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SUMMARY
We propose a general multistate transition model. The model is developed for the analysis of repeated
episodes of multiple states representing different health status. Transitions among multiple states are
modeled jointly using multivariate latent traits with factor loadings. Different types of state transition
are described by flexible transition-specific nonparametric baseline intensities. A state-specific latent
trait is used to capture individual tendency of the sojourn in the state that cannot be explained by
covariates and to account for correlation among repeated sojourns in the same state within an
individual. Correlation among sojourns across different states within an individual is accounted for
by the correlation between the different latent traits. The factor loadings for a latent trait accommodate
the dependence of the transitions to different competing states from a same state. We obtain the
semiparametric maximum likelihood estimates through an expectation-maximization (EM)
algorithm. The method is illustrated by studying repeated transitions between independence and
disability states of activities of daily living (ADL) with death as an absorbing state in a longitudinal
aging study. The performance of the estimation procedure is assessed by simulation studies.
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1. Introduction
Many health studies involve conditions whereby subjects make repeated transitions over time
among a set of defined states representing different health status. A popular analytic framework
uses intensity-based methods (Andersen et al., 1993) in which state transition intensities are
specified.

The methodological development in this article is motivated by a longitudinal study of activities
of daily living (ADL) among older persons (Gill, Hardy, and Williams, 2002). Participants
who needed help from another person or were unable to complete at least one of the four ADL
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tasks (dressing, bathing, walking, transferring) were considered disabled. Many older persons
made multiple transitions between ADL independence and disability before death. Repeated
transition between community stay and hospital stay before remission in schizophrenia patients
is another example. In kidney transplant patients, total organ rejection is regarded as a
nonabsorbing state but not a repeated state because the state of total organ rejection usually
cannot be revisited. Important questions arise such as: Does the duration of a healthier state
continually lengthen (improved health) or shorten (worsening health) over time? Can such a
progressive pattern be tested and the magnitude be estimated?

In our approach, each nonabsorbing state can have its own latent trait. This state-specific
individual latent trait represents an unobserved risk factor associated with transitioning from
that state or an intrinsic individual tendency of sojourn in the state that cannot be fully explained
by measured covariates. Thus, the latent trait accounts for correlation among the repeated
sojourns in that state within the same individual (association type I). The use of multivariate
latent traits accounts for correlation (positive or negative) among the sojourns in different states
within an individual (association type II). A positive correlation indicates that longer (or
shorter) gap times in all the involved states are more likely so that the transitions are less likely
(or more likely). A negative correlation indicates that a longer gap time in one state is associated
with a shorter gap time in the other involved states. A novel feature of our model is the
introduction of factor loadings into the semiparametric model. The factor loadings
conveniently account for the possible dependence (either positive or negative) among the
competing transitions to different states from a same state within an individual (association
type III). A positive (negative) dependence indicates that an increased likelihood of
transitioning to one state is associated with an increased (decreased) likelihood of transitioning
to another state from a same state. For multistate data with more than two states, all the three
types of association can be present. The semiparametric model with latent traits introduced in
this article simultaneously accommodate all these three types of association.

Previous work using a single shared frailty (a latent variable) to characterize heterogeneity in
multivariate survival data has some deficiencies. In most cases, univariate frailty only induces
positive association within the cluster (Joe, 1993). In the correlated gamma frailty models
considered by Parner (1998), a common cluster-specific frailty plus an individual-specific
frailty are used so that an individual has his/her own frailty that is correlated but not shared
with the frailty of another individual in the same cluster. However, the correlated gamma
frailties still can only accommodate positive correlation within the cluster. Often, there are
situations when event times within a same cluster are negatively associated. For example,
alternating community stay and hospital stay among severe schizophrenia patients, and
independence and disability states in our ADL example may be negatively correlated. The
bivariate log-normal frailty considered by Xue and Brookmeyer (1996) naturally
accommodates negative correlation between sojourns in different states. However, without
introducing factor loadings, possible dependence arising from competing transitions to
different states from a same state cannot be accommodated using the usual log-normal frailties
when there exist more than two states. In our ADL example, recovery from disability and death
in a disability state are competing transitions that may well be dependent. Liu, Wolfe, and
Huang (2004) modeled the intensity functions of point processes of repeated hospitalizations
and death in transplant candidates suffering from severe kidney diseases by using a single
gamma frailty with a factor loading. However, their model also treated the hospitalization as
a point event neglecting the length of stay and is not suitable for data with more than two states.

The article is organized as follows. In Section 2, we describe in more detail our ADL example.
In Section 3, we present our multistate latent traits model. We describe its estimation procedure
in Section 4. In Section 5, we present the results from the analysis of the ADL data set. We
conduct the simulation studies in Section 6, and conclude with a discussion in Section 7.
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2. The ADL Example in Longitudinal Aging Study
The participants were all in the independence state of ADL at entry. The data set consists of
monthly follow-up interviews for the first 84 months on 754 subjects; 228 participants died
after a median follow-up of 42 months, and 35 dropped out of the study after a median follow-
up of 21 months. Complete details of this longitudinal aging study regarding the follow-up
assessments, including formal tests of reliability and accuracy, have been published previously
(Gill et al., 2002).

Table 1 presents summary statistics of our ADL data set. Briefly, both genders spent less time
in disabled state than independent state with women being in disabled state longer than men.
Overall, women made slightly more transitions and were followed for a longer time before
death, that is, they lived longer with lower overall mortality (27.5% for women vs. 35.5% for
men). These results can be explained by the finding that older age and longer follow-up times
as indicated by more transitions are both associated with being in a disability state (see Section
5.2.1). For both genders, death was much more likely to occur in a disability state. In analyzing
the data, we address questions such as: whether a shorter sojourn in disabled state indicates a
higher likelihood of recovery and a longer sojourn in independent state; whether death
dependently censors the stay in an ADL state or is simply a result of older age; and whether
death is more related to one ADL state than the other.

3. A Semiparametric Multistate Model with Latent Traits
3.1 Model Specification

Suppose there are n independent individuals indexed by i = 1,…n and K + M states with K
nonabsorbing states indexed by k = 1,…,K and M absorbing states indexed by k = K + 1,
…,K + M. Let j(j = 1,…,Jik) index the jth visit of state k by individual i and maxi∈{1,…,n} Jik
≥ 2 if state k is nonabsorbing and can be revisited. It should also be noted that sometimes a
transition from one state to another nonabsorbing state is not biologically plausible, for
example, the transition from total organ rejection to no rejection is not possible in a kidney
transplant patient.

We specify an intensity function for transition from a nonabsorbing state k(k = 1,…,K) to a
different state l(l = 1,…,K + M) in the following semiparametric multiplicative model:

(1)

In this model, t is the gap time since the last transition, and Rijkl is the observed at-risk process
for individual i with Rijkl(t) = 1 if subject i is at risk for transition to state l in the jth visit of
state k and not censored at time t and zero otherwise. If the transition from state k to l is not
possible at t for individual i, then Rijkl(t) = 0. λijkl is the intensity of transition from state k to
l during jth visit to state k by individual i, λ0kl is the unspecified baseline intensity function
with cumulative intensity Λ0kl, Xijkl is a column vector of possibly time-dependent covariates
for individual i associated with the transition to state l during jth visit of state k, βkl is the
corresponding vector of regression coefficients for Xijkl, ηik is the individual i’s latent variable
of trait for sojourn in state k, and γkl is the loading representing the effect of the latent trait
measure on the transition from state k to state l. The maximum number of latent traits equals
the number of repeated nonabsorbing states, so there can be only two latent traits in our ADL
example.

Let ηi = (ηi1,…,ηiK)T and ηi is assumed to have a multivariate normal distribution with mean
zero and variance–covariance matrix G. The choice of the multivariate normal distribution
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conveniently accommodates any possible negative correlation due to sojourn among different
states within the same individual. The covariates in Xijkl may contain the number of transitions
individual i made since the beginning of follow-up to capture the possible “instability” effect
in that increased number of transitions indicates a decreased tendency for staying in the same
state.

Our model only requires K + M ≥ 2 but not M ≥ 1 and is general enough to accommodate both
repeated and/or forward transitions.

3.2 Summary of the Data
Let Dijk be the index of the state that is transited to from the jth visit of state k, and Uijk be the
gap time of jth visit in state k for individual i. Define the counting process Nijkl(t) = I(Uijk ≤ t,
Dijk = l) and write dNijkl(t) = Nijkl{(t + dt)−} − Nijkl(t−) as dt → 0. Using this notation,
Nijkl(Uijk) = 1 and Nijkl′(Uijk) = 0 for any l′ ≠ l if Dijk = l.

Define Xi… = {Xi.1.;,…,Xi.K.} as all the covariates for subject i with Xi.k. = {RijklXijkl(t)},
Ni… = {Ni.1.,…,Ni.K.} denote all the counting processes for subject i with Ni.k. = {Nijkl(t)}, and
Ri… = {Ri.1.,…,Ri.K.} denote all the at-risk processes for subject i with Ri.k. = {Rijkl(t)}. In all
the above, j = 1,…,Jik; l = 1,…,K + M; l ≠ k, t ∈ [0, Uijk]. Therefore, the observed data for
subjects can be written as O‥‥ = {Oi…; i = 1,…,n} with Oi… = {Xi…, Ni…, Ri…} denoting
observed data for subject i. We assume Oi… and Oi′… are independent for any i ≠ i′.

3.3 Model Interpretation and Identification
As discussed by Manton, Stallard, and Vaupal (1986), often the fit of a model is more sensitive
to assumptions in the form of the baseline intensity or hazards than in the form of the frailty
distribution, so we adopt a nonparametric flexible baseline intensity function that is specific
for both the current state and the state to be transited to. The use of a gap time scale implies
that the process of multistate transition is “renewed” right after a transition to a nonabsorbing
state is made, so the “full” capacity of multistate transitions is resumed.

The novel feature in our model is the use of latent trait ηik with loading γkl. The state-specific
individual latent trait captures an individual’s tendency of sojourn in that state and naturally
induces correlation among repeated sojourns in the state within an individual. Dependence
arising from the competing transitions from the same state to different states is accounted for
by using the factor loadings. Our latent traits with loadings are different from random effects
or frailties in that both the latent traits and the loadings are unknown, whereas unknown random
effects of regression coefficients are used with observed covariates and frailties have loadings
of one.

For the model to be identified, the smallest l in the loading γkl is assumed to be one for each
k, that is, γk,min(l:l≠k) = 1. This restriction is imposed because the variance components in G
are allowed to vary freely. Imposing a γkl = 1 implies that a greater value of the latent trait
ηkl is associated with increased likelihood of transition from state k to l. With the transition to
state l with the smallest number in the label serving as the reference level, the sign and the size
of γkl′(l′ ≠ l) determine the direction and the extent of the association between the latent trait
for the transition from state k to l′ and the latent trait for the transition from state k to l. When
K = 2 and M = 0, model (1) reduces to the bivariate log-normal model of Xue and Brookmeyer
(1996) for two alternating states. Furthermore, when K = 1 and M = 1, model (1) is the frailty
model with a single event considered by Barker and Henderson (2005).
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4. An Estimation Procedure
We use semiparametric maximum likelihood (SPML) methods to simultaneously estimate the
parameters in our model via the expectation-maximization (EM) algorithm. Let Ψ denote the
collection of all parametric components of the parameters β’s, γ’s, and G, Λ0‥ denote the
collection of the nonparametric cumulative baseline intensity functions Λ0kl’s and [A|B] denote
the conditional density of A given B. The log likelihood of the observed data O‥‥ given the

covariates Xi… is written as . This observed
log likelihood is computationally difficult to maximize because of the presence of the
integration within the logarithm. Therefore we use the EM algorithm to maximize the complete
data log likelihood, which is written as

(2)

The calculation for the conditional expectation of a function g of the latent traits given the

observed data, , is given as

(3)

with  and ϕ(ηi) is the multivariate normal
density for ηi. Equation (3) follows because the terms without ηik cancel out in the numerator
and the denominator for [Ni…, Ri…|ηi, Xi…]. Because there are no closed forms for the integrals
in (3), a Monte Carlo integration method with antithetic simulation in the E-step as described
by Henderson, Diggle, and Dobson (2000) is used. There are also no closed-form solutions for
βkl and γk, so one-step Newton–Raphson is used in the M-step. Other details of the EM
algorithm are given in Appendix A. Because problems such as multiple solutions and
convergence to a stationary point may exist, the EM was repeated from different starting values
to ensure convergence to a global maximum.

The standard errors for Ψ are estimated using the bootstrap. As a comparison, they are also
approximated with the submatrix of the inverse of empirical information for {Ψ, Λ0‥}
(McLachlan and Krishnan, 1997). This empirical information is used to approximate the
observed information under EM algorithm using the Louis formula (Louis, 1982). The
empirical information matrix reduces to the empirical Fisher information matrix when
evaluated at the SPML estimates, {Ψ̂, Λ̂0‥}, as
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where the observed score vector, S(Ni…, Ri…, Xi…; Ψ̂, Λ̂0‥), can be calculated from the
expected complete data score obtained at the convergence of the EM algorithm as

The complete score SC is much easier to calculate and has a closed-form expression, which
motivated the use of the above EM algorithm.

We did not obtain the estimates of the standard errors via the profile likelihood with {λ0kl}
being profiled out because Hsieh, Tseng, and Wang (2006) found the standard errors via the
profile likelihood are underestimated as compared to those via bootstrap in the semiparametric
joint model of longitudinal and survival outcomes. This underestimation likely results because
the dimension of the parameters Ψ is much smaller in the profile likelihood than that of {Ψ,
Λ0‥} in the Louis formula and that the covariance between Ψ and Λ0‥ is nonzero. So the
variance estimates from inverting the observed information matrix for Ψ in the profile
likelihood are smaller than those from inverting the observed information matrix for {Ψ,
Λ0‥}. Because the asymptotically estimated standard errors based on the empirical information
without using profile likelihood may still be smaller than those via bootstrap in finite samples,
we base the inferences about covariate effects on the bootstrap standard errors whenever there
is a difference in the significance of the findings.

5. Analysis of the Longitudinal ADL Data
5.1 Description of the Variables

The response variable is ADL status (independence or disability) from monthly telephone
interviews or death. Time-dependent covariates were recorded through comprehensive in-
home assessments that were conducted at baseline and every 18 months. The data set analyzed
consists of the observations from 752 out of the 754 participants because 2 participants died
before their first interview. We use k = 1, 2, and 3 to index the states of independence, disability,
and death, respectively. Covariates with meaningful two-way interactions were selected
according to the overall clinical relevance and statistical significance from fitting univariate
event data. The covariates include baseline age in years (age), indicator of female gender (sex),
and some important time-varying indicators such as living alone (alone), depression (depres),
and a slower gait speed (frail).

5.2 Solution from Fitting the Latent Trait Model to the ADL Data
The Xijkl in the final fitted model includes only the aforementioned covariates with two-way
interactions that have p-values less than 0.1 as judged by the univariate analysis. Table 2 shows
that the conclusions on the covariates effects and the loadings are consistent based on the
bootstrap and the asymptotics except for sex:frail. The significance of the effects is assessed
by the Wald statistics. The asymptotic estimates of the standard errors for β̂kl and γ̂kl are close
to or smaller than those from the bootstrap except for the effect of tran in β̂21. The asymptotic
estimates of the standard errors for the variance components in Ĝ are larger than those from
the bootstrap. The asymptotic estimates of the standard errors based on the profile likelihood
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are always smaller than those from the approximation of Louis’ formula described in Section
4 (not shown).

5.2.1 Fixed effects—The top left panel of Table 2 presents the fixed effects on the transition
from ADL independence to disability. Increased age, the number of previous state transitions
(tran), depression (depres), and physical frailty (frail) all significantly increase the likelihood
of transition. The interaction term of frail:tran is significant, but has the opposite effect of either
main effect because frail and tran are partially overlapping in their effects on the transition, so
that their combined effect is less than additive. The effect of living alone (alone) on the
transition depends on the number of previous transitions due to the presence of a significant
interaction effect of alone:tran. Living alone initially decreases the likelihood of the transition,
but for those having made at least two previous transitions (consisting of a transition from ADL
independence to disability and back to independence) it increases the likelihood, that is, once
an individual experiences disability, living alone (in an independence state) increases the risk
of becoming disabled again. Neither the main effect of sex nor the two interaction effects with
sex are significant for the transition.

The top right panel of Table 2 shows that for an ADL-independent person, age is the only
significant predictor for death. There also does not seem to exist any latent trait associated with
dying in independence after accounting for just age (see the second paragraph in Section 5.2.3).

Increased age and physical frailty (frail) are the two significant factors that reduce the chance
of recovery from disability (Table 2, middle left panel). In sum, older age is associated with
being in a disability state such that other risk factors would come into play (to increase the
likelihood of death).

Being female is a significant protective factor for death for disabled persons (Table 2, middle
right panel). Physical frailty is also a significant protective factor, together with the effects
shown in the middle left panel, these findings indicate that a physically frail person may live
with disability for a long time without dying or recovering. Increased number of previous state
transitions (tran) also significantly reduces the likelihood of death with disability, indicating
that the previous recoveries from disability as evidenced by many transitions seem to protect
an ADL-disabled person from death. The opposite sign of frail:tran versus frail and tran on
death has a similar interpretation as for the transition from ADL independence to disability.

5.2.2 Transition intensities—Scatter plots of the nonparametric estimates of and of the
corresponding smoothed baseline intensities are shown in Figure 1. After recovery from ADL
disability, the likelihood of transition back to disability among survivors significantly decreases
during the first 20 months and then stabilizes (Figure 1, top left). During the first 10 months
in disability state, the likelihood of recovery sharply decreases (Figure 1, bottom left). There
is also an increased overall trend for death after an ADL transition (Figure 1, right panels).
That is, the likelihood of death is relatively constant for the first 20 months in either the
independence or disability state and then increases rapidly thereafter. The data suggest that
prolonged sojourn in an independence state after 70 months will only result in transition to the
disability state and death is unlikely to occur. After 45 months in a disability state, recovery is
unlikely but the likelihood of death continues to increase. It is evident that the disability state
is relatively unstable compared to the independence state because the overall intensities of
recovery and of death are significantly greater than the transition intensities in the independence
state, therefore the sojourn in the disability state is much shorter.

5.2.3 Effects of the latent traits—Prediction of the latent traits, denoted by η̃ik, for each
individual is calculated as the conditional expectation of the latent traits given the individual’s
observed data, that is, η̃ik = E(ηik|Oi…) in the last iteration of the EM algorithm.

Lin et al. Page 7

Biometrics. Author manuscript; available in PMC 2009 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Here a latent trait denotes the intrinsic individual tendency of transitioning out of a particular
state (or sojourn in that state) that cannot be explained by the listed covariates in Table 2 and
captures dependence between repeated sojourns in the same state within an individual. In our
example, there exist significant individual effects on the transitions between the two ADL states
because both latent traits for the independence state and the disability state are significant as
judged by the significance of their variance components (Table 2, bottom panel). The
significant covariance between the two latent traits means the likelihood of a transition from
ADL independence to disability state is negatively correlated with the reverse transition. That
is, an older person who tends to stay longer in an independence state (i.e., whose value of the
latent trait 1 is smaller) will be more likely to recover (if s/he happens to be disabled), and one
who tends to stay longer in a disability state (i.e., whose latent trait 2 value is smaller) will be
more likely to transit from an independence state (if s/he happens to be in it) back to a disability
state.

The loading for independence-state-specific latent trait 1 in terms of transition to the disability
state is set to one. The estimated loading of latent trait 1 for transition to death, γ̂13, is not
significant (Table 2, bottom panel), indicating that the competing transitions from ADL
independence to disability and to death are two independent events, that is, not associated after
accounting for the covariates in the top and middle panels of Table 2. There is not any
significant individual effect associated with death in independence beyond that of age (Table
2, top right panel). Thus, latent trait 1 can be interpreted as individual tendency for the transition
to disability state without dying.

The loading for disability-state-specific latent trait 2 in terms of transition to independence
(recovery) is set to one. The estimated loading for transition to death (dying in disability),
γ̂23, is highly significant (Table 2, bottom panel), indicating that recovery and dying in disability
are two associated competing events even after accounting for the covariates and that there
also exists individual tendency for dying in disability beyond what can be explained by the
listed covariates. The positive sign of γ̂23 indicates that the likelihood of recovery and of death
is positively dependent, that is, the ADL disability state is highly dynamic in that an ADL-
disabled older person either recovers or dies in a much shorter time period than the sojourn
time in an independence state. Thus, latent trait 2 can be interpreted as an individual capacity
to transit out of a disability state.

5.2.4 Empirical assessment of model assumptions—We are not aware of any formal
testing or other methods of inference for assessing model assumptions for multivariate survival
models with latent variables, so we focus on exploratory techniques to detect serious departures
from model assumptions. We make use of measures that can be readily obtained during the
usual computation for model fitting.

To empirically assess the conditional independence between two transition times of the same
type from independence (disability) to disability (independence) state, predicted latent traits
for individual i, η̃i1(η̃i2) is used as a covariate in fitting the usual time-to-event model. The gap
times to disability (independence) state are treated as independent survival outcomes both
within and between individuals and other covariates include those in Xij12(Xij21), and the
sojourn time of the previous independence (disability) state. Only individuals with two or more
independence (disability) states were included. The p-values of the Wald test for the
coefficients associated with the previous sojourn time in the same state are 0.41 (0.88) for the
independence (disability) state with the latent traits included and the p-values of the Wald test
for the coefficients associated with previous sojourn time in same state are 0.035 (0.042) for
independence (disability) state without including the latent traits. The results indicate that
repeated visits in the same state are correlated and the latent traits successfully account for such
correlation. Similar empirical assessment of conditional independence between transitions of
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different types was performed. The p-values of the Wald test for the coefficients associated
with the sojourn time in the last state (of different type) are 0.20 (0.96) for the independence
(disability) state with the latent traits included, and the p-values of the Wald test for the
coefficients associated with sojourn time in the last state are 0.020 (0.094) for independence
(disability) state without including the latent traits as covariates. The results indicate that
repeated visits to different states are correlated and the latent traits successfully account for
such correlation.

We are not aware of methods for checking the proportional hazards (PH) assumption in the
presence of frailty or random effects and future work in this area is warranted. We assessed
the PH assumption given the latent traits by using the predicted latent traits η̃ik, Xijkl and a
vector of the interaction terms of log t × Xijkl in fitting the independent model for the gap times
of occurrence/recurrence of disability, of recovery, of death in independence, and of death in
disability. The interaction terms between log t and Xijkl are not significant except for age. We
found that the interaction term between log t and age is significant for both directions of
transitions between independence and disability and for death in an independence state. These
results indicate that the PH assumption is met for all the covariates except for age. Schoenfeld
residuals for age also indicate possible violation of the PH assumption. Although the effect of
age needs to be further studied, its effect in the presence of nonproportionality can be
interpreted as an average effect of age over time. Time-varying coefficients models for
nonproportional covariates effects have been studied; however, these models have different
fitting algorithms and were studied in the absence of frailty or latent variables (Marzec and
Marzec 1997; Tian, Zucker, and Wei, 2005).

There is little work in the literature studying the impact of model departure from the normality
assumption of the multivariate latent traits. Future work is needed for testing normality
assumptions of latent traits. We choose to use multivariate normal latent traits due to the
consideration that the independence and disability states may be negatively correlated, which
is confirmed by the result from analyzing our ADL data.

6. Simulation Study
In this section, we examine the performance of the estimation procedure with respect to the
bias and asymptotic standard error estimates under two settings that have different complexity
in terms of covariates. Only one covariate for each type of transition is present in the first setting
and the covariates in the second setting mimic those in our ADL data set described above. In
each setting, the sample size is n = 752 and the number of replications is 100. For each subject,
gap times for the two nonabsorbing, repeated states that mimic the independence and the
disability state in the ADL data set are generated; gap time for one absorbing state is also
generated after a transition of state. The gap times are generated from an exponential

distribution with hazards of , where bi = (bi1, bi2)T are bivariate normal
with mean 0 and variance matrix

and the constant ckl is used to adjust the overall transition rate from state k to l so that the rate
is comparable with the corresponding transition rate in the original data.

In the first setting, a covariate Xijkl was generated from a normal distribution with mean 78 and
standard deviation 5 and used as a single fixed covariate for the mutual transitions between the
two nonabsorbing states and the transition from the independence state to the absorbing state.
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For the transition from the disability state to the absorbing state, the single time-dependent
covariate is the number of previous transitions. In the second setting, we use the baseline
covariates corresponding to the ADL data set as Xi1kl(0). For an individual starting from ADL
independence: (i) the gap time in months is designated as the minimum of the simulated time-
to-disability state and time-to-death from the two exponential distributions with the covariates
{Xij1.} and β. that mimic those in the ADL data set and, (ii) if the individual does not die, at
the transition of the state, the covariates are updated with the most recent covariate values in
the ADL data set for the individual, and the gap time in the disability state is designated as the
minimum of the simulated time-to-independent state and time-to-death from the two
exponential distributions with the covariates {Xij2.} and β2. that mimic those in the ADL data
set. (i) and (ii) are repeated until either death is encountered or the minimum of 84 cumulative
months and a random normal variable representing administrative censoring with a mean of
77 months and a standard deviation of 10 months are reached.

Table 3 presents the findings from setting 1. If we assume the transitions are all independent
without using the latent traits model, the estimates for the regression coefficients βkl are all
biased downward toward the null hypothesis. The estimated standard errors for the estimates
are very close to the standard deviations of the estimates from the 100 Monte-Carlo-simulated
data sets (the last three columns in Table 3). Using the joint analysis with the latent traits, we
can see that the estimates for the regression coefficients βkl are almost all unbiased but the
standard deviations of the estimates from the 100 Monte-Carlo-simulated data sets are larger
than those from the asymptotic calculation. The estimates for the variance components in G
are biased downward in value and the estimates for the factor loadings γkl are biased upward
probably to compensate for the downward bias of the estimated variance components in G.
The Monte Carlo standard deviations for the estimates of the variance components are
uniformly smaller than those from the asymptotic calculation. The Monte Carlo standard
deviations for the estimates of the factor loadings remain larger than those from asymptotic
calculation.

Table 4 presents the findings from setting 2 and shows similar results to those in setting 1
except that the Monte Carlo standard deviation for tran in β21 is smaller than the corresponding
asymptotic estimate. This smaller Monte Carlo standard deviation reflects the configuration
of the covariate with respect to the event of the transition because the same is observed for the
original data set (Table 2, middle left panel). The overall pattern of discrepancy in the estimated
standard errors between the Monte Carlo estimates and the asymptotic calculation in the
simulation follows the pattern of discrepancy between the bootstrap and the asymptotic
estimates in the original data.

Using a similar approach to that of Hsieh et al. (2006), we also investigated whether the
bootstrap method provides reliable estimates of standard errors for Ψ. Among the 100 simulated
data sets under setting 2, we resampled 50 bootstrap samples from each single simulated data
set. The mean of the 50 bootstrap standard error estimates for the parameters are given in the
last column of Table 4. The result suggests that the bootstrap estimates of the standard error
are quite reliable as they are close to the corresponding Monte Carlo standard deviations.

In summary, we found that the SPML estimates obtained with the EM algorithm are satisfactory
for the regression parameters. The estimates for the variance components of the latent traits
are underestimated in value. The Wald test for a variance component using the SPML estimate
obtained via EM and the asymptotic estimate for the standard error of the estimate appears to
be underpowered. The estimated standard errors from the asymptotic calculation are reliable
for the independent multistate models without latent traits. For the latent trait model, the
bootstrap estimates for the standard errors should be adopted.
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7. Discussion
This article considered multistate data under heterogeneity. Using multivariate normal latent
traits with loadings has a particular advantage when the sojourn times in different states may
be negatively associated and/or when competing transitions to different states are dependent.

Because social behavior aspects are often difficult to capture with measured covariates, our
example illustrates the utility of latent traits that are specific for certain correlated states of
health. Another important aspect is that the meaning of a latent trait is not predetermined and
the interpretation only becomes evident after fitting the model. This can be seen from the
interpretation of the two latent traits in our ADL example in Section 5.2.3.

As in the case of gamma frailty models studied by Nielsen et al. (1992) and Barker and
Henderson (2005), we also found that the SPML estimates using EM for the variance
components of the latent traits are underestimated in value. The problem with such bias needs
further research on the estimation procedure, that is, investigating whether the local likelihood
approach described by Barker and Henderson (2005) could alleviate the bias. With respect to
the estimated standard errors for Ψ, the asymptotic calculation works well for the model without
latent traits. In the presence of latent traits, however, the bootstrap estimates for the standard
errors should be adopted.

Regarding the ADL data set from the ongoing longitudinal aging study, it should be noted that
the first independence state is left truncated because all the participants were in ADL
independence at entry. Different intensities can be used for the first transition either by having
different baseline intensities or by including additional covariates associated with the first
transition. When we used a different baseline intensity for the first transition from the rest of
the transitions from independence to disability state, the results were very similar to Table 2.
The latent trait model we proposed can easily accommodate both of these situations and is
applicable when the starting state, with possible left truncation, is different across study
participants.

Limitations of our latent trait model include the lack of commercial software for fitting our
model, and the intensive computation required to fit the model. The Matlab code for fitting our
model can be obtained from the first author. With respect to estimating the standard errors,
although the bootstrap method is advocated, a bootstrap estimate for a covariate effect may
well be dependent upon the empirical configuration of the covariate among those who
experienced the corresponding event outcome in the finite sample, and, therefore, is sometimes
smaller than the asymptotic estimate. Further investigation into the relationship between the
asymptotic and the bootstrap methods will be of much interest. Future work could also include
developing approaches for simultaneously handling dropouts in the data, possibly relaxing the
normality assumption for the latent traits, and investigating the utility of time-dependent latent
traits.

Acknowledgments
We thank the editor, an associate editor, and a referee for constructive and helpful comments. This research was
partially funded by grants from the NIMH 1R01MH66187-01A2, and the NIA (R01AG022993, R37AG17560). The
study was also supported and conducted at the Yale Claude D. Pepper Older Americans Independence Center
(P30AG21342).

REFERENCES
Andersen, PK.; Borgan, Ø.; Gill, RD.; Keiding, N. Statistical Models Based on Counting Processes. New

York: Springer-Verlag; 1993.

Lin et al. Page 11

Biometrics. Author manuscript; available in PMC 2009 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Barker P, Henderson R. Small sample bias in the gamma frailty model for univariate survival data. Life
Time Data Analysis 2005;11:265–284.

Gill TM, Hardy SE, Williams CS. Underestimation of disability in community-living older persons.
Journal of the American Geriatrics Society 2002;50:1492–1497. [PubMed: 12383145]

Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data.
Biostatistics 2000;1:465–480. [PubMed: 12933568]

Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: Likelihood approach
revisited. Biometrics 2006;62:1037–1043. [PubMed: 17156277]

Joe H. Parametric families of multivariate distributions with given margins. Journal of Multivariate
Analysis 1993;46:262–282.

Liu L, Wolfe RA, Huang XL. Shared frailty models for recurrent events and a terminal event. Biometrics
2004;60:747–756. [PubMed: 15339298]

Louis TA. Finding the observed information when using the EM algorithm. Journal of the Royal Statistical
Society, Series B 1982;44:226–233.

Manton KG, Stallard E, Vaupel JW. Alternate models for the heterogeneity of mortality risks among the
aged. Journal of the American Statistical Association 1986;81:635–644. [PubMed: 12155405]

Marzec L, Marzec P. On fitting Cox’s regression model with time-dependent coefficients. Biometrika
1997;84:901–908.

McLachlan, GJ.; Krishnan, T. The EM Algorithm and Extensions. New York: Wiley; 1997.
Nielsen GG, Gill RD, Andersen PK, Sorensen TIA. A counting process approach to maximum likelihood

estimation in frailty models. Scandinavian Journal of Statistics 1992;19:25–44.
Parner E. Asymptotic theory for the correlated gamma-frailty model. The Annals of Statistics

1998;26:183–214.
Tian L, Zucker D, Wei LJ. On the Cox model with time-varying regression coefficients. Journal of the

American Statistical Association 2005;100:172–183.
Xue XN, Brookmeyer R. Bivariate frailty model for the analysis of multivariate failure time. Lifetime

Data Analysis 1996;2:277–289. [PubMed: 9384637]

APPENDIX A

Calculations in the EM Algorithm
We denote the conditional expectation in the (r + 1)th iteration of the EM algorithm as
E(r+1)(·|Oi…).

In the M-step, after taking the derivative of (2) with respect to λ0kl(t) and setting the derivative
to zero, the nonparametric estimate of λ0kl(t) has a closed form that is given by

No closed-form solutions exist for βkl and γkl. They can be updated in (r + 1)th iteration using
the following one-step Newton–Raphson algorithm:
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where the complete-data scores  and  are given respectively as

The complete-data informations  and  are given respectively as

The updated G estimate in the (r + 1)th iteration of the EM is given as
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Figure 1.
Plots of the baseline intensities. Circles are nonparametric estimates of the baseline intensities.
Lines are the loess-smoothed estimates. Top left: transition from ADL independence to
disability, the scale of the intensity is amplified by 1000 times; top right: transition from ADL
independence to death, the scale of the intensity is amplified by 100,000 times; bottom left:
transition from ADL disability to independence; bottom right: transition from ADL disability
to death.

Lin et al. Page 14

Biometrics. Author manuscript; available in PMC 2009 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lin et al. Page 15

Table 1

Summary statistics on states, transitions, and death by gender

Male (nM = 265) Female (nF = 487)

Independence Disability Independence Disability

Min, median, mean,
max of total times in
months

1, 67, 54, 83 0, 2, 7, 72 1, 64, 53, 84 0, 3, 13, 78

Min, median, mean,
max of total number of
transitions

0, 2, 3, 24 0, 2, 4, 32

Min, median, mean,
max of months since
entry to death

1, 37, 38, 80 1, 47, 43, 80

Total number of
deaths (%)

24 (25.5%) 70 (74.5%) 28 (20.9%) 106 (79.1%)
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