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Abstract
Several recent studies explored the use of unsupervised segmentation methods for segmenting
thalamic nuclei from diffusion tensor images. These methods provide a plausible segmentation on
individual subjects; however, they do not address the problem of consistently identifying the same
functional areas in a population. The lack of correspondence between the segmented nuclei make it
more difficult to use the results from the unsupervised segmentation tools for morphometry. In this
paper we present a novel segmentation algorithm to automatically segment the gray matter nuclei
while ensuring consistency between subjects in a population. This new algorithm, referred to as
Consistency Clustering, finds correspondence between the nuclei as the segmentation is achieved
through a single model for the whole population, similar to the brain atlases experts use to identify
thalamic nuclei.

1 Introduction
Diffusion tensor imaging (DTI) is a relatively new imaging modality that measures free water
diffusion, i.e. Brownian motion, of the endogenous water in tissue [1]. In human brain tissue,
the water diffusion is not the same in all directions, since it is obstructed by structural elements
such as cell membranes or myelin [1]. When this obstruction constrains the water diffusion in
a coherent direction, such as within the cerebral white matter, the resulting water diffusion
tensor becomes anisotropic, containing information about the directionality of the white matter
connectivity. Thus, quantification of water diffusion in tissue through DTI provides a unique
way to analyze white matter organization of the brain.

Unlike white matter, the tissue in gray matter is less organized in orientation. The lack of
coherent orientation limits the use of DTI for gray matter analysis in some areas, such as the
cerebral cortex. However, there are certain gray matter structures that exhibit coherence in
diffusion direction due to the presence of coherent white matter near these structures, such as
the thalamus. The thalamus acts as the central relay station of the brain with nearly all of the
sensory tract projections reach to the cortex passing through the thalamus. Since functionally
related pathways target the same region of cortex once they leave the thalamus, they result in
organization of diffusivity within the thalamus. This organized diffusion can be measured in
DTI, and it has been proposed that the thalamic nuclei can be distinguished by their
characteristic diffusion orientation [2].
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Precise identification of the thalamic nuclei is essential in a clinical setting, since many motor-
control disorders are surgically corrected by applying chronic electrical stimulation to the
appropriate functional area of the thalamus. Currently, these regions are detected qualitatively
before the operation using generic atlases along with structural MRI [6], which does not provide
adequate contrast to identify the distinct nuclei. Changes have also been reported in the thalamic
nuclei during the progression of a large number of diseases, including schizophrenia [7] and
Parkinson’s disease [8].

Since the realization that thalamic nuclei can be resolved through DTI, several segmentation
algorithms have been proposed to segment the thalamic nuclei. The earliest segmentation
method, which depends on DTI data only from within the thalamus, uses the k-means clustering
algorithm [2]. Later, other clustering methods have been proposed that use spectral clustering
[3], level-sets [4] and the mean-shift algorithm [5]. These later methods avoid some of the
weaknesses of the k-means, which includes a bias toward ellipsoidal clusters and sensitivity
to initialization. Even though each of these clustering algorithms produce plausible
segmentations for any given subject in a population, they do not find a correspondence between
the segments acquired from different subjects.

In this paper, we present a new approach to the segmentation of thalamic nuclei. Unlike the
previous methods, this new algorithm, referred to as Consistency Clustering (CC), is designed
to segment multiple subjects simultaneously and find a correspondence between the
segmentation results (Figure 1). CC achieves these goals by learning a thalamic model of the
population under investigation, which serves as a probabilistic atlas of the thalamic nuclei.
This model involves a spatial component as well as a directional component for each nuclei.
CC also performs a poly-rigid registration to account for inter-subject variability. Since the
segmentation of each individual subject is done according to a common model, the consistency
of segmentations between subjects is ensured. This joint segmentation approach results in a
segmentation for each subject and determines a correspondence between subjects. Also, the
thalamic model, which is learned from a population of labeled or unlabeled data, serves as an
anatomical atlas for the population under investigation.

In the following sections, we first describe the theory behind the method, and then present
results from several experiments that demonstrate the feasibility of the proposed method with
DTI data from 10 healthy participants.

2 Theory
In this section we formulate the problem of joint segmentation of thalamic nuclei as a maximum
likelihood problem and solve it using the generalized expectation maximization algorithm
[9]. The algorithm iteratively increases the joint probability of observing the set of thalami
under investigation. The joint probability is measured in terms of a mixture density model that
accounts for spatial distribution of the nuclei as well as the principal diffusion orientation. The
inter-subject variability is also handled within the same framework by introducing a set of
parameters describing a poly-rigid registration.

The DTI data is modeled with a set of parametersi, Θ = {πc,μc,Σc, νc, κc} ∪ {Rs}, where c is
an index over clusters, i.e. c ∈ {1, 2, …, C} and s is an index over subjects, i.e. s ∈ {1, 2, …,
S}. Given these parameters, the likelihood of the subjects becomes:
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where we assume independence between every observed sample (voxel) and also independence
between the spatial location xi and principal diffusion orientation υi. We model the spatial
distribution with a Gaussian:

where µc is the mean vector and Σc is the covariance matrix. We model the distribution of the
principal diffusion directions with a von Mises-Fisher distribution:

where νc is the mean orientation and κc is the concentration parameter. The constant, C(κ) =
κ1/2/(2π)3/2I1/2(κ), and I1/2(κ) is a modified Bessel function of the first kind and order 1/2.
Under this model, we formulate our problem as a maximum likelihood estimation of the
parameter set Θ:

In the next sections we present the update equations for our formulation to iteratively estimate
Θ*. Detailed derivations have been omitted due to limited space.

2.1 E-Step
In the E-step, CC updates the membership probabilities for each voxel, given the estimate of
the parameter set at iteration (n), Θ(n):

where  is normalized at every iteration, so that  for all voxels.

2.2 M-Step
In the M-step, CC updates the parameter set Θ to maximize the expected value of the log
likelihood. Ignoring constant term that does not depend on Θ, the expected value of the log
likelihood is derived as:

(1)

For a given parameter set Θ(n), the update equations for Θ(n+1) are derived using Lagrange
multipliers for the corresponding constraints and setting the derivative of (1) to zero. Let

 then the resulting update equations are:
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where the last equation is an approximation to the true parameter κc [10].

Registration—Registration parameters are also updated in the m-step. We parametrize the
registration as one rigid transformation per cluster per subject, i.e.,

where  and represents the weighted mean of the voxel locations
in a given subject. Similar to other parameters, setting the derivative of (1) to zero, we get:

where  Unfortunately, the same technique does not lead
into a simple analytical solution for the rotation matrices,  However, we derive a
maximum likelihood optimization function and optimize the function using a numerical
scheme. The resulting optimization function is:

We further parametrize Rsc using Euler angles so that the constraints are automatically met.
Then we find optimal values for the Euler angles (and therefore Rsc) using a simplex search
method [11].

3 Methods
3.1 Image Acquisition and Pre-processing

DTI data were acquired using a twice-refocused spin-echo EPI sequence [12] on a 3 Tesla
Siemens Trio MRI scanner using an 8-channel head coil. The sequence parameters were TR/
TE=8400/82 ms, b=700 s/mm2, gmax=26 mT/m, 10 T2 images, 60 diffusion gradient
directions. The resulting images had 2 × 2 mm in-plane resolution with a slice thickness of 2
mm with 0 mm gap.
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Correction for motion and residual eddy current distortion was achieved by registering all of
the scans to the first acquired non-diffusion-weighted scan for each participant. The registration
used a 12 degree-of-freedom global affine transformation and a mutual information cost
function [13]. Trilinear interpolation was used for the resampling. The diffusion tensor were
calculated for each voxel using the formulas of [14].

The diffusion tensor volumes were normalized to MNI-space (Montreal Neurological Institute)
by registering each participant’s T2 volume to a skull-stripped version of the MNI 152-subject
T2 template [15] and then applying the transformation to the diffusion tensor volumes with 12
degree-of-freedom global affine transformation. The tensors were reoriented using the
rotational portion of the atlas transformation.

Thalamus masks were then drawn manually for each individual by a trained neuro-anatomist.
The masks were drawn for each hemisphere on each individual’s MNI-normalized FA map
following the guidelines from [16]. Each hemisphere was further segmented into its seven
nuclei on the corresponding tensor map by the neuro-anatomist following the drawings of
[16].

3.2 Experiments
CC was validated on 10 normal subjects’ DTI datasets. Each subject’s thalami (only the left
hemispheres) were segmented individually using the k-means algorithm as described in [2] and
spectral clustering as described in [3] to create benchmarks. The same thalami were then
segmented jointly using CC with the same (uniform) initialization used for the k-means
algorithm. The joint segmentation resulted in corresponding segmentations in all subjects,
whereas the k-means clustering did not (Figure 2A, B). To test the use of prior information,
we repeated the joint segmentation experiment 10 times for each thalami in a leave-one-out
fashion. For each joint segmentation, we fixed the voxel labels for 9 of the subjects at the expert
labels (to “anchor” the model), and let the last subject’s labels vary. The resulting segmentations
were not only consistent among subjects (Figure 2C), but also matched well qualitatively with
the expert labels (Figure 2D).

We also quantified the accuracy of the segmentation results against the expert labels using the
Dice volume overlap measure [17] (Figure 3). Both spectral clustering and CC without prior
information resulted in comparable volume overlaps, while k-means performed the worst due
to its simple nature. Furthermore, CC resulted in a slightly higher average overlap and less
variability around this average among subjects, indicating a better performance overall. The
decrease in the variability is due to the increased consistency of segmentations between the
subjects. Not surprisingly, the use of prior information improved the volume overlaps,
indicating the need for prior information and the weakness of the unsupervised algorithms for
replicating expert preference.

The algorithm took under 2 minutes to converge on a desktop personal computer with a non-
optimized MATLAB implementation for the joint segmentation of 10 subjects. The algorithm’s
complexity is linear with the number of voxels for fixed number of clusters, similar to the
simple k-means clustering.

4 Discussion and Conclusion
In this paper we presented a novel algorithm, called Consistency Clustering, for jointly
segmenting a population of diffusion tensor images of the deep gray matter. The joint
segmentation resulted not only in plausible segmentations for each subject, but also
correspondence between the subjects. This is an important difference between the CC and
previous algorithms proposed to segment the gray matter, since without correspondence
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between the segmentations of individual subjects, it is difficult to assign consistent anatomical
labels to the resulting segmentations. Also, without consistent and anatomically meaningful
segmentations, the quantitative morphometry becomes a challenge in the gray matter.

CC not only provided consistent segmentations for the population, but it was also able to handle
prior information about the expert labels. Also, through the use of labels from other subjects
in the population, the algorithm was able to produce segmentations that were both qualitatively
and quantitatively very similar to the expert’s preference. Therefore, CC can be used in two
different ways to produce consistent segmentations in a population. The first way involves
running the algorithm unsupervised on the population, and then assigning anatomical labels to
the segmentations only on one of the subjects. The labels are then automatically transferred to
the rest of the subjects since the correspondence problem is already solved at this stage. The
second way involves labeling one or several subjects by hand, and then using these labeled
subjects as prior information to label the rest of the population according to the expert
preference.

Either way, CC (or a variant with an improved model for the thalamic nuclei) is a powerful
tool that provides fast and consistent segmentation of the deep gray matter and has a use in a
variety of applications such as in quantitative morphometry studies and pre-surgical planning.
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Fig. 1.
Schematic description of previous thalamus segmentation algorithms [2,3,4,5] (left) as opposed
to the Consistency Clustering (right)
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Fig. 2.
Segmentation results from three subjects’ left thalamic hemispheres are shown. Colors indicate
the mean diffusion orientation in each cluster. (A) Segmentations obtained using k-means have
an ellipsoidal bias and they do not correspond well between subjects. (B) Segmentations
obtained using CC with no prior information are consistent among subjects. (C) Segmentation
using CC with prior information are both consistent among subjects and match well with the
expert segmentations. (D) Expert labeled thalami are shown. Note that even though the
segmentations in (C) and (D) look very similar, they are not exactly the same (see Figure 3).
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Fig. 3.
Volume overlaps between the expert segmentations and segmentations obtained using k-means
[2], spectral clustering [3] and Consistency Clustering (CC), without and with prior information
on the expert labels, from the left hemispheres from 10 subjects. The boxes indicate one
standard deviation around the mean, and the thin lines indicate the range.
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