literature
on the functionally-related suppressor T cells. My main
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Abstract

CD4+ T cells are commonly divided into regulatory T (Treg) cells and conven-
tional T helper (Th) cells. Th cells control adaptive immunity against patho-
gens and cancer by activating other effector immune cells. Treg cells are
defined as CD4+ T cells in charge of suppressing potentially deleterious activi-
ties of Th cells. This review briefly summarizes the current knowledge in the
Treg field and defines some key questions that remain to be answered.
Suggested functions for Treg cells include: prevention of autoimmune diseases
by maintaining self-tolerance; suppression of allergy, asthma and pathogen-
induced immunopathology; feto-maternal tolerance; and oral tolerance.
Identification of Treg cells remains problematic, because accumulating evi-
dence suggests that all the presently-used Treg markers (CD25, CTLA-4,
GITR, LAG-3, CD127 and Foxp3) represent general T-cell activation markers,
rather than being truly Treg-specific. Treg-cell activation is antigen-specific,
which implies that suppressive activities of Treg cells are antigen-dependent.
It has been proposed that Treg cells would be self-reactive, but extensive TCR
repertoire analysis suggests that self-reactivity may be the exception rather
than the rule. The classification of Treg cells as a separate lineage remains con-
troversial because the ability to suppress is not an exclusive Treg property.
Suppressive activities attributed to Treg cells may in reality, at least in some
experimental settings, be exerted by conventional Th cell subsets, such as Th1,
Th2, Th17 and T follicular (Tfh) cells. Recent reports have also demonstrated
that Foxp3+ Treg cells may differentiate in vivo into conventional effector Th
cells, with or without concomitant downregulation of Foxp3.
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objective is to briefly summarize the current knowledge
in the Treg field and to define some key questions which
remain to be answered. I also would like to encourage all
readers interested in immunologic controversies to read
and send contributions to the discussion forum of the
Scandinavian Journal of Immunology [14–23].

Seven key questions about Treg cells that remain
to be answered

What are the functions of Treg cells?

The primary function of Treg cells was originally defined
as prevention of autoimmune diseases by maintaining
self-tolerance [24]. Over the years, several additional
functions have been suggested and it will be important
to clarify what Treg cells actually do in the immune sys-
tem. Presently, at least 10 non-exclusive functions have
been proposed for Treg cells (Fig. 1A):

(1) Prevention of autoimmune diseases by establishing
and maintaining immunologic self-tolerance [24–27].

(2) Suppression of allergy and asthma [28–30].
(3) Induction of tolerance against dietary antigens, i.e.

oral tolerance [31–34].
(4) Induction of maternal tolerance to the fetus [35].
(5) Suppression of pathogen-induced immunopathol-

ogy [36–38].

(6) Regulation of the effector class of the immune
response [10, 11].

(7) Suppression of T-cell activation triggered by weak
stimuli [39].

(8) Feedback control of the magnitude of the immune
response by effector Th cells [13, 40].

(9) Protection of commensal bacteria from elimination
by the immune system [14].

(10) Prevention of T cells that have been stimulated
by their true high-affinity agonist ligand from killing
cells that only express low-affinity T-cell receptor (TCR)
ligands such as the self peptide-major histocompatibility
complex (MHC) molecule that positively selected the T
cell [16].

It will be important to establish whether Treg cells
are indeed performing all the above-listed functions. A
related question is whether distinct subsets of Treg cells
are responsible for the various suppressive activities.

How to identify Treg cells?

Molecular markers are essential tools for defining and for
analyzing a subpopulation of immune cells. The collapse
of the suppressor T cells at the end of the 1980s was lar-
gely due to the failure to define specific markers for these
cells [4].

The most widely used markers for Treg cells are
(Fig. 1B):

• CD25 [24, 41].
• cytotoxic T lymphocyte-associated antigen 4

(CTLA-4) [42, 43].
• glucocorticoid-induced tumour necrosis factor recep-

tor family-related gene (GITR) [44].
• lymphocyte activation gene-3 (LAG-3) [45].
• CD127 [46, 47].
• forkhead ⁄ winged-helix transcription factor box P3

(Foxp3) [48–50].
Unfortunately, accumulating evidence suggests that the

above-listed markers are not strictly Treg-specific. Upon
activation, all T cells express CD25, the a-chain of the
interleukin-2 (IL-2) receptor [51–53], IL-2 being a T-cell
growth factor which is important for T-cell clonal expan-
sion. CTLA-4 is a negative regulator of T-cell activation,
which is upregulated on all CD4+ and CD8+ T cells, 2–
3 days following activation [52–54]. Similarly, the expres-
sion of GITR [52, 53, 55] and LAG-3 [56, 57] is induced
in T cells upon activation. It has been suggested that
CD127, the a chain of the IL-7 receptor, could be used to
discriminate between CD127low Treg cells and CD127high

conventional Th cells in humans [46, 47]. However, it has
been recently reported that most CD4+ T cells downregu-
late CD127 upon activation [53, 58]. Furthermore, loss of
CD127 is a characteristic feature of T follicular helper
(Tfh) cells, which provide help for B cells, in human ton-
sils [59]. It has been reported that naı̈ve, CD25-negative
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Figure 1 Five key questions about Treg cells. (A) What are the func-

tions of Treg cells? (B) What molecular markers can be used to distin-

guish Treg cells from conventional Th cells? (C) Do Treg cells

recognize self or non-self? (D) Do Treg cells represent a distinct lineage

of CD4+ T cells? (E) How do Treg cells know which Th cell to sup-

press? In other words, how do Treg cells discriminate between the bad

(i.e. self-reactive) Th cells, which should be suppressed, and the good

(i.e. virus-specific) Th cells which should not?
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mouse CD4+ T cells do not upregulate Foxp3 when acti-
vated [48, 50, 60]. However, it is now well documented
that most human CD4+ and CD8+ T cells transiently
express Foxp3 upon activation [53, 61–65].

In conclusion, all the presently-used Treg markers
(CD25, CTLA-4, GITR, CD127, LAG-3 and Foxp3)
appear to be general T-cell activation markers. This
observation strongly suggests that T-cell activation is
required for T-cell mediated suppression. However, it
also implies that the current Treg markers are not truly
Treg-specific and therefore are not reliable for distin-
guishing Treg cells from activated conventional Th cells.

Is suppression by Treg cells antigen-specific?

Treg cells, like all CD4+ T cells, possess a somatically-
rearranged TCR, which allows specific recognition of
antigenic peptides in the context of MHC class II mole-
cules. Activation of conventional Th cells requires specific
antigen recognition by the TCR and one would expect
Treg cells to follow the same rule. To clarify this issue,
it is helpful to consider separately (1) the antigen speci-
ficity of the Treg cell itself and (2) the antigen specificity
of the conventional Th cell that is suppressed by the
Treg cell.

Concerning the antigen specificity of the Treg cell
itself, in vitro experiments have demonstrated that Treg
cells need to be first activated via the TCR to become
suppressive [66, 67], although this has been contested by
others [68]. This implies that (1) Treg-cell activation is
antigen-specific; and (2) the suppressive activity of Treg
cells is triggered in an antigen-specific fashion. The same
requirement for antigen seems to apply for Treg func-
tions in vivo, since the proliferation of Treg cells in
lymph nodes was shown to be antigen-dependent [52].
Furthermore, in the experimental autoimmune encephalo-
myelitis (EAE) mouse model for multiple sclerosis, mye-
lin basic protein (MBP)-specific Treg cells were detected
and protection was associated with specificity for MBP
[69]. In the non-obese diabetic mouse model for type 1
diabetes, Treg cells specific for a pancreatic autoantigen
were much more efficient at preventing diabetes than
polyclonal Treg cells [70, 71]. It was further shown that
pancreas-specific Treg cells could only prevent diabetes
when the Treg antigen was present in vivo in the pancreas
[72]. Finally, destructive autoimmune gastritis could be
prevented by transfer of stomach-specific Treg cells, but
not with polyclonal Treg cells [73].

Concerning the antigen specificity of the conventional
Th cell that is suppressed by the Treg cell, the key ques-
tion here is whether the Treg cell and the Th cell need
to recognize the same antigen or not. In vitro mixed-cul-
tures experiments have demonstrated that Treg cells acti-
vated by their cognate antigen can suppress the
proliferation of conventional Th cells with different anti-

gen specificities [66, 67]. In vivo, there is also evidence
that Treg cells may suppress Th cells with other antigen
specificities [71, 74, 75]. However, the issue is not set-
tled yet, because there are also reports of antigen-specific
suppression by Treg cell in vivo [75–77]. For instance,
Treg cells specific for proteolipid protein (PLP) peptide
PLP139-151 could prevent EAE induced by the same
peptide or by another peptide (PLP178-191) from the
same antigen [75]. By contrast, PLP-specific Treg cells
were unable to prevent EAE induced by other immuno-
gens such as myelin basic protein (MBP) or myelin oligo-
dendrocyte glycoprotein (MOG). These results indicate
that the suppressive functions by Treg cells may operate
in an antigen-restricted manner in vivo.

In summary, suppression mediated by Treg cells is
clearly antigen-dependent. The activation of Treg cells is
antigen-specific, which implies that the suppressive activ-
ity of Treg cells is triggered in an antigen-specific fash-
ion. Concerning the target cell, there is evidence that
Treg cells may suppress Th cells with different antigen
specificities. However, it is possible that suppression is
more effective, and thereby physiologically more relevant,
when the Treg cell and the suppressed Th cell have the
same antigen specificity. To clarify these important
issues, there is clearly a need for more in vivo studies with
Treg cells with defined antigen specificities.

Do Treg cells recognize self, non-self or both?

The ability to discriminate between self and non-self is a
central property of conventional Th cells. During T-cell
thymic development, TCRs are generated stochastically
by somatic gene rearrangements. To prevent autoimmu-
nity, T cells with self-reactive TCRs are purged from the
repertoire by depletion [78] or functional inactivation,
also called anergy [79]. Thus, the conventional Th reper-
toire is being selected for recognition of non-self [19].
What do Treg cells recognize: self, non-self or both
(Fig. 1C)?

It has been proposed that Treg cells, which are in
charge of maintaining self-tolerance, would be self-reac-
tive [67]. Supporting this hypothesis, self-reactive Treg
cells have been observed in various mouse models for
autoimmune diseases. For instance, Treg cells specific for
the insulin B chain [74] or for a pancreatic islet autoanti-
gen [71, 72] protected against type 1 diabetes. Further-
more, the presence of MBP-specific [69] or PLP-specific
[75] Treg cells was associated with prevention of EAE.
However, the self-reactivity of the Treg repertoire has
been challenged by reports of Treg cells recognizing for-
eign antigens from bacteria [38, 80], fungi [81], the pro-
tozoan parasite Leishmania major [82, 83], allergens [30]

and alloantigens [84, 85].
It has been suggested that Treg cells would be gener-

ated in the thymus from precursor cells with a high affin-
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ity TCR for a self peptide. This hypothesis has received
support from experiments with TCR-transgenic mice
[86–88]. However, the interpretation of the data has
been questioned by another report showing that the
differentiation of Treg cells was not induced by a self-
agonist ligand expressed in the thymus [89].

Several attempts have been made to measure the
diversity and specificity of the TCR repertoire expressed
by Treg cells. These studies, all based on gene-manipu-
lated mice with a limited TCR repertoire, revealed a con-
siderable (10–70%) overlap between the TCRs used by
Treg cells and naı̈ve Th cells [90–93]. Initial studies of
the Treg repertoire, which focused on the most fre-
quently found TCRs, concluded that CD25+ CD4+ Treg
cells exhibit a high frequency of TCRs specific for self
peptides [90, 91]. However, more recently, a much larger
analysis of hundreds of TCRs, including infrequently
used TCRs, found little evidence that the Treg popula-
tion preferably recognized self antigens [93]. It was con-
cluded that non-self antigens are the cognate specificities
of Treg cells [93, 94]. Collectively, these data suggest
that self-reactivity may be the exception rather than the
rule in the Treg repertoire, as it is for conventional Th
cells.

Do Treg cells represent a distinct lineage of CD4+ T cells?

How strong is the case for classifying Treg cells as a sep-
arate lineage of CD4+ T cells distinct from conventional
Th cells (Fig. 1D)? This issue may be considered either
in terms of molecular markers or in functional terms. As
discussed above, a truly Treg-specific molecular marker is
still lacking. As a substitute, can biological activities be
used to define the Treg lineage?

Functionally, Treg cells are characterized by being
suppressor cells which only suppress and do not activate
other Th cells. One could wonder whether Treg cells rep-
resent the only CD4+ T cells with suppressive functions.
The answer to this question is clearly negative. The exis-
tence of four distinct subsets of conventional Th cells,
which differ in terms of cytokine production and func-
tion, has now been firmly established: Th1 [95], Th2
[95], Th17 cells [96, 97] and T follicular helper (Tfh)
cells [98, 99]. Conventional Th cells control the adaptive
immunity by activating other effector cells such as CD8+

cytotoxic T cells, B cells and macrophages. However,
effector Th cell subsets have also been shown to suppress
each other. For instance, Th1 cells secrete interferon-c
(IFN-c) that inhibits the proliferation of Th2 cells [100,
101]. IL-4, which is produced by Th2 cells, suppresses
Th1 development and secretion of IFN-c by Th1 cells
[102, 103]. Both IFN-c and IL-4 inhibit Th17 differenti-
ation and the production of IL-17 by effector Th17 cells
[96, 97]. IL-17, which is secreted by Th17 cells, sup-
presses Th1 differentiation and was recently shown to

protect mice from Th1-driven colitis [104]. IL-21, which
is produced by Th2, Th17 and Tfh cells, inhibits the dif-
ferentiation of Th1 cells [105]. Th1, Th2 and Th17 cells
may all produce IL-10, which suppresses proliferation
and cytokine production by various T-cell subsets [12,
106–110]. Thus, the ability to suppress T cells is clearly
not an exclusive property of Treg cells and all CD4+ T
cells appear to exert various kinds of suppressive activi-
ties. Therefore, the key question is whether there is a
special CD4+ T cell lineage, the Treg cells, which is ded-
icated to suppression, while conventional Th cells can
both activate and suppress other T cells.

Transforming growth factor b (TGF-b) is produced by
some Treg cells and has been suggested to be an impor-
tant mediator of Treg-mediated suppression in the gut
[111]. TGF-b may act as an immunosuppressive cytokine
which for example inhibits the secretion of immunoglob-
ulin (Ig) M, IgG1, IgG2a and IgG3 [112]. However,
TGF-b can also be immunostimulatory. In particular,
TGF-b has been shown to specifically induce IgA [112–
114] and IgG2b [115] isotype switch in B cells. It has
been proposed that TGFb-producing CD4+ T cells may
represent another Th subset (Th3) with both mucosal Th
function and downregulatory properties for Th1 cells [31,
32]. Thus, the main role of TGF-b-secreting CD4+ T
cells in mucosal regions may be to function as Tfh cells
and to help B cells to produce IgA, rather than to exclu-
sively immunosuppress. In humans, it has also been pro-
posed that Treg cells producing both TGF-b and IL-10
may induce B cells to secrete IgG4 [116].

The concept that Treg cells would represent a distinct
T-cell lineage with ‘suppressor only’ activities has been
further challenged by recent studies demonstrating that
Foxp3+ Treg cells in human peripheral blood and tonsils
had the capacity to produce IL-17 upon activation [117–
119]. IL-17 is a proinflammatory cytokine, which is typi-
cally produced by Th17 cells and which is believed to be
important for immunity against extracellular bacteria
[96, 97]. Like conventional Treg cells, IL-17–producing
Treg cells strongly suppressed responder Th cell prolifer-
ation [117–119]. Foxp3+ Treg cells produced IL-17 when
activated in the presence of the proinflammatory cyto-
kines IL-1b and IL-6, whereas IL-17 secretion was inhib-
ited by TGF-b [118]. IL-17+ Foxp3+ Treg clones were
plastic enough to either secrete IL-17 or suppress,
depending on the nature of the stimulus provided [118].
Collectively, these data suggest that the suppressive
activities attributed to Treg cells may in reality, at least
in some experimental settings, be exerted by conventional
Th cell subsets such as Tfh and Th17 cells.

What is the function of Foxp3?

The Foxp3 transcription factor is considered the most
reliable marker for Treg cells [48–50, 60]. Tissue distri-
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bution analysis has shown that Foxp3 is mostly present
in lymphoid tissues [120]. The expression of Foxp3 is
highly restricted to ab T cells, and almost undetectable
in B cells, cd T cells, natural killer (NK) cells,
macrophages and dendritic cells (DC) [48, 49, 60, 120,
121]. The expression of Foxp3 is mostly restricted to
CD4+ T cells, but some CD8+ T cells do express Foxp3
as well [60]. Contradictory data have been published on
whether Foxp3 can be expressed by murine Th1 and Th2
cells [48, 120]. There is an imperfect overlap between the
expression of Foxp3 and that of CD25, the classical mar-
ker for Treg cells. In mice, Foxp3 could be detected in
both CD4+ CD25+ and CD4+ CD25) T cells, but it was
much more abundant in CD4+ CD25+ T cells [48, 49].
In the lymph nodes and spleen, most CD4+ CD25+ T
cells expressed Foxp3, but there was also a population of
Foxp3+ CD4+ T cells, which did not express CD25 [60,
121]. In the lungs, most Foxp3+ CD4+ T cells were neg-
ative for CD25 [60].

Foxp3 was originally suspected to be important for Treg
functions because mutations in Foxp3 were found to be the
cause of two severe multiorgan autoimmune syndromes in
humans, namely XLAAD (X-linked autoimmunity-aller-
gic dysregulation syndrome) and IPEX (immunodysregula-
tion, polyendocrinopathy, enteropathy, X-linked
syndrome) [122–124]. Similarly, mutant scurfy mice with a
disrupted Foxp3 gene develop a fatal lymphoproliferative
disorder and die within 4 weeks after birth [120]. T cell-
specific ablation of Foxp3 resulted in a lymphoproliferative
autoimmune syndrome identical to that observed in
Foxp3-deficient mice [60]. Thus, Foxp3 is clearly essential
for T-cell functions and defective Foxp3 leads to lethal
immune dysregulation. However, association between a
defective gene and severe immunopathology does not nec-
essarily imply that the gene is specific for a distinct T-cell
subset dedicated to immunosuppression. Mice lacking
other key immunoregulatory molecules such as CTLA-4
[125, 126], TGF-b [127] and TGF-b receptor on T cells
[128], all exhibit lethal lymphoproliferative phenotypes
very similar to Foxp3-deficient mice.

Foxp3 was initially suggested to represent the ‘master
regulator’ or ‘lineage-specification factor’ for the develop-
ment of Treg cells [48, 49, 60], but this hypothesis has
been challenged [129]. Experiments with mice expressing
a fusion protein of non-functional Foxp3 and green fluo-
rescent protein suggested that Foxp3 may be required for
Treg functions but not for lineage commitment [130,
131]. Another study concluded that a higher level of reg-
ulation upstream of Foxp3 determines the Treg lineage
[132]. Rather than being the ‘master regulator’ for the
Treg lineage, it has been proposed that the function of
Foxp3 would be to amplify and fix pre-established molec-
ular features of Treg cells [130]. Continuous Foxp3
expression has been reported to be essential for mainte-
nance of the developmentally established suppressive pro-

gram in mature Treg cells in the periphery [133]. It has
been suggested that expression of Foxp3 must be stabi-
lized by epigenetic modification such as demethylation to
allow the development of a permanent Treg cell lineage
[134–136].

Although Foxp3 is a transcription factor, its exact
function remains largely unknown. It has been suggested
that Foxp3 may act as a repressor of transcription with
the function of regulating the amplitude of the response
of CD4+ T cells to activation [137]. It has also been pro-
posed that all human CD4+ and CD8+ T cells may upre-
gulate Foxp3 and acquire suppressive properties upon
activation [65]. Genome-wide analysis has shown that
Foxp3 binds to the promoter region of 700–1100 genes,
many of those genes being associated with TCR signal-
ling [138, 139]. A large number of Foxp3-bound genes
were up- or down-regulated in Foxp3+ T cells, indicating
that Foxp3 may act as both a transcriptional activator
and repressor [138, 139].

The main evidence supporting Foxp3 as a critical fac-
tor for Treg functions comes from experiments showing
that naı̈ve T cells could be rendered suppressive by retro-
viral gene transfer of Foxp3 [48, 49]. However, in some
experimental settings, Foxp3 did not seem to be abso-
lutely required for suppressive activity. For instance, Treg
cells generated in vivo by prolonged exposure to a harm-
less antigen did not express significant Foxp3 mRNA
[140]. Similarly, Foxp3 was not expressed by T regula-
tory cells 1 (Tr1), a Treg subset which is induced by IL-
10 and which produces IL-10 [141–143]. Furthermore,
Foxp3 was not found in CD69+ CD25) Treg cells iso-
lated from tumour-bearing mice [144].

The idea of Treg-restricted expression of Foxp3 was
challenged by experiments on the role of Treg cells dur-
ing viral infections in mice. Treg cells have been sug-
gested to suppress virus-specific immune responses to
prevent immunopathology caused by excessive immune
responses [36–38]. Surprisingly, depletion of Foxp3+ T
cells resulted in impaired rather than increased immunity
against herpes simplex virus and lymphocytic choriomen-
ingitis virus [145]. These results suggest that Foxp3 may
be expressed by a subset of effector T cells required for
virus clearance [145]. In my opinion, these data on the
antiviral function of Foxp3+ T cells are clearly in contra-
diction with the nature of Treg cells which are defined as
suppressor cells only.

A series of recent reports has demonstrated that Foxp3+

Treg cells may differentiate into conventional effector Th
cells, with or without concomitant downregulation of
Foxp3. Treg cells induced by TGF-b in vitro were shown to
lose Foxp3 expression and suppressive activity upon resti-
mulation in the absence of TGF-b [134]. Transfer experi-
ments of labelled Foxp3+ T cells into T-cell-deficient mice
revealed that a large fraction (45–80 %) of the Treg cells
had lost Foxp3 expression 4 weeks after transfer [146–
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148]. In the lymph nodes and spleen, some of the trans-
ferred Treg cells had differentiated into IFN-c-producing
Th1, IL-4-producing Th2 cells and IL-17-producing Th17
cells [133, 146, 148], and induced lung inflammatory dis-
ease in recipient mice [148]. In the Peyer’s patches, Foxp3+

Treg cells efficiently downregulated Foxp3 and differenti-
ated into Tfh cells that provided help for IgA production
by B cells [147]. In mice, IL-12 was shown to induce IFN-
c production by Foxp3+ Treg cells in vitro, even while
Foxp3 expression remained [149]. Furthermore, IL-6
induced Foxp3 downregulation in Treg cells and repro-
grammed Treg cells to become Th17 cells [150, 151]. As
many as 25% of small intestinal Th17 cells had expressed
Foxp3 at some stage of their development [152]. It has
been proposed that Treg cells may differentiate into Th17
cells in vivo in the presence of inflammatory signals [151,
152]. Notably, the existence of T cells co-expressing Foxp3
and IL-17 has been reported both in mice and in humans
[117–119, 152, 153]. Collectively, these data question the
stability of the Treg cell lineage and suggest that Foxp3+

T cells may represent Th cells that are not fully differenti-
ated. Furthermore, accumulating evidence indicates that
Foxp3 may be expressed by Th cells that produce proin-
flammatory cytokines such as IFN-c and IL-17.

How do Treg cells know which Th cell to suppress?

A major challenge for the Treg field is to understand
how Treg cells discriminate between the bad (i.e. self-
reactive) Th cells, which should be suppressed, and the
good (i.e. virus-specific) Th cells, which should not
(Fig. 1E). If this distinction is not made, the host will be
immunosuppressed and succumb to microbial infection
or cancer. Several models have been proposed to solve
this conundrum.

According to the crossregulation model proposed by Leon
et al. [154, 155], suppression by Treg cells is antigen-
specific. In this model that has received some experimen-
tal support [75–77], Treg cells are suggested to be
autoreactive and to suppress conventional Th cells with
the same antigen specificity. This allows Treg cells to
mediate natural tolerance by ensuring self ⁄ non-self dis-
crimination. The mechanism of suppression is proposed
to be based on a three-partner interaction between the
Treg cell, the Th cell to be suppressed, and the antigen-
presenting cell (APC) [154, 155].

The TCR signal strength model by Baecher-Allan et al.
[39] is based on the assumption that autoreactive T cells
in the periphery have low-affinity TCRs because T cells
expressing high-affinity TCRs for self antigens are
deleted in the thymus. It is proposed that Treg cells sup-
press the physiologic activation of autoreactive T cells
associated with low signal strength, while T cells acti-
vated during inflammatory responses associated with high
signal strength are refractory to this mechanism of sup-

pression [39]. This model was recently further developed
by Beriou et al. who proposed that inflammation could
drive Treg cells to lose suppressive activity and to secrete
IL-17, thereby dampening suppression and promoting a
pro-inflammatory milieu [118].

During microbial infections, conserved pathogen-asso-
ciated molecular patterns bind to Toll-like receptors
(TLRs) on immune cells. According to the Toll-like recep-
tor (TLR)-mediated blockade of Treg suppression model by Pa-
sare and Medzhitov [156], TLR-mediated activation of
DC results in blockade of the suppressive activity of Treg
cells, thereby allowing activation of pathogen-specific
adaptive immune responses [156]. A similar model has
been proposed by Sutmuller et al. [157], in which Treg
cells are directly inactivated during infections, when
microbial products bind to TLR2 on the surface of the
Treg cells. A main problem with these two TLR-based
models is that they imply that immune responses against
pathogens should always be associated with autoimmuni-
ty, since microbial infections inactivate Treg cells that
are in charge of maintaining peripheral T-cell tolerance.

Ingested antigens lead to the generation of Treg cells
that secrete TGF-b, IL-4 and IL-10, rather than IFN-c
and are capable of influencing naı̈ve T cells in their
immediate environment to do the same [31]. According
to the effector class regulation model by Matzinger [10, 11],
DC can act as ‘temporal bridges’ to relay information
from orally immunized Treg cells to naı̈ve CD4+ T cells
to regulate the effector class of the immune response.
The orally immunized T cells use IL-4 and IL-10 to ‘edu-
cate’ DC, which in turn induce naı̈ve T cells to produce
the same cytokines as those produced by the orally
immunized Treg cells. In this model, conversion of a
naı̈ve T cell occurs only if it can interact with the same
DC, although not necessarily the same antigen, as the
Treg cell. According to Matzinger, Treg cells do not rep-
resent a separate lineage of CD4+ T cells dedicated to
suppression. Instead, Treg cells are proposed to corre-
spond to new subsets of Th cells, which can both sup-
press and activate immune functions, such as IgA
production by B cells [10, 11].

In an updated version of the associative recognition of
antigen (ARA) model, Melvin Cohn [13] has recently pro-
posed that Treg cells are not involved in self ⁄ non-self
discrimination. Instead, the function of Treg cells (T sup-
pressor) would be to feedback control the magnitude of
immune responses by effector Th cells [13]. In this
model, Treg cells are suggested to be specific for non-self
and to suppress conventional Th cells with the same anti-
gen specificity [13].

Concluding remarks

A major outcome of the intensive research efforts on Treg
cells has been to revive interest for suppression mediated
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by T cells, a neglected research area after the collapse of
the suppressor T-cell hypothesis at the end of the 1980s.
T-cell mediated suppression was so disregarded that con-
ventional Th cells were often considered erroneously as
‘activators only’. However, the stimulatory activities of
T cells need to be counterbalanced by suppressive mecha-
nisms, in order to fine-tune immune responses and to
prevent immunopathology. Intrinsic negative feedback
loops are critically involved in the activation of all
T cells and mice deficient for key immunoregulatory
molecules such as CTLA-4 exhibit lethal lymphoprolifer-
ative disease [125, 126]. It is well established that con-
ventional Th cell subsets suppress each other [96, 97,
100–105]. More recently, several studies have started to
uncover the importance of suppression mediated by effec-
tor Th cells during immune responses against pathogens.
For instance, the significance of secretion by Th1 cells of
the immunosuppressive cytokine IL-10 is being recog-
nized. IFN-c is essential for control of many pathogens,
but survival of the host often also depends on the secre-
tion of IL-10. In mice infected by the protozoan parasite
Toxoplasma gondii, it was found that essentially all of the
IL-10 derived from conventional Th1 cells, the same cell
population that displays effector function against the par-
asite [12]. Similarly, virus-specific Th1 cells were shown
to exert simultaneously stimulatory (IFN-c production)
and inhibitory (IL-10 secretion) functions during acute
influenza infection [110]. IL-10 produced by influenza-
specific Th1 cells had a crucial role in suppressing excess
inflammation and associated immunopathology [110].

In 1988, Göran Möller, who was one of the most
respected and influential immunologists in Scandinavia,
wrote for the Scandinavian Journal of Immunology an edito-
rial entitled ‘Do Suppressor T Cells Exist?’. In this article,
he summarized his point of view in one sentence: ‘I am not
questioning the existence of suppressive phenomena or
findings that T cells can mediate suppressive effects, but I
am skeptical of the notion of suppressor T cells as a sepa-
rate subpopulation of T cells’[4]. Möller’s main argument
to reject the concept of suppressor T cells was the lack of
specific markers [4]. Time has passed and suppressor T cells
have been renamed Treg cells [5]. It is undisputable that
much has been learned about the mechanisms of suppres-
sion mediated by T cells, as testified in this review. How-
ever, it is striking to realize that we are still lacking a truly
specific molecular marker for Treg cells, despite consider-
able research efforts. Göran Möller died last year [158,
159] and one can therefore only speculate whether he
would have written, 21 years later, a new editorial entitled:
‘Do Regulatory T Cells Exist?’.
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