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Inflammasomes have been extensively characterized in
monocytes and macrophages, but not in epithelial cells, which
are the preferred host cells for many pathogens. Here we show
that cervical epithelial cells express a functional inflammasome.
Infection of the cells by Chlamydia trachomatis leads to activa-
tion of caspase-1, through a process requiring the NOD-like
receptor familymemberNLRP3 and the inflammasome adaptor
protein ASC. Secretion of newly synthesized virulence proteins
from the chlamydial vacuole through a type III secretion appa-
ratus results in efflux of K� through glibenclamide-sensitive K�

channels, which in turn stimulates production of reactive oxy-
gen species. Elevated levels of reactive oxygen species are
responsible for NLRP3-dependent caspase-1 activation in the
infected cells. In monocytes and macrophages, caspase-1 is
involved in processing and secretion of pro-inflammatory cyto-
kines such as interleukin-1�. However, in epithelial cells, which
are not known to secrete large quantities of interleukin-1�,
caspase-1 has been shown previously to enhance lipid metabo-
lism. Here we show that, in cervical epithelial cells, caspase-1
activation is required for optimal growth of the intracellular
chlamydiae.

Chlamydia trachomatis is the most common cause of bacte-
rial sexually transmitted disease in the United States, and it is
the leading cause of preventable blindness in the world (1–5).
Untreated, C. trachomatis infection in women can cause pelvic
inflammatory disease, which can lead to infertility and ectopic
pregnancy because of scarring of the ovaries and the Fallopian
tubes (6). Infection by the lymphogranuloma venereum (LGV)2
strain of C. trachomatis, which has become more common in
North America and Europe (7, 8), is characterized by swelling
and inflammation of the lymph nodes in the groin (9).
Chlamydiae are intracellular pathogens that preferentially

infect epithelial mucosa and have a biphasic infection cycle
(10). A metabolically inactive form, the elementary body,
infects the epithelial host cells through entry vesicles that avoid

fusion with host cell lysosomes and develop into a membrane-
bound inclusion (11–13). Despite their intravacuolar localiza-
tion, chlamydiae are still able to acquire nutrients from the host
cell and interact with host-cell signaling pathways (13–23).
Within a few hours, the elementary bodies differentiate into
larger, metabolically active reticulate bodies, which proliferate
but are noninfectious. Depending on the strain ofC. trachoma-
tis, the reticulate bodies transform back into elementary bodies
after 1–3 days and are released into the extracellularmedium to
infect other cells (11, 24, 25). Chlamydial species possess a type
III secretion (T3S) system that secretes bacterial virulence fac-
tors into host cell cytosol andmay control interactions between
the inclusion and host-cell compartments (26).
Long before the adaptive immune response is activated,

infected epithelial cells produce proinflammatory cytokines
and chemokines, including interleukin (IL)-6, IL-8, and granu-
locyte-macrophage colony-stimulating factor (27), which
recruit neutrophils to the site of infection and activate other
immune effector cells. However, in many cases the immune
system fails to clear the infection, and the chronic release of
cytokines becomes a major contributor to the scarring and
damage associated with the infection (28–30).
The innate immune response during C. trachomatis infec-

tion is initiated by chlamydial pathogen-associated molecular
patterns, including lipopolysaccharides, which bind to pattern
recognition receptors such as Toll-like receptors and cytosolic
NOD-like receptors (NLRs), ultimately promoting pro-inflam-
matory cytokine gene expression and secretion of the cytokine
proteins (31–37). However, secretion of the key pro-inflamma-
tory cytokine IL-1� is tightly regulated (38). First, pro-IL-1� is
produced following activation of pattern recognition receptor,
and the precursor is then cleaved into the mature form by the
pro-inflammatory cysteine protease, caspase-1 (also known as
interleukin-1 converting enzyme or ICE). The mechanism by
which caspase-1 is activated in response to infection or tissue
damage was found to be modulated by a macromolecular pro-
tein complex termed the “inflammasome,” which consists of an
NLR family member, an adaptor protein (apoptosis-associated
speck-like protein containing a caspase activation recruitment
domain or ASC), and an inactive caspase-1 precursor (pro-
caspase-1) (39, 40). Previous studies demonstrated that IL-1� is
produced in response to chlamydial infection in dendritic cells,
macrophages, and monocytes (41–44). Moreover, C. tracho-
matis orChlamydia caviae infection activates caspase-1 in epi-
thelial cells or monocytes (43, 45, 46). However, whether
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caspase-1 activation during chlamydial infection requires the
formation of an inflammasome remains unclear.
Previous studies have shown that different pathogens can

cause inflammasome-mediated caspase-1 activation in macro-
phages and monocytes (47). However, epithelial cells lining
mucosal surfaces are not only the preferred target for chlamy-
dial infection and other intracellular pathogens but also play an
important role in early host immune response to infection by
secreting proinflammatory cytokines and chemokines (27).
Although epithelial cells are not known to secrete large
amounts of IL-1�, inflammasome-dependent caspase-1 activa-
tion in epithelial cells is known to contribute to lipid metabo-
lism andmembrane regeneration in epithelial cells damaged by

the membrane-disrupting toxin, aerolysin (48). As lipids are
sorted from the Golgi apparatus to the chlamydial inclusion
(13, 15, 49), we therefore investigated whether C. trachomatis
induces caspase-1 activation in epithelial cells via the assembly
of an inflammasome. We demonstrated that C. trachomatis-
induced caspase-1 activation is mediated by an inflammasome
containing the NLR member, NLRP3. Several studies have
demonstrated the involvement of T3S apparatus in inflamma-
some-mediated caspase-1 activation by different pathogens in
macrophages and monocytes (50–56). Therefore, we further
investigated the mechanism by which C. trachomatis triggers
the formation of the NLRP3 inflammasome. Our results
showed that metabolically active chlamydiae, relying on their

FIGURE 1. C. trachomatis induces caspase-1 activation in HeLa cells. HeLa cells were infected with C. trachomatis at an m.o.i. � 3 for 12, 24, and 36 h.
A, Western blot analysis of HeLa cell lysates was performed to monitor caspase-1 (Casp1) activation using an antibody that detects pro-caspase-1 (p45, upper
band) and active caspase-1 (p20, lower band). B, caspase-1 activation was quantified using fluorescent FLICACasp1 reagent and analyzed by flow cytometry.
Nonfluorescent cells were gated in the first log-decade, and the fluorescence intensity was proportional to the level of caspase-1 activation. C, column chart of
FLICACasp1 flow cytometry data, showing the % of cells with activated caspase-1 as a function of infection time. Error bars represent standard deviation (n � 3).
** indicate p � 0.01; *** indicate p � 0.001, compared with uninfected cells.
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T3S apparatus, cause K� efflux, which in turn leads to forma-
tion of reactive oxygen species (ROS) and ultimately NLRP3-
dependent caspase-1 activation. Epithelial cells do not typically
secrete large amounts of IL-1�; instead, caspase-1 activation in
cervical epithelial cells contributes to development of the
chlamydial inclusion.

EXPERIMENTAL PROCEDURES

Cells, Bacteria, and Chemical Reagents—Cervical epithelial
cells (HeLa 229 cells) and the LGV/L2 strain of C. trachomatis
were obtained from American Type Culture Collection
(ATCC). HeLa cells were cultured in a humidified incubator at
37 °C with 5% CO2 in Dulbecco’s modified Eagle’s medium
(Dulbecco’s modified Eagle’s medium/F-12) (Invitrogen) sup-
plemented with 10% heat-inactivated fetal calf serum (Invitro-
gen), and 10 �g/ml gentamycin (Omega Scientific, Tarzana,
CA). The number of bacterial inclusion forming units was
determined as described previously (18). N-Acetylcysteine
(NAC), glibenclamide, penicillin G, and cycloheximide were
from Sigma. KCl was from Fisher; chloramphenicol was from
Calbiochem, and Z-YVAD-fmk was from Biovision (Mountain
View, CA). Z-WEHD-fmk was purchased from R & D Systems
(Minneapolis, MN). INPs (0341 and 0406) were kind gifts from
Dr. Pia Keyser (Innate Pharmaceuticals, Umeå, Sweden).
Cell Culture, Infection, and Treatments—HeLa cells growing

at 50% confluency on tissue culture flasks (Costar, Corning,
NY) were infected with the LGV/L2 strain of C. trachomatis at
a multiplicity of infection (m.o.i.) of 3.0, unless specified other-

wise, and incubated for the indi-
cated times in an incubator at 37 °C
with 5% CO2. Treatment with
inhibitors or other reagents was
performed at the indicated times
and concentrations.
Generation of HeLa Cells Express-

ing shRNA—HeLa cells stably ex-
pressing shRNA against NLRP3 and
ASC were obtained by transducing
HeLa cells with lentiviral particles.
The sequences 5�-CCGGGCGTTA-
GAAACACTTCAAGAACTCGA-
GTTCTTGAAGTGTTTCTAAC-
GCTTTTTG-3� for human NLRP3
(Sigma; catalognumberNM_004895)
and 5�-CCGGCGGAAGCTCTT-
CAGTTTCACACTCGAGTGT-
GAAACTGAAGAGCTTCCGT-
TTTTG-3� for human ASC (Sigma;
catalog number NM_013258) were
used separately to silence gene
expression following the manu-
facturer’s instructions. Nontarget
shRNA control cells were also gen-
erated using an irrelevant sequence
(Sigma; catalog number SHC002V).
FLICA Staining—During the last

hour of incubation, cells were
labeled with FAM-YVAD-fmk

caspase-1 FLICATM kit (Immunochemistry, Bloomington, IN),
which binds activated caspase-1. Flow cytometric analysis was
performed according to manufacturer’s manual. In brief, cells
were detached using TrypLETM Express (Invitrogen) and then
incubated with 1� FLICA for 1 h followed by two washes and
analyzed with a Guava EasyCyte (Guava Technologies, Hay-
ward, CA).
Western Blotting—Samples were lysed using RIPA Lysis

Buffer (Millipore) and loaded onto a 15% SDS-polyacrylamide
gel and then transferred to a polyvinylidene difluoride mem-
brane (Millipore). Blots were blocked for 1 h with 5% (w/v)
nonfat driedmilk inTBST. Themembranewas incubated over-
night at 4 °C with rabbit anti-human caspase-1 antibody (Mil-
lipore) and then incubated again with conjugated anti-rabbit
IgG horseradish peroxidase (Millipore). For confirmation of
NLRP3 depletion by RNA interference, a 9% gel was used,
and the blot was incubated with rabbit anti-human NLRP3
antibody (Sigma; catalog number HPA012878). Immunore-
active proteins were detected with ECL Plus Western blot-
ting detection reagents (Amersham Biosciences) using a gel
doc system (Bio-Rad).
Measurement of Production of ROS—Cells were labeled with

the cell-permeant ROS indicator dihydrocalcein-AM (Molecu-
lar Probes, Eugene, OR), following the manufacturer’s instruc-
tions. Briefly, cells were plated in phenol red-free Dulbecco’s
modified Eagle’smedium (Invitrogen) and then infected and/or
treated for the indicated times. Cells were loaded with 10 �M

dihydrocalcein-AM in phosphate-buffered saline for 45 min at

FIGURE 2. C. trachomatis-induced caspase-1 activation requires NLRP3 inflammasome. A, HeLa cells were
stably transfected with shRNAs that target NLRP3 or ASC, and mRNA expressions of NLRP3 (left panel) and ASC
(right panel) were quantified by real time PCR and compared with wild type (WT) and nontarget control (sh Ctrl).
Inset, Western blot analysis of wild type HeLa cells, cells treated with nontarget control, and cells treated with
shNLRP3, confirming decreased expression of the NLRP3 protein after mRNA knockdown. Western blot was
performed with an anti-NLRP3 antibody, which detects the 118-kDa protein. B, NLRP3, ASC, or nontarget
control knockdown HeLa cells were infected with L2 at an m.o.i. � 3 for 24 h, and C. trachomatis-induced
caspase-1 activation was measured by FLICACasp1. The fold increase in caspase-1 activation in infected nontar-
get controls, shNLRP3-treated cells, and shASC-treated cells with respect to uninfected cells was compared
with the increase in 24 h-infected wild type cells. Error bars represent standard deviation of an experiment
performed in triplicate on three separate occasions. ** indicates p � 0.01; *** indicates p � 0.001.
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37 °C, then recovered in growth media for 20 min, and finally
analyzed by flow cytometry with a Guava EasyCyte.
RNA Isolation and Real Time PCR—mRNA was isolated

fromHeLa cells using theQiagen RNeasy kit (Qiagen, Valencia,
CA) following the manufacturer’s instructions, and total RNA
was converted into cDNA by standard reverse transcription
with Taqman� reverse transcriptase kit (Applied Biosystems,
Foster City, CA). Quantitative PCR was performed with 1:50 of
the cDNA preparation in the Mx3000P (Stratagene, La Jolla,
CA) in a 25-�l final volume with Brilliant QPCR master mix
(Stratagene). The primers for human GAPDH were 5�-CTTC-
TCTGATGAGGCCCAAG-3� forward and 5�-GCAGCAAAC-
TGGAAAGGAAG-3� reverse. Primers for humanNLRP3were
5�-CTTCCTTTCCAGTTTGCTGC-3� forward and 5�-TCTC-
GCAGTCCACTTCCTTT-3� reverse. Primers for human ASC
were 5�-AGTTTCACACCAGCCTGGAA-3� forward and
5�-TTTTCAAGCTGGCTTTTCGT-3� reverse. Real time PCR
included initial denaturation at 95 °C for 10min, followed by 40
cycles of 95 °C for 30 s, 55 °C for 1min, 72 °C for 1min, and one
cycle of 95 °C for 1 min, 55 °C for 30 s, 95 °C for 30 s.
ChlamydiaQuantitation and FluorescenceMicroscopy—Fol-

lowing 24 h of infection, cells were harvested using a cell
scraper, frozen at �80 °C, thawed, and thoroughly vortexed
before titrating on 50% confluent HeLa cells. Cells were then
stained by Hoechst stain (Sigma) and anti-chlamydial antibody
(Argene, North Massapequa, NY), mounted on slides, and
quantified by immunofluorescence on a wide field fluorescence
microscope (Leica, Deerfield, IL).
Statistical and Flow Cytometric Analyses—The statistical

analysis was performed using GraphPad Instat software
(GraphPad Software Inc, La Jolla, CA) by Student’s t test and
was considered significant at p � 0.05. Flow cytometry data
were analyzed using FlowJo� software (Tree Star Inc, Ashland,
OR).

RESULTS

Chlamydia-mediated Caspase-1 Activation in Epithelial
Cells Requires the NLRP3 Inflammasome—To characterize
caspase-1 activation during C. trachomatis infection, we
infected human cervical epithelial (HeLa) cells with C. tracho-
matis (L2) at a multiplicity of infection (m.o.i.) of 3 for 12, 24,
and 36 h. The 45-kDa procaspase-1 was cleaved into the active
20-kDa caspase-1 at 24 h post infection, and processing was
further increased at 36 h post infection, as shown by the disap-
pearance of the procaspase-1 zymogen and the concomitant
appearance of the active caspase-1 (Fig. 1A). Similar results
were obtainedwhenwe quantified caspase-1 activation inHeLa
cells using a cell-permeable fluorescent reagent, FLICACasp1,
which can specifically bind to the active form of caspase-1 (Fig.
1, B and C). Caspase-1 activation was barely noticeable at 12 h
post infection but became significant after a day of infection
(Fig. 1C), in agreement with recent studies (45).
Nextwe sought to determinewhether an inflammasomemay

be required for caspase-1 activation. The adaptor protein ASC
can be coupled to different NLR family members and therefore
seemed likely to play a role in inflammasome activation during
C. trachomatis infection. As IPAF (also known as NLRC4 (57))
was shown in previous studies to recognize mainly bacterial

flagellin (58, 59), which is not expressed in the chlamydial
genome (60), we focused our initial attention on NLRP3 (also
known as cryopyrin and Nalp3 (57)).
A role for either ASC or NLRP3 during chlamydial infection

was determined by silencing NLRP3 or ASC by shRNA inHeLa
cells. mRNA expression of either inflammasome component
was significantly reduced in comparison with nontarget
shRNA, as measured by real time PCR (Fig. 2A), although
higher levels of NLRP3 protein depletion were observed by
Western blotting (Fig. 2A). Consistent with a role for the
NLRP3 inflammasome in caspase-1 activation, individual
knockdown of NLRP3 or ASC caused a reduction of �50% in
the activation of caspase-1 after 24 h of C. trachomatis infec-

FIGURE 3. Caspase-1 activation following C. trachomatis infection is
caused by K� efflux and ROS production. A, HeLa cells were infected with C.
trachomatis at an m.o.i. � 3 for 0, 12, 16, 20, and 24 h, and intracellular ROS
levels were measured with the fluorescent dihydrocalcein reagent and ana-
lyzed by flow cytometry. Data are plotted as a line chart. B and C, HeLa cells
were infected or not with C. trachomatis at an m.o.i. � 3 for 24 h, and treated
or not with 10 mM NAC, 50 �M glibenclamide (Gli), 70 mM KCl during the last
15 h of infection, or 60 �g/ml chloramphenicol (Chl), 100 �g/ml penicillin
(Pen), 10 �g/ml cycloheximide (Cyc) during the last 6 h of infection. ROS pro-
duction was quantified with dihydrocalcein (B), or caspase-1 activation was
measured with FLICACasp1 (C). Error bars represent standard deviation from at
least three separate experiments. * indicates p � 0.05; *** indicates p � 0.001,
compared with uninfected cells (A) or untreated infected cells (B and C).
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tion, when compared with wild type HeLa cells or cells that
were transfected with nontarget shRNA (Fig. 2B). The reduc-
tion of caspase-1 activation was not complete (Fig. 2B) and was
similar to the level of mRNA depletion by shRNA but lower
than the level of NLRP3 protein depletion (Fig. 2A). These
results imply that C. trachomatis infection induces caspase-1
activation through a process that requires, at least partially, the
assembly of the NLRP3 inflammasome.
Chlamydia-induced Caspase-1 Activation Is Caused by ROS

Production as aResult of K�Efflux—We investigated themech-
anism by which C. trachomatis induces caspase-1 activation in
HeLa cells. Previous studies have shown that ATP-dependent
ROS production in macrophages can activate caspase-1 (61),
and that asbestos and silica can activate the NLRP3 inflamma-
some by increasing ROS production (62, 63). We therefore
evaluated whetherC. trachomatis increases ROS production in
HeLa cells, using a commercially available fluorescent reagent,

dihydrocalcein, tomeasure intracel-
lular ROS production. Similarly to
the time course for caspase-1 activa-
tion, there was essentially no ROS
production during the first 12 h of
chlamydial infection, but ROS pro-
duction increased at 20 h post infec-
tion and continued to increase at
24 h post infection. However, unlike
the case for caspase-1 activation,
ROS levels returned to basal levels
at 36 h post infection (Fig. 3A).

To confirm whether chlamydia-
induced ROS production may be
involved in activation of caspase-1,
we used the anti-oxidant NAC,
which was previously shown to
inhibit caspase-1 activation and
NLRP3 assembly (61, 63). Interest-
ingly, the antioxidant NAC signifi-
cantly diminished both ROS pro-
duction and caspase-1 activation
induced by 24 h of chlamydial infec-
tion (Fig. 3,B andC), suggesting that
ROS production is upstream from
caspase-1 activation.
Besides ATP binding to the puri-

nergic receptor, P2X7, the NLRP3
inflammasome can be activated by
ligands as varied as asbestos, alum,
monosodium urate, bacterial tox-
ins, and K� ionophores (64, 65).
What all of these disparate ligands
have in common is their ability to
induce K� efflux from cells (63, 66).
Given that an older study had
shown that chlamydial infection
causes loss of intracellular potas-
sium (67), we examinedwhether K�

efflux results in ROS production
and/or caspase-1 activation during

chlamydial infection. Indeed, specifically blocking potassium
channels with glibenclamide or limiting K� release by addition
of extracellular potassium (KCl) was able not only to signifi-
cantly reduce caspase-1 activation but also to diminish ROS
production induced by 24 h of infection with C. trachomatis
(Fig. 3, B and C). Thus, our results demonstrate that C. tracho-
matis infection leads to loss of intracellular potassium, which in
turn causes production of ROS and subsequently caspase-1
activation.
Chlamydial Protein Synthesis and the T3S System Are

Required for ROS Production and Caspase-1 Activation—To
further investigate the mechanism by which Chlamydia acti-
vates caspase-1, we explored the possibility that chlamydiae
may secrete proteins into the host cells via T3S, leading to
ROS production and activation of caspase-1. We first
checked whether chlamydial protein synthesis is important
for ROS production and caspase-1 activation during infec-

FIGURE 4. Chlamydial T3S is responsible for ROS production and caspase-1 activation. HeLa cells were
infected or not with C. trachomatis at an m.o.i. � 3 for 24 h and treated or not with 4, 16, or 25 �M T3S
inhibitor (INP0341) or 25 �M control INP (INP0406) for 9 h. ROS production was quantified by staining cells
with dihydrocalcein (A), or caspase-1 activation was measured by staining cells with FLICACasp1 (B). Error
bars represent standard deviation of at least three separate experiments. * indicates p � 0.05; ** indicates
p � 0.01; *** indicates p � 0.001, compared with infected untreated cells.
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tion. Indeed, chloramphenicol (chlamydial protein synthesis
inhibitor), but neither penicillin (inhibitor of chlamydial
division) nor cycloheximide (host cell protein synthesis
inhibitor), was able to significantly decrease ROS production
and caspase-1 activation following 24 h of infection with C.
trachomatis (Fig. 3, B and C). To determine whether the
newly synthesized bacterial proteins must be secreted, we
used a chemically synthesized compound that can inhibit
chlamydial T3S (INP0341) and a closely related control com-
pound INP (INP0406) (68). INP0341, but not INP0406, was
able to abrogate Chlamydia-induced ROS production in a
dose-dependent manner (Fig. 4A). Moreover, INP0341,

unlike INP0406, significantly di-
minished caspase-1 activation
after 24 h of C. trachomatis infec-
tion (Fig. 4B). These results high-
light the need for chlamydial T3S
in causing ROS production and
the subsequent activation of
caspase-1.
Caspase-1 Activation Is Required

for Efficient Development of the
Chlamydial Inclusion—NLRP3-de-
pendent caspase-1 activation dur-
ing plasma membrane damage
because of treatment with the bac-
terial toxin, aerolysin, has been
shown to play an indispensable role
in promoting lipid synthesis and
membrane repair (48). As this proc-
ess also involved K� efflux from the
toxin-treated cells, we investigated
the possibility that caspase-1 activa-
tion may be required for efficient
chlamydial infection. For this pur-
pose, epithelial cells were infected
with C. trachomatis at an m.o.i. of
3 for 24 h and treated with the
irreversible caspase-1 inhibitor
Z-YVAD-fmk or the caspase-1/
caspase-5 inhibitor Z-WEHD-fmk
for the last 15 h of infection (the
inhibitors were added after 9 h post
infection). When the chlamydiae
were retitrated on a fresh mono-
layer of epithelial cells, a dramatic
decrease in the infectious activity of
the chlamydiae was observed, espe-
cially in cell samples that were
treated with the caspase-1/
caspase-5 inhibitor (Fig. 5A). Fur-
thermore, addition of either inhibi-
tor had a remarkable effect on the
chlamydial inclusions; smaller, frag-
mented inclusions were observed in
the epithelial cells treated with
either inhibitor (Fig. 5B). These
results suggest that caspase-1 acti-

vation is required for efficient chlamydial infection.

DISCUSSION

Processing and secretion of IL-1� and IL-18 require the
activity of caspase-1,which in turn is activated following assem-
bly of an inflammasome (37). Infection of monocytes and mac-
rophages by Chlamydia in vitro leads to IL-1� secretion, and a
requirement for caspase-1 was shown (43, 45, 46, 69). This sug-
gests that an inflammasome is assembled in monocytes and
macrophages during chlamydial infection.
However, the preferred host cells formost chlamydial species

and strains are epithelial cells. More specifically, sexually trans-

FIGURE 5. Caspase-1 activation is required for efficient C. trachomatis infection. HeLa cells were infected
with C. trachomatis at an m.o.i. � 3 for 24 h and treated or not with two different caspase inhibitors as follows:
100 �M caspase-1 inhibitor (Z-YVAD-fmk) or 100 �M caspase-1/caspase-5 inhibitor (Z-WEHD-fmk) at 9 h post
infection. A, cells were harvested and retitrated on a fresh monolayer of HeLa cells for 24 h and stained with
Hoechst stain for DNA and anti-chlamydial antibody, and infected cells were counted. B, cells were stained
with Hoechst stain (blue) and anti-chlamydial antibody (green) and visualized on a fluorescence micro-
scope. Ctrl, control. Error bars represent standard deviation of three separate experiments. ** indicates p �
0.01; *** indicates p � 0.001, compared with infected untreated cells.
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mitted strains of C. trachomatis infect mainly epithelial cells of
the urogenital tract. BothC. trachomatis and themurine strain,
Chlamydia muridarum, were recently shown to activate
caspase-1 in human epithelial cells (45, 69), with a time course
similar to that observed by us. Neither the mechanism for
caspase-1 activation nor the consequences of caspase-1 activa-
tion for development of chlamydial infectionwere investigated.
Clearance of infection of vaginally infected mice was not
affected by caspase-1 deficiency in vivo (45), but as caspase-1
could both inhibit infection through its role in secretion of
IL-1� by monocytes/macrophages and enhance infection in
infected epithelial cells, the two effects could have cancelled
each other. A direct role for IL-1� in resolution of chlamydial
infection therefore needs to be evaluated using IL-1�-deficient
mice. Nonetheless, caspase-1 deficiency did affect upper uro-
genital tract pathology in Chlamydia-infected mice (45).

Here we show that infection of cervical epithelial cells with C.
trachomatis leads to caspase-1 activation through a process that
requires both inflammasome components, NLRP3 and ASC. In
other examples of NLRP3 inflammasome activation, both K�

efflux and ROS production were shown to play a nonredundant
role (62, 63, 66). The link between K� efflux and ROS production
(63) could reflect plasma membrane depolarization, which is
known toprecedeROSproduction (70).We show that chlamydial
infection leads to K� efflux through K�-specific channels, in
agreement with an older study showing that chlamydial infection
causes K� loss from infected cells (67). K� efflux in turn results in
ROS production, because blocking K� efflux with a K�-channel
blocker prevents ROS production. Elevated ROS levels on their
own were known to induce NLRP3 inflammasome or caspase-1
activation (61–63), and we find that treating infected cells with
antioxidants blocks caspase-1 activation.
Several studies have demonstrated that T3S is required for dif-

ferent pathogens to cause inflammasome activation (50–56), and
C. trachomatiswasknowntoactivatecaspase-1 throughaT3S-de-
pendentmechanism (69).We find that both ROS production and
caspase-1 activation require newly synthesized chlamydial pro-
teins, but not host-cell protein synthesis, and both can be blocked
with aT3S inhibitor. Taken together, our results suggest thatT3S-
dependent bacterial protein secretion triggers K� efflux, which
leads to ROS production and subsequently NLRP3-mediated
caspase-1 activation inChlamydia-infected cells (Fig. 6).
Although caspase-1 has been studiedmainly in the context of

inflammation, pyroptosis, and its role in processing IL-1� and
IL-18, a much wider range of caspase-1 substrates has recently
been identified through a gel proteomic approach (71). Fur-
thermore, toxins that damage the plasma membrane, causing
K� efflux, also promote caspase-1-dependent activation of the
primary regulators of membrane biogenesis, the sterol regula-
tor element-binding proteins (48). As the chlamydial inclusion
diverts lipids from the host-cell Golgi apparatus (13, 15, 49), we
investigated the possibility that caspase-1 may also modulate
chlamydial development.We find in fact that a caspase-1 inhib-
itor can inhibit chlamydial infection by �60%, when included
during the last 15 h of a 24-h infection (Fig. 6).
We found a larger effect when using an inhibitor that blocks

both caspase-1 and caspase-5, consistent with the presence of
both of these inflammatory caspases in an inflammasome in

monocytes (39) and the expression of both caspases in cervical
epithelial cells (72). Although Z-WEHD-fmk also affects
caspase-4, it may also be a more effective caspase-1 inhibitor
than Z-YVAD-fmk (73). During the course of this study,
another laboratory reported that Z-WEHD-fmk can decrease
chlamydial infection in epithelial cells (74). Thus, growth of the
inclusion requires fragmentation of the Golgi apparatus, which
is because of proteolytic cleavage of a Golgi matrix protein,
Golgin-84. Blocking Golgin-84 cleavage with Z-WEHD-fmk
prevents Golgi fragmentation and inhibits lipid acquisition and
maturation of the chlamydial inclusion (74).
In uninfected cells, caspase-1 can directly cleave 41 pro-

teins, including chaperones, cytoskeletal proteins, glycolytic
enzymes, and translation machinery proteins (71). Character-
ization of NLRP3-dependent caspase-1 activation during
chlamydial infection is therefore bound to uncover other effects
of infection on host-cell functions, which may include energy
metabolism and cytoskeletal integrity.
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kocyte Biol. 82, 220–225

59. Sutterwala, F. S., and Flavell, R. A. (2009) Clin. Immunol. 130, 2–6
60. Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L.,

Mitchell,W.,Olinger, L., Tatusov, R. L., Zhao,Q., Koonin, E. V., andDavis,
R. W. (1998) Science 23, 754–759

61. Cruz, C.M., Rinna, A., Forman, H. J., Ventura, A. L., Persechini, P.M., and
Ojcius, D. M. (2007) J. Biol. Chem. 282, 2871–2879
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