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The low-temperature dynamics of ultraviscous liquids hold the key
to understanding the nature of glass transition and relaxation
phenomena, including the potential existence of an ideal thermo-
dynamic glass transition. Unfortunately, existing viscosity models,
such as the Vogel–Fulcher–Tammann (VFT) and Avramov–Milchev
(AM) equations, exhibit systematic error when extrapolating to
low temperatures. We present a model offering an improved
description of the viscosity–temperature relationship for both
inorganic and organic liquids using the same number of parame-
ters as VFT and AM. The model has a clear physical foundation
based on the temperature dependence of configurational entropy,
and it offers an accurate prediction of low-temperature isokoms
without any singularity at finite temperature. Our results cast
doubt on the existence of a Kauzmann entropy catastrophe and
associated ideal glass transition.

modeling � supercooled liquids � configurational entropy � relaxation

Perhaps the most intriguing feature of a supercooled liquid is
its dramatic rise in viscosity as it is cooled toward the glass

transition. This sharp, super-Arrhenius increase is accompanied
by very little change in the structural features observable by
typical diffraction experiments. Several basic questions remain
unanswered:

1. Is the behavior universal (i.e., is the viscosity of all liquids
described by the same underlying model)?

2. Does the viscosity diverge at some finite temperature below
the glass transition (i.e., is there a dynamic singularity)?

3. Is the existence of a thermodynamic singularity the cause of
the dramatic viscous slowdown?

Answers to these questions are critical for understanding the
behavior of deeply supercooled liquids. Unfortunately, equilibrium-
viscosity measurements cannot be carried out at temperatures
much below the glass transition owing to the long structural
relaxation time. It thus becomes critical to find a model that best
describes the temperature dependence of viscosity by using the
fewest possible number of fitting parameters (1, 2). Because two
parameters are needed for a simple Arrhenius description, mod-
eling of super-Arrhenius behavior requires a minimum of three
parameters. We focus on three-parameter models only, with the
goal of describing the universal physics of supercooled liquid
viscosity in the most economical form possible.

The most popular viscosity model is the Vogel–Fulcher–
Tammann (VFT) equation (3)

log10��T , x� � log10���x� �
A�x�

T � T0�x�
, [1]

where T is temperature, x is composition, and the three VFT
parameters (��, A, and T0) are obtained by fitting Eq. 1 to
experimentally measured viscosity data. In the polymer science
community, Eq. 1 is also known as the Williams–Landel–Ferry
(WLF) equation (4). Although VFT has met with notable
success for a variety of liquids, there is some indication that it
breaks down at low temperatures (3, 5). Another successful
three-parameter viscosity model is the Avramov–Milchev (AM)
equation (6), derived based on an atomic hopping approach:

log10��T , x� � log10���x� � � ��x�

T � ��x�

, [2]

where ��, �, and � are fitting parameters. Eq. 2 had been
proposed (albeit empirically) by several authors (1, 7, 8) before
the work of Avramov and Milchev. Although another three-
parameter model has recently been proposed by Elmatad et al.
(9), the quadratic form adopted by these authors applies only
over a narrow range of temperatures and breaks down in both the
high- and low-temperature tails. Here we are interested only in
those models, such as VFT and AM, that cover the full range of
temperatures by using a single three-parameter form.

Model. We revisit the problem of viscous liquid dynamics starting
with the Adam–Gibbs equation (10), relating viscosity to the
configurational entropy of the liquid, Sc(T,x):

log10��T , x� � log10���x� �
B�x�

TSc�T , x�
, [3]

which has met with remarkable success in describing the relax-
ation behavior of a wide variety of systems (11) and has proved
a key enabler for the theoretical study of dynamical heteroge-
neities in supercooled liquids (12, 13). Here, B(x) is an effective
activation barrier, which is typically left as a fitting parameter.
The configurational entropy Sc(T,x) is a complex quantity in a
glassily entangled system, but it can be modeled by using
constraint theory. [Constraint theory is general approach that
has given an accurate description of the phase diagrams of
thermal, kinetic, vibrational, and other properties of many
network glasses, especially near the glass transition (14).] Fol-
lowing the energy landscape analysis of Naumis (15) and the
temperature-dependent constraint model of Gupta and Mauro
(16), the configurational entropy can be related to the topolog-
ical degrees of freedom per atom (17, 18), f(T,x), by

Sc�T, x� � f�T, x�Nk ln� , [4]

where N is the number of atoms, k is Boltzmann’s constant, and
� is the number of degenerate configurations per floppy mode
(16). To obtain the most economical model for f(T,x), we
consider a simple two-state system in which the network con-
straints are either intact or broken, with an energy difference
given by H(x):

f�T, x� � 3exp��
H�x�

kT � . [5]

In the limit of high temperature, Eq. 5 gives three translational
degrees of freedom per atom. The network becomes completely
rigid at absolute zero temperature, f(0,x) � 0, where there is no
thermal energy to break the bond constraints. Defining K(x) �
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B(x)/3Nkln� and C(x) � H(x)/k, we obtain the following three-
parameter model for viscosity:

log10��T , x� � log10���x� �
K�x�

T
exp�C�x�

T � . [6]

Eq. 6 was proposed empirically as one of several expressions by
Waterton in 1932 (19), but we are unaware of any subsequent
work with this expression. Although Eq. 6 could be obtained by
assuming an exponential form for activation barrier in the
Arrhenius formula for viscosity, this would be physically unre-
alistic because (i) the activation barrier would become infinite in
the limit of zero temperature and (ii) the high-temperature
kinetics are dominated by entropic effects, which are not con-
sidered by using a simple activation-barrier model. Here we
obtain Eq. 6 through a physically realistic model for configura-
tional entropy based on a constraint approach.

Although the viscosity models of Eqs. 1, 2, and 6 have different
sets of adjustable parameters, each model can be rewritten in
terms of the same set of physically meaningful quantities: (i) the
glass-transition temperature, Tg(x); (ii) the fragility, m(x); and
(iii) the extrapolated infinite temperature viscosity, ��(x). For
any composition x, the glass-transition temperature is defined
where the shear viscosity is equal to 1012 Pa-s (16, 20), i.e.,
�(Tg(x),x) � 1012 Pa-s. Fragility (21) is defined as

m�x� �
� log10��T , x�

��Tg�x� /T�
�

T�Tg�x�

. [7]

With these definitions, the VFT expression of Eq. 1 becomes

log10��T� � log10�� �
�12 � log10���2

m�T /Tg � 1� � �12 � log10���
, [8]

the AM expression of Eq. 2 becomes

log10��T� � log10�� � �12 � log10���� Tg

T � m/�12�log10���

, [9]

and the current model in Eq. 6 can be rewritten as

log10��T� � log10�� � �12 � log10���

Tg

T
exp� � m

12 � log10��
� 1� � Tg

T
� 1� � . [10]

To illustrate the differences among the three models, Eqs. 8–10
are plotted in Fig. 1A assuming m � 60 and log10�� � �4. The
intrinsic differences among these models can be elucidated by
equating each of Eqs. 8–10 with the Adam–Gibbs relation of Eq.
3 and solving for the configurational entropy, Sc(T). As shown in
Fig. 1B, the AM model predicts divergent configurational en-
tropy in the limit of high temperature. This is a physically
unrealistic result because only a finite number of configurations
are available to any system (22). Both VFT and Eq. 10 correctly
yield convergent Sc(T) in the high-temperature limit.

The low temperature scaling of Sc(T), shown in Fig. 1C, is a
matter of controversy. Although both AM and the current model
predict Sc(T) � 0 only at absolute zero temperature, VFT
predicts Sc(T0) � 0 at some finite temperature T0. As a result, the
T0 parameter is often associated with the Kauzmann tempera-
ture, TK, at which the extrapolated liquid-entropy curve appar-
ently intersects that of the crystal (23). The apparent success of
the VFT equation, combined with Kauzmann’s notion of an
entropy catastrophe at TK, has led many theorists to suggest the
existence of an ideal thermodynamic glass transition (24, 25).
Both the AM equation and our current model avoid introducing
such a singularity at a finite temperature. Although the issue

remains contentious, the energy-landscape analysis of Stillinger
(26) presents a compelling physical argument against the notion
of vanishing liquid entropy at a finite temperature: Because a
liquid cannot be truly confined in a single microstate at any finite
temperature, the configurational entropy is necessarily positive
for all T � 0. The recent work of Hecksher et al. (27) has also
raised doubts about the existence of dynamic divergence at T0.
In particular, they showed that the relaxation times of 42 organic
liquids can be described equally well by other empirical expres-
sions with the same number of fitting parameters as VFT but
without incorporating a singularity at a finite temperature. In
this work, we show that our model in Eq. 10 provides an
improved description of viscosity scaling, especially at low tem-
peratures, thus providing stronger evidence against the notion of
dynamic divergence and the vanishing of liquid entropy at T0.

Results
Let us first consider the glass-forming liquids in Fig. 2A, includ-
ing five oxide and five molecular liquids, covering a wide range
of fragility values from 20 to 115. Fig. 2B shows that the current
model of Eq. 10 provides either the best fit or a close second-best
fit for all ten of these diverse liquids. VFT performs worst
overall, faring especially poorly with the higher-fragility molec-
ular liquids. The poor performance of VFT with high-fragility
liquids was also found by Angell (21), who tested several other
two- and three-parameter equations (not including AM or the
current model) but found that none performed significantly
better than VFT (21, 28). Here we show that Eq. 10 performs
much better than VFT across the full range of fragility values.
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Fig. 1. Comparison of the viscosity models. (A) Temperature dependence of
viscosity with Eqs. 8–10, assuming m � 60 and log10�� � �4. (B) Plot of Sc(T)/BTg

for T � Tg, obtained by equating each of Eqs. 7-9 with the Adam–Gibbs
relation of Eq. 3. The AM model of Eq. 9 yields a divergent configurational
entropy in the limit of T3�. (C) Plot of Sc(T)/BTg for T � Tg. The VFT model of
Eq. 8 predicts a vanishing of configurational entropy at T � T0.

Mauro et al. PNAS � November 24, 2009 � vol. 106 � no. 47 � 19781

PH
YS

IC
S



The relatively good fitting quality of AM in Fig. 2B is marred
by an unphysical extrapolation to high temperatures. The relax-
ation time at an infinitely high temperature is given by the
quasilattice vibration period (�� 	 10�14 s), corresponding to the
time between successive assaults on the energy barriers to
structural rearrangement (29, 30). With an infinite frequency
shear modulus of G� 	 29 GPa for silicate liquids (31), Maxwell’s
equation yields �� � G��� 	 10�3.5 Pa-s. This extrapolated
viscosity is expected to be somewhat lower for molecular liquids
owing to their lower G�; also, silica is expected to have a lower
�� because of its anomalous strong-to-fragile cross-over (32). As
shown in Fig. 3A, the values of �� obtained by using AM are
unrealistically high, a result that follows directly from the
unphysical divergence of configurational entropy exhibited in
Fig. 1B. Previous studies by Hecksher et al. (27) and Yue (20)
have shown that when �� is held to a physically realistic value,
the fit quality of AM is significantly worse than that of VFT.

Next we consider fits to 568 different silicate liquids developed
through composition research at Corning Incorporated. The
liquids cover a wide range of composition space, from simple
calcium aluminosilicate ternaries through complex borosilicates
with up to 11 unique oxide components. Each composition is
represented by 6–13 data points in the range of 10–106 Pa-s,
obtained via a rotating-spindle method. Of these, 85 composi-
tions are also represented by data points at 106.6 Pa-s (the
softening point, obtained via parallel-plate viscometry) and 1011

Pa-s (obtained via beam bending viscometry). The measured
isokom temperatures are accurate to within 
1 K. Fitting the full
set of viscosity data, the current model of Eq. 10 yields the lowest
RMS error of 0.0347 log10(Pa-s), compared with 0.0350 for VFT
and 0.0470 for AM. Fig. 3B shows that the current model
produces the narrowest distribution of �� values, in agreement
with arguments concerning the universality of the �� parameter
for a given class of materials (33–35), viz., in the limit of infinite
temperature, the details of the interatomic potentials are no
longer important because the system is dominated by kinetic

energy. We note that this argument for a universal �� implicitly
assumes simple exponential relaxation in the high-temperature
limit (36). Fig. 3B also shows that the AM model produces
unphysically high values of �� for nearly all of the Corning
compositions.

Near the glass-transition temperature, molecular glasses (like
o-terphenyl) begin to form large clusters (as precursors to
crystallization) or simply begin to crystallize (37). Thus, the
low-temperature behavior is best studied with network glass data
where crystallization is strongly inhibited. To investigate the
low-temperature scaling of viscosity, we perform an extrapola-
tion test on the 85 Corning compositions that include 106.6 and
1011 Pa-s data. As illustrated in Fig. 4A, the three viscosity
models are fit to the high-temperature viscosity data only
(including the softening point at 106.6 Pa-s). The models are then
extrapolated to low temperatures to predict the 1011 Pa-s isokom
temperature. The error in the isokom prediction is plotted in Fig.
4 B–D, where it is apparent that both the VFT and AM
expressions exhibit systematic error, albeit in opposite directions.
The AM equation exhibits too little curvature, underpredicting
the 1011 Pa-s isokom temperature by an average of 5.6 K. In
contrast, VFT exhibits too much curvature and overpredicts the
1011 Pa-s isokom by an average of 9.4 K. This systematic error is
a direct result of VFT’s spurious assumption of dynamic diver-
gence at T0, which leads to an overly steep rise in viscosity at low
temperatures. As shown in Fig. 4D, our current viscosity model
of Eq. 10 exhibits no such systematic error when performing
low-temperature extrapolation; its average error of �0.5 K falls
within the experimental error bars of 
1 K. [As an aside, the
recent model of Elmatad et al. (9) underpredicts the 1011 Pa-s
isokom temperatures by an average of 72.0 K under exactly the
same test as above, a result that demonstrates the dramatic
breakdown of simple parabolic scaling when extending to low
temperatures. Hence, this model is not in the same ballpark as
any of the three other models considered.]

Fig. 2. Model fits. (A) Viscosity curves of five oxide and five molecular liquids
covering a range of fragility values from 20 to 115. (B) Root mean square error
in the fitted viscosity curves using the three models of Eqs. 8–10.

Fig. 3. Extrapolated infinite temperature viscosity. (A) Distribution of ��(x)
values for the compositions in Fig. 2. (B) Histogram of ��(x) values for the
best-fit viscosity curves of 568 different Corning aluminosilicate compositions.
The current model produces the narrowest distribution of ��(x) values.
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Discussion
The substantially enhanced extrapolation ability of Eq. 10
offers a cogent argument against the existence of dynamic
divergence and the vanishing of configurational entropy at
finite temperature, a view that is also supported by the
low-temperature experiments of Simon et al. (38). Our results
therefore cast doubt on the existence of an equilibrium
second-order transition temperature T2 (10, 24) equivalent to
T0 (21) and TK (23). According to Adam–Gibbs entropy
function, Sc � �Cp ln(T/T2), the configurational entropy would
vanish at T � T2, where �Cp is the difference in isobaric heat
capacity between the equilibrium liquid and the glass at Tg
(10). Another problem with the Adam–Gibbs Sc function is
divergence in the high-temperature limit. Please note that
although the derivation of our current model is based on the
Adam–Gibbs relation between thermodynamics (Sc) and ki-
netics (�), it does not rely on the specific form of Sc(T)
assumed by Adam and Gibbs in their discussion of the ideal
glass transition.

Of the three viscosity models in Eqs. 8–10, only the current
model of Eq. 10 offers a realistic extrapolation of configurational
entropy in both the high- and low-temperature limits. As a result,
Eq. 10 provides for physically reasonable values of ��, as well as
a more accurate description of the low-temperature scaling of
viscosity. The failure of the VFT and AM models in either limit
can be attributed to finite size effects, a common problem in
complex systems (39). In the high-temperature limit, shear flow
can be described by single-atom motion. As the temperature is
lowered, the shear flow becomes cooperative and the length
scale of the cooperatively rearranging regions increases (10).
Such length-scale effects are critical for understanding other

aspects of supercooled liquid and glassy behavior, such as
stretched exponential relaxation (40) and dynamical heteroge-
neities (41–43). In a more general sense, by demanding good
limits for both the high- and low-temperature scaling of viscosity,
we have extended some of the basic ideas of complex analysis to
glass-forming systems. The interested reader is encouraged to
examine the recent work of Naumis and Cocho (39). Building on
the notion of multiple length scales, these authors present an
elegant N/D formula (44) for integrating rank distributions (39).
Owing to the convolution of multiple length scales, the expres-
sions for N (the numerator) and D (the denominator) in
glass-forming systems need not be polynomials.

The improved accuracy of Eq. 10 in performing low-
temperature extrapolations, combined with its absence of a
singularity at finite temperature, offers strong evidence against
the existence of dynamic divergence in glass-forming liquids.
Any realistic model of the supercooled liquid and glassy states
must account correctly for the low-temperature thermodynamics
and kinetics. A particularly promising approach is the energy-
landscape model of Stillinger (26, 45). Whereas the current
paper deals solely with equilibrium liquid viscosity, a separate
investigation by Mauro et al. (46) extends the analysis to
viscosities up to 1016 Pa-s, providing a thorough theoretical and
experimental analysis of the nonequilibrium viscosity of glass
accounting for the effects of thermal history in the sub-Tg
regime, including the cross-over to Arrhenius scaling at temper-
atures below the glass transition (47).
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Fig. 4. Results of the low-temperature extrapolation test. (A) Low-temperature extrapolation test, where the viscosity models are fit to high-temperature
viscosity data and then extrapolated to predict the 1011 Pa-s isokom temperature. (B) Error in the predicted 1011 Pa-s isokom for 85 Corning compositions. The
compositions on the horizontal axis are ordered in terms of descending error for the three models. A given position on the horizontal axis generally corresponds
to three different liquids. (C) Root mean square error in the predicted isokom temperature using the three different models. (D) Average error in the predicted
isokom temperature.
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