
The influence of categories on perception: Explaining the
perceptual magnet effect as optimal statistical inference

Naomi H. Feldman1, Thomas L. Griffiths2, and James L. Morgan1
1Brown University
2University of California, Berkeley

Abstract
A variety of studies have demonstrated that organizing stimuli into categories can affect the way the
stimuli are perceived. We explore the influence of categories on perception through one such
phenomenon, the perceptual magnet effect, in which discriminability between vowels is reduced near
prototypical vowel sounds. We present a Bayesian model to explain why this reduced discriminability
might occur: it arises as a consequence of optimally solving the statistical problem of perception in
noise. In the optimal solution to this problem, listeners’ perception is biased toward phonetic category
means because they use knowledge of these categories to guide their inferences about speakers’ target
productions. Simulations show that model predictions closely correspond to previously published
human data, and novel experimental results provide evidence for the predicted link between
perceptual warping and noise. The model unifies several previous accounts of the perceptual magnet
effect and provides a framework for exploring categorical effects in other domains.
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Introduction
The influence of categories on perception is well-known in domains ranging from speech
sounds to artificial categories of objects. Liberman, Harris, Hoffman, and Griffth (1957) first
described categorical perception of speech sounds, noting that listeners’ perception conforms
to relatively sharp identification boundaries between categories of stop consonants and that
whereas between-category discrimination of these sounds is nearly perfect, within-category
discrimination is little better than chance. Similar patterns have been observed in the perception
of colors (Davidoff, Davies, & Roberson, 1999), facial expressions (Etcoff & Magee, 1992),
and familiar faces (Beale & Keil, 1995), as well as the representation of objects belonging to
artificial categories that are learned over the course of an experiment (Goldstone, 1994;
Goldstone, Lippa, & Shiffrin, 2001). All of these categorical effects are characterized by better
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discrimination of between-category contrasts than within-category contrasts, though the
magnitude of the effect varies between domains.

In this paper, we develop a computational model of the influence of categories on perception
through a detailed investigation of one such phenomenon, the perceptual magnet effect (Kuhl,
1991), which has been described primarily in vowels. The perceptual magnet effect involves
reduced discriminability of speech sounds near phonetic category prototypes. For several
reasons, speech sounds, particularly vowels, provide an excellent starting point for assessing
a model of the influence of categories on perception. Vowels are naturally occurring, highly
familiar stimuli that all listeners have categorized. As will be discussed later, a precise two-
dimensional psychophysical map of vowel space can be provided, and using well-established
techniques, discrimination of pairs of speech sounds can be systematically investigated under
well-defined conditions so that perceptual maps of vowel space can be constructed. By
comparing perceptual and psychophysical maps, we can measure the extent and nature of
perceptual warping and assess such warping with respect to known categories. In addition, the
perceptual magnet effect shows several qualitative similarities to categorical effects in
perceptual domains outside of language, as vowel perception is continuous rather than sharply
categorical (Fry, Abramson, Eimas, & Liberman, 1962) and the degree of category influence
can vary substantially across testing conditions (Gerrits & Schouten, 2004). Finally, the
perceptual magnet effect has been the object of extensive empirical and computational research
(e.g. Grieser & Kuhl, 1989; Kuhl, 1991; Iverson & Kuhl, 1995; Lacerda, 1995; Guenther &
Gjaja, 1996). This previous research has produced a large body of data that can be used to
provide a quantitative evaluation of our approach, as well as several alternative explanations
against which it can be compared.

We take a novel approach to modeling the perceptual magnet effect, complementary to previous
models that have explored how the effect might be algorithmically and neurally implemented.
In the tradition of rational analysis proposed by Marr (1982) and J. R. Anderson (1990), we
consider the abstract computational problem posed by speech perception and show that the
perceptual magnet effect emerges as part of the optimal solution to this problem. Specifically,
we assume that listeners are optimally solving the problem of perceiving speech sounds in the
presence of noise. In this analysis, the listener’s goal is to ascertain category membership but
also to extract phonetic detail in order to reconstruct coarticulatory and non-linguistic
information. This is a difficult problem for listeners because they cannot hear the speaker’s
target production directly. Instead, they hear speech sounds that are similar to the speaker’s
target production but that have been altered through articulatory, acoustic, and perceptual noise.
We formalize this problem using Bayesian statistics and show that the optimal solution to this
problem produces the perceptual magnet effect.

The resulting rational model formalizes ideas that have been proposed in previous explanations
of the perceptual magnet effect but goes beyond these previous proposals to explain why the
effect should result from optimal behavior. It also serves as a basis for further empirical
research, making predictions about the types of variability that should be seen in the perceptual
magnet effect and in other categorical effects more generally. Several of these predictions are
in line with previous literature, and one additional prediction is borne out in our own
experimental data. Our model parallels models that have been used to describe categorical
effects in other areas of cognition (Huttenlocher, Hedges, & Vevea, 2000; Köording & Wolpert,
2004; Roberson, Damjanivic, & Pilling, 2007), suggesting that its principles are broadly
applicable to these areas as well.

The paper is organized as follows. We begin with an overview of categorical effects across
several domains, then focus more closely on evidence for the perceptual magnet effect and
explanations that have been proposed to account for this evidence. The ensuing section gives
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an intuitive overview of our model, followed by a more formal introduction to its mathematics.
We present simulations comparing the model to published empirical data and generating novel
empirical predictions. An experiment is presented to test the predicted effects of speech signal
noise. Finally, we discuss this model in relation to previous models, revisit its assumptions,
and suggest directions for future research.

Categorical Effects
Categorical effects are widespread in cognition and perception (Harnad, 1987), and these
effects show qualitative similarities across domains. This section provides an overview of basic
findings and key issues concerning categorical effects in the perception of speech sounds,
colors, faces, and artificial laboratory stimuli.

Speech Sounds
The classic demonstration of categorical perception comes from a study by Liberman et al.
(1957), who measured subjects’ perception of a synthetic speech sound continuum that ranged
from /b/ to /d/ to /g/, spanning three phonetic categories. Results showed sharp transitions
between the three categories in an identification task and corresponding peaks in discrimination
at category boundaries, indicating that subjects were discriminating stimuli primarily based on
their category membership. The authors compared the data to a model in which listeners
extracted only category information, and no acoustic information, when perceiving a speech
sound. Subject performance exceeded that of the model consistently but only by a small
percentage: discrimination was little better than could be obtained through identification alone.
These results were later replicated using the voicing dimension in stop consonant perception,
with both word-initial and word-medial cues causing discrimination peaks at the identification
boundaries (Liberman, Harris, Kinney, & Lane, 1961; Liberman, Harris, Eimas, Lisker, &
Bastian, 1961). Other classes of consonants such as fricatives (Fujisaki & Kawashima, 1969),
liquids (Miyawaki et al., 1975), and nasals (J. L. Miller & Eimas, 1977) show evidence of
categorical perception as well. In all these studies, listeners show some discrimination of
within-category contrasts, and this within-category discrimination is especially evident when
more sensitive measures such as reaction times are used (e.g. Pisoni & Tash, 1974).
Nevertheless, within-category discrimination is consistently poorer than between-category
discrimination across a wide variety of consonant contrasts.

A good deal of research has investigated the degree to which categorical perception of
consonants results from innate biases or arises through category learning. Evidence supports
a role for both factors. Studies with young infants show that discrimination peaks are already
present in the first few months of life (Eimas, Siqueland, Jusczyk, & Vigorito, 1971; Eimas,
1974, 1975), suggesting a role for innate biases. These early patterns may be tied to general
patterns of auditory sensitivity, as non-human animals show discrimination peaks at category
boundaries along the dimensions of voicing (Kuhl, 1981; Kuhl & Padden, 1982) and place
(Morse & Snowdon, 1975; Kuhl & Padden, 1983), and humans show similar boundaries in
some non-speech stimuli (J. D. Miller, Wier, Pastore, Kelly, & Dooling, 1976; Pisoni, 1977).
Studies have also shown cross-linguistic differences in perception, which indicate that
perceptual patterns are influenced by phonetic category learning (Abramson & Lisker, 1970;
Miyawaki et al., 1975). The interaction between these two factors remains a subject of current
investigation (e.g. Holt, Lotto, & Diehl, 2004).

The role of phonetic categories in vowel perception is more controversial: vowel perception
is continuous rather than strictly categorical, without obvious discrimination peaks near
category boundaries (Fry et al., 1962). However, there has been some evidence for category
boundary effects (Beddor & Strange, 1982) as well as reduced discriminability of vowels
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specifically near the centers of phonetic categories (Kuhl, 1991), and we will return to this
debate in more detail in the next section.

Colors
It has been argued that color categories are organized around universal focal colors (Berlin &
Kay, 1969; Rosch Heider, 1972; Rosch Heider & Oliver, 1972), and these universal tendencies
have been supported through more recent statistical modeling results (Kay & Regier, 2007;
Regier, Kay, & Khetarpal, 2007). However, color terms show substantial cross-linguistic
variation (Berlin & Kay, 1969), and this has led researchers to question whether color categories
influence color perception. Experiments have revealed discrimination peaks corresponding to
language-specific category boundaries for speakers of English, Russian, Berinmo, and Himba,
and perceivers whose native language does not contain a corresponding category boundary
have failed to show these discrimination peaks (Winawer et al., 2007; Davidoff et al., 1999;
Roberson, Davies, & Davidoff, 2000; Roberson, Davidoff, Davies, & Shapiro, 2005). These
results indicate that color categories do influence performance in color discrimination tasks.

More recent research in this domain has asked whether these categorical effects are purely
perceptual or whether they are mediated by the active use of linguistic codes in perceptual
tasks. Roberson and Davidoff (2000) demonstrated that linguistic interference tasks can
eliminate categorical effects in color perception (see also Kay & Kempton, 1984).
Investigations have shown activation of the same neural areas in naming tasks as in
discrimination tasks (Tan et al., 2008) as well as left-lateralization of categorical color
perception in adults (Gilbert, Regier, Kay, & Ivry, 2006). These results suggest a direct role
for linguistic codes in discrimination performance, indicating that categorical effects in color
perception are mediated largely by language. Nevertheless, categorical effects may play a large
role in everyday color perception. Linguistic codes appear to be used in a wide variety of
perceptual tasks, including those that do not require memory encoding (Witthoft et al., 2003),
and verbal interference tasks fail to completely wipe out verbal coding when the type of
interference is unpredictable (Pilling, Wiggett, ÖOzgen, & Davies, 2003).

Faces
Categorical effects in face perception were first shown for facial expressions of emotion in
stimuli constructed from line drawings (Etcoff & Magee, 1992) and photograph-quality stimuli
(Calder, Young, Perrett, Etcoff, & Rowland, 1996; Young et al., 1997; Gelder, Teunisse, &
Benson, 1997). Stimuli for these experiments were drawn from morphed continua in which
the endpoints were prototypical facial expressions (e.g. happiness, fear, anger). With few
exceptions, results showed discrimination peaks at the same locations as identification
boundaries between these prototypical expressions. Evidence for categorical effects has been
found in seven-month-old infants (Kotsoni, Haan, & Johnson, 2001), nine-year-old children
(Gelder et al., 1997), and older individuals (Kiffel, Campanella, & Bruyer, 2005), indicating
that category structure is similar across different age ranges. However, these categories can be
affected by early experience as well. Pollak and Kistler (2002) presented data from abused
children showing that their category boundaries in continua ranging from fearful to angry and
from sad to angry were shifted such that they interpreted a large portion of these continua as
angry; discrimination peaks were shifted together with these identification boundaries.

In addition to categorical perception of facial expressions, discrimination patterns show
evidence of categorical perception of facial identity, where each category corresponds to a
different identity. Beale and Keil (1995) found discrimination peaks along morphed continua
between faces of famous individuals, and these results have been replicated with several
different stimulus continua constructed from familiar faces (Stevenage, 1998; Campanella,
Hanoteau, Seron, Joassin, & Bruyer, 2003; Rotshtein, Henson, Treves, Driver, & Dolan,
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2005; Angeli, Davidoff, & Valentine, 2008). The categorical effects are stronger for familiar
faces than for unfamiliar faces (Beale & Keil, 1995; Angeli et al., 2008), but categorical effects
have been demonstrated for continua involving previously unfamiliar faces as well (Stevenage,
1998; Levin & Beale, 2000). The strength of these effects for unfamiliar faces may derive from
a combination of learning during the course of the experiment (Viviani, Binda, & Borsato,
2007), the use of labels during training (Kikutani, Roberson, & Hanley, 2008), and the inherent
distinctiveness of endpoint stimuli in the continua (Campanella et al., 2003; Angeli et al.,
2008).

Learning Artificial Categories
Several studies have demonstrated categorical effects that derive from categories learned in
the laboratory, implying that the formation of novel categories can affect perception in
laboratory settings. As proposed by Liberman et al. (1957), this learning component might take
two forms: acquired distinctiveness involves enhanced between-category discriminability,
whereas acquired equivalence involves reduced within-category discriminability. Evidence for
one or both of these processes has been found through categorization training in color
perception (Özgen & Davies, 2002) and auditory perception of both speech sounds (Pisoni,
Aslin, Perey, & Hennessy, 1982) and white noise (Guenther, Husain, Cohen, & Shinn-
Cunningham, 1999). These results extend to stimuli that vary along multiple dimensions as
well. Categorizing stimuli along two dimensions can lead to acquired distinctiveness
(Goldstone, 1994), and similarity ratings for drawings that differ along several dimensions
have shown acquired equivalence in response to categorization training (Livingston, Andrews,
& Harnad, 1998). Such effects may arise partly from task-specific strategies but likely involve
changes in underlying stimulus representations as well (Goldstone et al., 2001).

Additionally, several studies have demonstrated that categories for experimental stimuli are
learned quickly over the course of an experiment even without explicit training. Goldstone
(1995) found that implicit shape-based categories influenced subjects’ perception of hues and
that these implicit categories changed depending on the set of stimuli presented in the
experiment. A similar explanation has been proposed to account for subjects’ categorical
treatment of unfamiliar face continua (Levin & Beale, 2000), where learned categories seem
to correspond to continuum endpoints. Gureckis and Goldstone (2008) demonstrated that
subjects are sensitive to the presence of distinct clusters of stimuli, showing increased
discriminability between clusters even when those clusters receive the same label. Furthermore,
implicit categories have been used to explain why subjects often bias their perception toward
the mean value of a set of stimuli in an experiment. Huttenlocher et al. (2000) argued that
subjects form an implicit category that includes the range of stimuli they have seen over the
course of an experiment and that they use this implicit category to correct for memory
uncertainty when asked to reproduce a stimulus. Under their assumptions, the optimal way to
correct for memory uncertainty using this implicit category is to bias all responses toward the
mean value of the category, which in this case is the mean value of the set of stimuli. The
authors presented a Bayesian analysis to account for bias in visual stimulus reproduction that
is nearly identical to the one-category model derived here in the context of speech perception,
reflecting the similar structure of the two problems and the generality of the approach.

Summary
The categorical effects in all of these domains are qualitatively similar, with enhanced between-
category discriminability and reduced within-category discriminability. Though there is some
evidence that innate biases contribute to these perceptual patterns, the patterns can be
influenced by learned categories as well, even by implicit categories that arise from specific
distributions of exemplars. Despite widespread interest in these phenomena, the reasons and
mechanisms behind the connection between categories and perception remain unclear. In the
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remainder of this paper we address this issue through a detailed exploration of the perceptual
magnet effect, which shares many qualitative features with the categorical effects discussed
above.

The Perceptual Magnet Effect
The phenomenon of categorical perception is robust in consonants, but the role of phonetic
categories in the perception of vowels has been more controversial. Acoustically, vowels are
specified primarily by their first and second formants, F1 and F2. Formants are bands of
frequencies in which acoustic energy is concentrated – peaks in the frequency spectrum – as
a result of resonances in the vocal tract. F1 is inversely correlated with tongue height, whereas
F2 is correlated with the proximity of the most raised portion of the tongue to the front of the
mouth. Thus, a front high vowel such as /i/ (as in beet) spoken by a male talker typically has
center formant frequencies around 270 Hz (F1) and 2290 Hz (F2), and a back low vowel such
as /a/ (as in father) spoken by a male typically has center formant frequencies around 730 Hz
and 1090 Hz (Peterson & Barney, 1952). Tokens of vowels are distributed around these central
values. A map of vowel space based on data from Hillenbrand, Getty, Clark, and Wheeler
(1995) is shown in Figure 1. Though frequencies are typically reported in Hertz, most research
on the perceptual magnet effect has used the mel scale to represent psychophysical distance
(e.g. Kuhl, 1991). The mel scale can be used to equate distances in psychophysical space
because difference limens, the smallest detectable pitch differences, correspond to constant
distances along this scale (S. S. Stevens, Volkmann, & Newman, 1937).

Early work suggested that vowel discrimination was not affected by native language categories
(K. N. Stevens, Liberman, Studdert-Kennedy, & Öhman, 1969). However, later findings have
revealed a relationship between phonetic categories and vowel perception. Although within-
category discrimination for vowels is better than for consonants, clear peaks in discrimination
functions have been found at vowel category boundaries, especially in tasks that place a high
memory load on subjects or that interfere with auditory memory (Pisoni, 1975; Repp, Healy,
& Crowder, 1979; Beddor & Strange, 1982; Repp & Crowder, 1990). In addition, between-
category differences yield larger neural responses as measured by event related potentials
(Näätäanen et al., 1997; Winkler et al., 1999). Viewing phonetic discrimination in spatial terms,
Kuhl and colleagues have found evidence of shrunken perceptual space specifically near
category prototypes, a phenomenon they have called the perceptual magnet effect (Grieser &
Kuhl, 1989; Kuhl, 1991; Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992; Iverson &
Kuhl, 1995).

Empirical Evidence
The first evidence for the perceptual magnet effect came from experiments with English-
speaking six-month-old infants (Grieser & Kuhl, 1989). Using the conditioned headturn
procedure to assess within-category generalization of speech sounds, the authors found that a
prototypical /i/ vowel based on mean formant values in Peterson and Barney’s production data
was more likely to be generalized to sounds surrounding it than was a non-prototypical /i/
vowel. In addition, they found that infants’ rate of generalization correlated with adult goodness
ratings of the stimuli, so stimuli that were judged as the best exemplars of the /i/ category were
generalized most often to neighboring stimuli. Kuhl (1991) showed that adults, like infants,
can discriminate stimuli near a non-prototype of the /i/ category better than stimuli near the
prototype. Kuhl et al. (1992) tested English- and Swedish-learning infants on discrimination
near prototypical English /i/ (high, front, unrounded) and Swedish /y/ (high, front, rounded)
sounds, again using the conditioned headturn procedure; they found that while English infants
generalized the /i/ sounds more than the /y/ sounds, Swedish-learning infants showed the
reverse pattern. Based on this evidence, the authors described the perceptual magnet effect as
a language-specific shrinking of perceptual space near native language phonetic category
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prototypes, with prototypes acting as perceptual magnets to exert a pull on neighboring speech
sounds (see also Kuhl, 1993). They concluded that these language-specific prototypes are in
place as young as six months.

Iverson and Kuhl (1995) used signal detection theory and multidimensional scaling to produce
a detailed perceptual map of acoustic space near the prototypical and non-prototypical /i/
vowels used in previous experiments. They tested adults’ discrimination of 13 stimuli along a
single vector in F1−F2 space, ranging from F1 of 197 Hz and F2 of 2489 Hz (classified as /i/)
to F1 of 429 Hz and F2 of 1925 Hz (classified as /e/, as in bait). In both analyses, they found
shrinkage of perceptual space near the ends of the continuum, especially near the /i/ end. They
found a peak in discrimination near the center of the continuum between stimulus 6 and
stimulus 9. This supported previous analyses, suggesting that perceptual space was shrunk near
category centers and expanded near category edges. The effect has since been replicated in the
English /i/ category (Sussman & Lauckner-Morano, 1995), and evidence for poor
discrimination near category prototypes has been found for the German /i/ category (Diesch,
Iverson, Kettermann, & Siebert, 1999). In addition, the effect has been found in the /r/ and /l/
categories in English but not Japanese speakers (Iverson & Kuhl, 1996; Iverson et al., 2003),
lending support to the idea of language-specific phonetic category prototypes.

Several studies have found large individual differences between subjects in stimulus goodness
ratings and category identification, suggesting that it may be difficult to find vowel tokens that
are prototypical across listeners and thus raising methodological questions about experiments
that examine the perceptual magnet effect (Lively & Pisoni, 1997; Frieda, Walley, Flege, &
Sloane, 1999; Lotto, Kluender, & Holt, 1998). However, data collected by Aaltonen, Eerola,
Hellström, Uusipaikka, and Lang (1997) on the /i/−/y/ contrast in Finnish adults showed that
discrimination performance was less variable than identification performance, and the authors
argued based on these results that discrimination operates at a lower level than overt
identification tasks. A more serious challenge has come from studies that question the
robustness of the perceptual magnet effect. Lively and Pisoni (1997) found no evidence of a
perceptual magnet effect in the English /i/ category, suggesting that listeners’ discrimination
patterns are sensitive to methodological details or dialect differences, though the authors could
not identify the specific factors responsible for these differences. The effect has also been
difficult to isolate in vowels other than /i/: Sussman and Gekas (1997) failed to find an effect
in the English /I/ (as in bit) category, and Thyer, Hickson, and Dodd (2000) found the effect in
the /i/ category but found the reverse effect in the /ɔ/ (as in bought) category and failed to find
any effect in other vowels. While there has been evidence linking changes in vowel perception
to differences in interstimulus interval (Pisoni, 1973) and task demands (Gerrits & Schouten,
2004), much of the variability found in vowel perception has not been accounted for.

In summary, vowel perception has been shown to be continuous rather than categorical:
listeners can discriminate two vowels that receive the same category label. However, studies
have suggested that even in vowels, perceptual space is shrunk near phonetic category centers
and expanded near category edges. In addition, studies have shown substantial variability in
the perceptual magnet effect. This variability seems to depend on the phonetic category being
tested and also on methodological details. Based on the predictions of our rational model, we
will argue that some of this variability is attributable to differences in category variance
between different phonetic categories and to differences in the amount of noise through which
stimuli are heard.

Previous Models
Grieser and Kuhl (1989) originally described the perceptual magnet effect in terms of category
prototypes, arguing that phonetic category prototypes exert a pull on nearby speech sounds and
thus create an inverse correlation between goodness ratings and discriminability. While this
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inverse correlation has been examined more closely and used to argue that categorical
perception and the perceptual magnet effect are separate phenomena (Iverson & Kuhl, 2000),
most computational models of the perceptual magnet effect have assumed that it is a categorical
effect, parallel to categorical perception.

Lacerda (1995) began by assuming that the warping of perceptual space emerges as a side-
effect of a classification problem: the goal of listeners is to classify speech sounds into phonetic
categories. His model assumes that perception has been trained with labeled exemplars or that
labels have been learned using other information in the speech signal. In perceiving a new
speech sound, listeners retrieve only the information from the speech signal that is helpful in
determining the sound’s category, or label, and they categorize and discriminate speech sounds
based on this information. Listeners can perceive a contrast only if the two sounds differ in
category membership. Implementing this idea in neural models, Damper and Harnad (2000)
showed that when trained on two endpoint stimuli, neural networks will treat a voice onset
time (VOT) continuum categorically. One limitation of the models proposed by Lacerda
(1995) and Damper and Harnad (2000) is that they do not include a mechanism by which
listeners can perceive within-category contrasts. As demonstrated by Lotto et al. (1998), this
assumption cannot capture the data on the perceptual magnet effect because within-category
discriminability is higher than this account would predict.

Other neural network models have argued that the perceptual magnet effect results not from
category labels but instead from specific patterns in the distribution of speech sounds. Guenther
and Gjaja (1996) suggested that neural firing preferences in a neural map reflect Gaussian
distributions of speech sounds in the input and that because more central sounds have stronger
neural representations than more peripheral sounds, the population vector representing a speech
sound that is halfway between the center and the periphery of its phonetic category will appear
closer to the center of the category than to its periphery. This model implements the idea that
the perceptual magnet effect is a direct result of uneven distributions of speech sounds in the
input. Similarly, Vallabha and McClelland (2007) have shown that Hebbian learning can
produce attractors at the locations of Gaussian input categories and that the resulting neural
representation fits human data accurately. The idea that distributions of speech sounds in the
input can influence perception is supported by experimental evidence showing that adults and
infants show better discrimination of a contrast embedded in a bimodal distribution of speech
sounds than of the same contrast embedded in a unimodal distribution (Maye & Gerken,
2000; Maye, Werker, & Gerken, 2002).

These previous models have provided process-level accounts of how the perceptual magnet
effect might be implemented algorithmically and neurally, but they leave several questions
unanswered. The prototype model does not give independent justification for the assumption
that prototypes should exert a pull on neighboring speech sounds; several models cannot
account for better than chance within-category discriminability of vowels. Other models give
explanations of how the effect might occur but do not address the question of why it should
occur. Our rational model fills these gaps by providing a mathematical formalization of the
perceptual magnet effect at Marr’s (1982) computational level, considering the goals of the
computation and the logic by which these goals can be achieved. It gives independent
justification for the optimality of a perceptual bias toward category centers and simultaneously
predicts a baseline level of within-category discrimination. Furthermore, it goes beyond these
previous models to make novel predictions about the types of variability that should be seen
in the perceptual magnet effect.
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Theoretical Overview of the Model
Our model of the perceptual magnet effect focuses on the idea that we can analyze speech
perception as a kind of optimal statistical inference. The goal of listeners, in perceiving a speech
sound, is to recover the phonetic detail of a speaker’s target production. They infer this target
production using the information that is available to them from the speech signal and their prior
knowledge of phonetic categories. Here we give an intuitive overview of our model in the
context of speech perception, followed by a more general mathematical account in the next
section.

Phonetic categories are defined in the model as distributions of speech sounds. When speakers
produce a speech sound, they choose a phonetic category and then articulate a speech sound
from that category. They can use their specific choice of speech sounds within the phonetic
category to convey coarticulatory information, affect, and other relevant information. Because
there are several factors that speakers might intend to convey, and each factor can cause small
fluctuations in acoustics, we assume that the combination of these factors approximates a
Gaussian, or normal, distribution. Phonetic categories in the model are thus Gaussian
distributions of target speech sounds. Categories may differ in the location of their means, or
prototypes, and in the amount of variability they allow. In addition, categories may differ in
frequency, so that some phonetic categories are used more frequently in a language than others.
The use of Gaussian phonetic categories in this model does not reflect a belief that speech
sounds actually fall into parametric distributions. Rather, the mathematics of the model are
easiest to derive in the case of Gaussian categories. As will be discussed later, the general
effects that are predicted in the case of Gaussian categories are similar to those predicted for
other types of unimodal distributions.

In the speech sound heard by listeners, the information about the target production is masked
by various types of articulatory, acoustic, and perceptual noise. The combination of these noise
factors is approximated through Gaussian noise, so that the speech sound heard is normally
distributed around the speaker’s target production.

Formulated in this way, speech perception becomes a statistical inference problem. When
listeners perceive a speech sound, they can assume it was generated by selecting a target
production from a phonetic category and then generating a noisy speech sound based on the
target production. Listeners hear the speech sound and know the structure and location of
phonetic categories in their native language. Given this information, they need to infer the
speaker’s target production. They infer phonetic detail in addition to category information in
order to recover the gradient coarticulatory and non-linguistic information that the speaker
intended.

With no prior information about phonetic categories, listeners’ perception should be unbiased,
since under Gaussian noise, speech sounds are equally likely to be shifted in either direction.
In this case, listeners’ safest strategy is to guess that the speech sound they heard was the same
as the target production. However, experienced listeners know that they are more likely to hear
speech sounds near the centers of phonetic categories than speech sounds farther from category
centers. The optimal way to use this knowledge of phonetic categories to compensate for a
noisy speech signal is to bias perception toward the center of a category, toward the most likely
target productions.

In a hypothetical language with a single phonetic category, where listeners are certain that all
sounds belong to that category, this perceptual bias toward the category mean causes all of
perceptual space to shrink toward the center of the category. The resulting perceptual pattern
is shown in Figure 2 (a). If there is no uncertainty about category membership, perception of
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distant speech sounds is more biased than perception of proximal speech sounds so that all of
perceptual space is shrunk to the same degree.

In order to optimally infer a speaker’s target production in the context of multiple phonetic
categories, listeners must determine which categories are likely to have generated a speech
sound. They can then predict the speaker’s target production based on the structure of these
categories. If they are certain of a speech sound’s category membership, their perception of
the speech sound should be biased toward the mean of that category, as was the case in a
language with one phonetic category. This shrinks perceptual space in areas of unambiguous
categorization. If listeners are uncertain about category membership, they should take into
account all the categories that could have generated the speech sound they heard, but they
should weight the influence of each category by the probability that the speech sound came
from that category. This ensures that under assumptions of equal frequency and variance,
nearby categories are weighted more heavily than those farther away. Perception of speech
sounds precisely on the border between two categories is pulled simultaneously toward both
category means, each cancelling out the other’s effect. Perception of speech sounds that are
near the border between categories is biased toward the most likely category, but the competing
category dampens the bias. The resulting pattern for the two-category case is shown in Figure
2 (b).

The interaction between the categories produces a pattern of perceptual warping that is
qualitatively similar to descriptions of the perceptual magnet effect and other categorical effects
that have been reported in the literature. Speech sounds near category centers are extremely
close together in perceptual space, whereas speech sounds near the edges of a category are
much farther apart. This perceptual pattern results from a combination of two factors, both of
which were proposed by Liberman et al. (1957) in reference to categorical perception. The first
is acquired equivalence within categories due to perceptual bias toward category means; the
second is acquired distinctiveness between categories due to the presence of multiple
categories. Consistent with these predictions, infants acquiring language have shown both
acquired distinctiveness for phonemically distinct sounds and acquired equivalence for
members of a single phonemic category over the course of the first year of life (Kuhl et al.,
2006).

Mathematical Presentation of the Model
This section formalizes the rational model within the framework of Bayesian inference. The
model is potentially applicable to any perceptual problem in which a perceiver needs to recover
a target from a noisy stimulus, using knowledge that the target has been sampled from a
Gaussian category. We therefore present the mathematics in general terms, referring to a
generic stimulus S, target T, category c, category variance , and noise variance . In the
specific case of speech perception, S corresponds to the speech sound heard by the listener,
T to the phonetic detail of a speaker’s intended target production, and c to the language’s
phonetic categories; the category variance  represents meaningful within-category
variability, and the noise variance  represents articulatory, acoustic, and perceptual noise in
the speech signal.

The formalization is based on a generative model in which a target T is produced by sampling
from a Gaussian category c with mean μc and variance . The target T is distributed as

(1)
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Perceivers cannot recover T directly, but instead perceive a noisy stimulus S that is normally
distributed around the target production with noise variance  such that

(2)

Note that integrating over T yields

(3)

indicating that under these assumptions, the stimuli that perceivers observe are normally
distributed around a category mean μc with a variance that is a sum of the category variance
and the noise variance.

Given this generative model, perceivers can use Bayesian inference to reconstruct the target
from the noisy stimulus. According to Bayes’ rule, given a set of hypotheses H and observed
data d, the posterior probability of any given hypothesis h is

(4)

indicating that it is proportional to both the likelihood p(d|h), which is a measure of how well
the hypothesis fits the data, and the prior p(h), which gives the probability assigned to the
hypothesis before any data were observed. Here, the stimulus S serves as data d; the hypotheses
under consideration are all the possible targets T; and the prior p(h), which gives the probability
that any particular target will occur, is specified by category structure. In laying out the solution
to this statistical problem, we begin with the case in which there is a single category and then
move to the more complex case of multiple categories.

One Category
Perceivers are trying to infer the target T given stimulus S and category c, so they must calculate
p(T|S, c). They can use Bayes’ rule:

(5)

The likelihood p(S|T), given by the noise process (Equation 2), assigns highest probability to
stimulus S, and the prior p(T|c), given by category structure (Equation 1), assigns highest
probability to the category mean. As described in Appendix A, the right-hand side of this
equation can be simplified to yield a Gaussian distribution

(6)

whose mean falls between the stimulus S and the category mean μc.

This posterior probability distribution can be summarized by its mean (the expectation of T
given S and c),
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(7)

The optimal guess at the target, then, is a weighted average of the observed stimulus and the
mean of the category that generated the stimulus, where the weighting is determined by the
ratio of category variance to noise variance.1 This equation formalizes the idea of a perceptual
magnet: the term μc pulls the perception of stimuli toward the category center, effectively
shrinking perceptual space around the category.

Multiple Categories
The one-category case, while appropriate to explain performance on some perceptual tasks
(e.g. Huttenlocher et al., 2000), is inappropriate for describing natural language. In a language
with multiple phonetic categories, listeners must consider many possible source categories for
a speech sound. We therefore extend the model so that it applies to the case of multiple
categories.

Upon observing a stimulus, perceivers can compute the probability that it came from any
particular category using Bayes’ rule

(8)

where p(S|c) is given by Equation 3 and p(c) reflects the prior probability assigned to category
c.

To compute the posterior on targets p(T|S), perceivers need to marginalize, or sum, over
categories,

(9)

The first term on the right-hand side is given by Equation 6 and the second term can be
calculated using Bayes’ rule as given by Equation 8. The posterior has the form of a mixture
of Gaussians, where each Gaussian represents the solution for a single category. Restricting
our analysis to the case of categories with equal category variance , the mean of this posterior
probability distribution is

(10)

which can be rewritten as

1The expectation is optimal if the penalty for misidentifying a stimulus increases with squared distance from the target.
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(11)

A full derivation of this expectation is given in Appendix A.

Equation 11 gives the optimal guess for recovering a target in the case of multiple categories.
This guess is a weighted average of the stimulus S and the means μc of all the categories that
might have produced S. When perceivers are certain of a stimulus’ category, this equation
reduces to Equation 7, and perception of a stimulus S is biased toward the mean of its category.
However, when a stimulus is on a border between two categories, the optimal guess at the
target is influenced by both category means, and each category weakens the other’s effect
(Figure 2 (b)). Shrinkage of perceptual space is thus strongest in areas of unambiguous
categorization – the centers of categories – and weakest at category boundaries.

This analysis demonstrates that warping of perceptual space that is qualitatively consistent with
the perceptual magnet effect emerges as the result of optimal perception of noisy stimuli. In
the next two sections, we provide a quantitative investigation of the model’s predictions in the
context of speech perception. The next section focuses on comparing the predictions of the
model to empirical data on the perceptual magnet effect, estimating the parameters describing
category means and variability from human data. In the subsequent section, we examine the
consequences of manipulating these parameters, relating the model’s behavior to further results
from the literature.

Quantitative Evaluation
In this section, we test the model’s predictions quantitatively against the multidimensional
scaling results from Experiment 3 in Iverson and Kuhl (1995). These data were selected as a
modeling target because they give a clean, precise spatial representation of the warping
associated with the perceptual magnet effect, mapping 13 /i/ and /e/ stimuli that are separated
by equal psychoacoustic distance onto their corresponding locations in perceptual space.
Because these multidimensional scaling data constitute the basis for both this simulation and
the experiment reported below, we describe the experimental setup and results in some detail
here.

Iverson and Kuhl’s multidimensional scaling experiment was conducted with thirteen vowel
stimuli along a single continuum in F1−F2 space ranging from /i/ to /e/, whose exact formant
values are shown in Table 1. The stimuli were designed to be equally spaced when measured
along the mel scale, which equates distances based on difference limens (S. S. Stevens et al.,
1937). Subjects performed an AX discrimination task in which they pressed and held a button
to begin a trial, releasing the button as quickly as possible if they believed the two stimuli to
be different or holding the button for the remainder of the trial (2000 ms) if they heard no
difference between the two stimuli. Subjects heard 156 “different” trials, consisting of all
possible ordered pairs of non-identical stimuli, and 52 “same” trials, four with each of the 13
stimuli.

Iverson and Kuhl reported a total accuracy rate of 77% on “different” trials and a false alarm
rate of 31% on “same” trials, but they did not further explore direct accuracy measures. Instead,
they created a full similarity matrix consisting of log reaction times of “different” responses
for each pair of stimuli. To avoid sparse data in the cells where most participants incorrectly
responded that two stimuli were identical, the authors replaced all “same” responses with the
trial length, 2000 ms, effectively making them into “different” responses with long reaction
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times. This similarity matrix was used for multidimensional scaling, which finds a perceptual
map that is most consistent with a given similarity matrix. In this case, the authors constrained
the solution to be in one dimension and assumed a linear relation between similarity values
and distance in perceptual space. The interstimulus distances obtained from this analysis are
shown in Figure 3. The perceptual map obtained through multidimensional scaling showed
that neighboring stimuli near the ends of the stimulus vector were separated by less perceptual
distance than neighboring stimuli near the center of the vector. These results agreed
qualitatively with data obtained in Experiment 2 of the same paper, which used d′ as an unbiased
estimate of perceptual distance. We chose the multidimensional scaling data as our modeling
target because they are more extensive than the d′ data, encompassing the entire range of
stimuli.

We tested a two-category version of the rational model to determine whether parameters could
be found that would reproduce these empirical data. Equal variance was assumed for the two
categories and parameters in the model were based as much as possible on empirical measures
in order to reduce the number of free parameters. The simulation was constrained to a single
dimension along the direction of the stimulus vector. The parameters that needed to be specified
were as follows:

Subject goodness ratings from Iverson and Kuhl (1995) were first used to specify the mean of
the /i/ category, μ/i/. These goodness ratings indicated that the best exemplars of the /i/ category
were stimuli 2 and 3, so the mean of the /i/ category was set halfway between these two stimuli.
2

The mean of the /e/ category, μ/e/, and the sum of the variances, , were calculated as
described in Appendix B based on phoneme identification curves from Lotto et al. (1998).
These identification curves were produced through an experiment in which subjects were
played pairs of stimuli from the 13-stimulus vector and asked to identify either the first or the
second stimulus in the pair as /i/ or /e/. The other stimulus in the pair was one of two reference
stimuli, either stimulus 5 or stimulus 9. The authors obtained two distinct curves in these two
conditions, showing that the phoneme boundary shifted based on the identity of the reference
stimulus. Because the task used for multidimensional scaling involved presentation of all
possible pairings of the 13 stimuli, the phoneme boundary in the model was assumed to be
halfway between the boundaries that appeared in these two referent conditions. In order to
identify this boundary, two logistic curves were fit to the prototype and non-prototype
identification curves. The two curves were constrained to have the same gain, and the biases
of the two curves were averaged to obtain a single bias term. Based on Equation 34, these
values indicated that μ/e/ should be placed just to the left of stimulus 13; Equation 35 yielded
a value of 10,316 for . The resulting discriminative boundary is shown together with the
data from Lotto et al. (1998) in Figure 4.

The ratio between the category variance  and the speech signal noise  was the only
remaining free parameter, and its value was chosen in order to maximize the fit to Iverson and

2Note that this is more extreme than the the mean value of the /i/ category produced by male speakers in Peterson and Barney (1952),
which would instead correspond to stimulus 5.
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Kuhl’s multidimensional scaling data. This direct comparison was made by calculating the
expectation E[T|S] for each of the 13 stimuli according to Equation 11 and then determining
the distance in mels between the expected values of neighboring stimuli. These distances were
compared with the distances between stimuli in the multidimensional scaling solution. Since
multidimensional scaling gives relative, and not absolute, distances between stimuli, this
comparison was evaluated based on whether mel distances in the model were proportional to
distances found through multidimensional scaling. As shown in Figure 3, the model yielded
an extremely close fit to the empirical data, yielding interstimulus distances that were
proportional to those found in multidimensional scaling (r = 0.97). This simulation used the
following parameters:

The fit obtained between the simulation and the empirical data is extremely close; however,
the model parameters derived in this simulation are meant to serve only as a first approximation
of the actual parameters in vowel perception. Because of the variability that has been found in
subjects’ goodness ratings of speech stimuli, it is likely that these parameters are somewhat
off from their actual values, and it is also possible that the parameters vary between subjects.
Instead, the simulation is a concrete demonstration that the model can reproduce empirical data
on the perceptual magnet effect quantitatively as well as qualitatively using a reasonable set
of parameters, supporting the viability of this rational account.

Effects of Frequency, Variability, and Noise
The previous section has shown a direct quantitative correspondence between model
predictions and empirical data. In this section we explore the behavior of the rational model
under various parameter combinations, using the parameters derived in the previous section as
a baseline for comparison. These simulations serve a dual purpose: they establish the robustness
of the qualitative behavior of the model under a range of parameters, and they make predictions
about the types of variability that should occur when category frequency, category variance,
and speech signal noise are varied. We first introduce several quantitative measures that can
be used to visualize the extent of perceptual warping, and these measures are subsequently
used to visualize the effects of parameter manipulations.

Characterizing Perceptual Warping
Our statistical analysis establishes a simple function mapping a stimulus, S, to a percept of the
intended target, given by E[T|S]. This is a linear mapping in the one-category case (Equation
7), but it becomes non-linear in the case of multiple categories (Equation 11). Figure 5
illustrates the form of this mapping in the cases of one category and two categories with equal
variance. Note that this function is not an identification function: the vertical axis represents
the exact location of a stimulus in a continuous perceptual space, E[T|S], not the probability
with which that stimulus receives a particular label. Slopes that are more horizontal indicate
that stimuli are closer in perceptual space than in acoustic space. In the two-category case,
stimuli that are equally spaced in acoustic space are nevertheless clumped near category centers
in perceptual space, as shown by the two nearly horizontal portions of the curve near the
category means. In order to analyze this behavior more closely, we examine the relationship
between three measures: identification, the posterior probability of category membership;
displacement, the difference between the actual and perceived stimulus; and warping, the
degree of shrinkage or expansion of perceptual space.
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The identification function p(c|S) gives the probability of a stimulus having been generated by
a particular category, as calculated in Equation 8. This function is then used to compute the
posterior on targets, summing over categories. In the case of two categories with equal variance,
the identification function takes the form of a logistic function. Specifically, the posterior
probability of category membership can be written as

(12)

where the gain and bias of the logistic are given by . An
identification function of this form is illustrated in Figure 6 (a). In areas of certain
categorization, the identification function is at either 1 or 0; a value of 0.5 indicates maximum
uncertainty about category membership.

Displacement involves a comparison between the location of a stimulus in perceptual space E
[T|S] and its location in acoustic space S. It corresponds to the amount of bias in perceiving a
stimulus. We can calculate this quantity as

(13)

In the one-category case, this means the amount of displacement is proportional to the distance
between the stimulus S and the mean μc of the category. As stimuli get farther away from the
category mean, they are pulled proportionately farther toward the center of the category. The
dashed lines in Figure 6 (b) show two cases of this. In the case of multiple categories, the
amount of displacement is proportional to the distance between S and a weighted average of
the means μc of more than one category. This is shown in the solid line, where ambiguous
stimuli are displaced less than would be predicted in the one-category case because of the
competing influence of a second category mean.

Finally, perceptual warping can be characterized based on the distance between two
neighboring points in perceptual space that are separated by a fixed step ΔS in acoustic space.
This quantity is reflected in the distance between neighboring points on the bottom layer of
each diagram in Figure 2. By the standard definition of the derivative as a limit, as ΔS
approaches zero this measure of perceptual warping corresponds to the derivative of E[T|S]
with respect to S. This derivative is

(14)

where the last term is the derivative of the logistic function given in Equation 12. This equation
demonstrates that distance between two neighboring points in perceptual space is a linear
function of the rate of change of p(c|S), which measures category membership of stimulus S.
Probabilities of category assignments are changing most rapidly near category boundaries,
resulting in greater perceptual distances between neighboring stimuli near the edges of
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categories. This is shown in Figure 6 (c), and the form of the derivative is described in more
detail in Appendix C.

In summary, the identification function (Equation 12) shows a sharp decrease at the location
of the category boundary, going from a value near one (assignment to category 1) to a value
near zero (assignment to category 2). Perceptual bias, or displacement (Equation 13), is a linear
function of distance from the mean in the one-category case but is more complex in the two-
category case; it is positive when stimuli are displaced in a positive direction and negative
when stimuli are displaced in a negative direction. Finally, warping of perceptual space
(Equation 14), which has a value greater than one in areas where perceptual space is expanded
and a value less than one in areas where perceptual space is shrunk, shows that all of perceptual
space is shrunk in the one-category case but that there is an area of expanded perceptual space
between categories in the two-category case. Qualitatively, note that displacement is always
in the direction of the most probable category mean and that the highest perceptual distance
between stimuli occurs near category boundaries. This is compatible with the idea that
categories function like perceptual magnets and also with the observation that perceptual space
is shrunk most in the centers of phonetic categories. The remainder of this section uses these
measures to explore the model’s behavior under various parameter manipulations that simulate
changes in phonetic category frequency, within-category variability, and speech signal noise.

Frequency
Manipulating the frequency of phonetic categories corresponds in our model to manipulating
their prior probability. This manipulation causes a shift in the discriminative boundary between
two categories, as described in Appendix B. In Figure 7 (a), the boundary is shifted toward the
category with lower prior probability so that a larger region of acoustic space between the two
categories is classified as belonging to the category with higher prior probability. Figure 7 (b)
shows that when the prior probability of category 1 is increased, most stimuli between the two
categories are shifted in the negative direction toward the mean of that category. This occurs
because more sounds are classified as being part of category 1. Decreasing the prior probability
of category 1 yields a similar shift in the opposite direction. Figure 7 (c) shows that the location
of the expansion of perceptual space follows the shift in the category boundary.

This shift qualitatively resembles the boundary shift that has been documented based on lexical
context (Ganong, 1980). In contexts where one phoneme would form a lexical item and the
other would not, phoneme boundaries are shifted toward the phoneme that makes the non-
word, so that more of the sounds between categories are classified as the phoneme that would
yield a word. Similar effects have also been found for lexical frequency (Connine, Titone, &
Wang, 1993) and phonotactic probability (Massaro & Cohen, 1983; Pitt & McQueen, 1998).
To model such a shift using the rational model, information about a specific lexical or
phonological context needs to be encoded in the prior p(c). The prior would thus reflect the
information about the frequency of occurrence of a phonetic category in a specific context.
The rational model then predicts that the boundary shift can be modeled by a bias term of

magnitude  and that the peak in discrimination should shift together with the category
boundary.

Variability
The category variance parameter indicates the amount of meaningful variability that is allowed
within a phonetic category. One correlate of this might be the amount of coarticulation that a
category allows: categories that undergo strong coarticulatory effects have high variance,
whereas categories that are resistant to coarticulation have lower variance.3 In the model,
categories with high variability should differ from categories with low variability in two ways.
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First, the discriminative boundary between the categories should be either shallow, in the case
of high variability, or sharp, in the case of low variability (Figure 8 (a)). This means that
listeners should be nearly deterministic in inferring which category produced a sound in the
case of low variability, whereas they should be more willing to consider both categories if the
categories have high variability. This pattern has been demonstrated empirically by Clayards,
Tanenhaus, Aslin, and Jacobs (2008), who showed that the steepness of subjects’ identification
functions along a /p/−/b/ continuum depends on the amount of category variability in the
experimental stimuli.

In addition to this change in boundary shape, the rational model predicts that the amount of
variability should affect the weight given to the category means relative to the stimulus S when
perceiving acoustic detail. Less variability within a category implies a stronger constraint on
the sounds that the listener expects to hear, and this gives more weight to the category means.
This should cause more extreme shrinkage of perceptual space in categories with low variance.

These two factors should combine to yield extremely categorical perception in categories with
low variability and perception that is less categorical in categories with high variability. Figure
8 (b) shows that displacement has a higher magnitude than baseline for stimuli both within and
between categories when category variance is decreased. Displacement is reduced with higher
category variance. Figure 8 (c) shows the increased expansion of perceptual space between
categories and the increased shrinkage within categories that result from low category variance.
In contrast, categories with high variance yield more veridical perception.

Differences in category variance might explain why it is easier to find perceptual magnet effects
in some phonetic categories than in others. According to vowel production data from
Hillenbrand et al. (1995), reproduced here in Figure 1, the /i/ category has low variance along
the dimension tested by Iverson and Kuhl (1995). The difficulty in reproducing the effect in
other vowel categories might be partly attributable to the fact that listeners have weaker prior
expectations about which vowel sounds speakers might produce within these categories.

This parameter manipulation can also be used to explore the limits on category variance: the
rational model places an implicit upper limit on category variance if one is to observe enhanced
discrimination between categories. This limit occurs when categories are separated by less than
two standard deviations, that is, when the standard deviation increases to half the distance to
the neighboring category. When the category variance reaches this point, the distribution of
speech sounds in the two categories becomes unimodal and the acquired distinctiveness
between categories disappears. Instead of causing enhanced discrimination at the category
boundary, noise now causes all speech sounds to be pulled inward toward the space between
the two category means, as illustrated in Figure 9. Shrinkage of perceptual space may be slightly
less between categories than within categories, but all of perceptual space is pulled toward the
center of the distribution. This perceptual pattern resembles the pattern that would be predicted
if these speech sounds all derived from a single category, indicating that it is the distribution
of speech sounds in the input, rather than the explicit category structure, that produces
perceptual warping in the model.

Noise
Manipulating the speech signal noise also affects the optimal solution in two different ways.
More noise means that listeners should be relying more on prior category information and less
on the speech sound they hear, yielding more extreme shrinkage of perceptual space within

3Coarticulatory effects are context-dependent rather than being an inherent property of specific phonetic categories. However, listeners
should be able to estimate the typical range of coarticulation that occurs within specific contexts and thus obtain a context-specific estimate
of category variance.
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categories. However, adding noise to the speech signal also makes the boundary between
categories less sharp so that in high noise environments, listeners are uncertain of speech
sounds’ category membership (Figure 10 (a)). This combination of factors produces a complex
effect: whereas adding low levels of noise makes perception more categorical, there comes a
point where noise is too high to determine which category produced a speech sound, blurring
the boundary between categories.

With very low levels of speech signal noise, perception is only slightly biased (Figure 10 (b))
and there is a very low degree of shrinkage and expansion of perceptual space (Figure 10 (c)).
This occurs because the model relies primarily on the speech sound in low-noise conditions,
with only a small influence from category information. As noise levels increase to those used
in the simulation in the previous section, the amount of perceptual bias and warping both
increase. With further increases in speech signal noise, however, the shallow identification
function begins to interfere with the availability of category information. For unambiguous
speech sounds, displacement and shrinkage are both increased, as shown at the edges of the
graphs in Figure 10. However, this does not simultaneously expand perceptual space between
the categories. Instead, the high uncertainty about category membership causes reduced
expansion at points between categories, dampening the difference between between-category
and within-category discriminability.

The complex interaction between perceptual warping and speech signal noise suggests that
there is some level of noise for which one would measure between-category discriminability
as much higher than within-category discriminability. However, for very low levels of noise
and for very high levels of noise, this difference would be much less noticeable. This suggests
a possible explanation for variability that has been found in perceptual warping even among
studies that have examined the English /i/ category (e.g. Lively & Pisoni, 1997). Extremely
low levels of ambient noise should dampen the perceptual magnet effect, whereas the effect
should be more prominent at higher levels of ambient noise.

A further prediction regarding speech signal noise concerns its effect on boundary shifts. As
discussed above, the rational model predicts that when prior probabilities p(c) are different

between two categories, there should be a boundary shift caused by a bias term of .
This bias term produces the largest boundary shift for small values of the gain parameter, which
correspond to a shallow category boundary (see Appendix B). High noise variance produces
this type of shallow category boundary, giving the bias term a large effect. This is illustrated
in Figure 11, where for constant changes in prior probability, larger boundary shifts occur at
higher noise levels. This prediction qualitatively resembles data on lexically driven boundary
shifts: larger shifts occur when stimuli are low-pass filtered (McQueen, 1991) or presented in
white noise (Burton & Blumstein, 1995).

Summary
Simulations in this section have shown that the qualitative perceptual patterns predicted by the
rational model are the same under nearly all parameter combinations. The exceptions to this
are the case of no noise, in which perception should be veridical, and the case of extremely
high category variance or extremely high noise, in which listeners cannot distinguish between
the two categories and effectively treat them as a single, larger category. In addition, these
simulations have examined three types of variability in perceptual patterns. Shifts in boundary
location occur in the model due to changes in the prior probability of a phonetic category, and
these shifts mirror lexical effects that have been found empirically (Ganong, 1980). Differences
in the degree of categorical perception in the model depend on the amount of meaningful
variability in a category, and these predictions are consistent with the observation that the /i/
category has low variance along the relevant dimension. Finally, the model predicts effects of
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ambient noise on the degree of perceptual warping, a methodological detail that might explain
the variability of perceptual patterns under different experimental conditions.

Testing the Predicted Effects of Noise
Simulations in the previous section suggested that ambient noise levels might be partially
responsible for the contradictory evidence that has been found in previous empirical studies of
the perceptual magnet effect. In this section, we present an experiment to test the model’s
predictions with respect to changes in speech signal noise. The rational model makes two
predictions about the effects of noise. The first prediction is that noise should yield a shallower
category boundary, making it difficult at high noise levels to determine which category
produced a speech sound. This effect should lower the discrimination peak between categories
at very high levels of noise and is predicted by any model in which noise increases the variance
of speech sounds from a phonetic category. The second prediction is that listeners should
weight acoustic and category information differentially depending on the amount of speech
signal noise. As noise levels increase, they should rely more on category information, and
perception should become more categorical. This effect is predicted by the rational model but
not by other models of the perceptual magnet effect, as will be discussed in detail later in the
paper. While this effect is overshadowed by the shallow category boundary at very high noise
levels, examining low and intermediate levels of noise should allow us to test this second
prediction.

Previous research into effects of uncertainty on speech perception has focused on the role of
memory uncertainty. Pisoni (1973) found evidence that within-category discrimination shows
a larger decrease in accuracy with longer interstimulus intervals than between-category
discrimination. He interpreted these results as evidence that within-category discrimination
relies on acoustic (rather than phonetic) memory more than between-category discrimination
and that acoustic memory traces decay with longer interstimulus intervals. Iverson and Kuhl
(1995) also investigated the perceptual magnet effect at three different interstimulus intervals;
though they did not explicitly discuss changes in warping related to interstimulus interval,
within-category clusters appear to be tighter in their 2500 ms condition than in their 250 ms
condition. These results are consistent with the idea that memory uncertainty increases with
increased interstimulus intervals.

Several studies have also studied asymmetries in discrimination, under the assumption that
memory decay will have a greater effect on the stimulus that is presented first. However, many
of these studies have produced contradictory results, making the effects of memory uncertainty
difficult to interpret (see Polka & Bohn, 2003, for a review). Furthermore, data from Pisoni
(1973) indicate that longer interstimulus intervals do not necessarily increase uncertainty:
discrimination performance was worse with a 0 ms interstimulus interval than with a 250 ms
interstimulus interval.

Adding white noise is a more direct method of introducing speech signal uncertainty, and its
addition to speech stimuli has consistently been shown to decrease subjects’ ability to identify
stimuli accurately. Subjects make more identification errors (G. A. Miller & Nicely, 1955) and
display a shallower identification function (Formby, Childers, & Lalwani, 1996) with increased
noise, consistent with the rational model’s predictions. While it is known that subjects rely to
some extent on both temporal and spectral cues in noisy conditions (Xu & Zheng, 2007), it is
not known how reliance on these acoustic cues compares to reliance on prior information about
category structure. To test whether reliance on category information is greater in higher noise
conditions than in lower noise conditions, we replicated Experiment 3 of Iverson and Kuhl
(1995), their multidimensional scaling experiment, with and without the presence of
background white noise.
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The rational model predicts that perceptual space should be distorted to different degrees in
the noise and no-noise conditions. At moderate levels of noise, we should observe more
perceptual warping than with no noise due to higher reliance on category information. At very
high noise levels, however, if subjects are unable to make reliable category assignments,
warping should decrease; as noted, this decrease is predicted by any model in which subjects
are using category membership to guide their judgments. Thus, while the model is compatible
with changes in both directions for different noise levels, our aim is to find levels of noise for
which warping is higher with increased speech signal noise. Moreover, manipulating the noise
parameter in the rational model should account for behavioral differences due to changing
noise levels.

Methods
Subjects—Forty adult participants were recruited from the Brown University community.
All were native English speakers with no known hearing impairments. Participants were
compensated at a rate of $8 per hour. Data from two additional participants were excluded,
one because of equipment failure and one because of failure to understand the task instructions.

Apparatus—Stimuli were presented through noise cancellation headphones, Bose Aviation
Headset model AHX-02, from a computer at comfortable listening levels. Participants’
responses were entered and recorded using the computer that presented the stimuli. The
presentation of the stimuli was controlled using Bliss software (Mertus, 2004), developed at
Brown University for use in speech perception research.

Stimuli—Thirteen /i/ and /e/ stimuli, modeled after the stimuli in Iverson and Kuhl (1995),
were created using the KlattWorks software (McMurray, in preparation). Stimuli varied along
a single F1−F2 vector that ranged from an F1 of 197 Hz and an F2 of 2489 Hz to an F1 of 429
Hz and an F2 of 1925 Hz. The stimuli were spaced at equal intervals of 30 mels; exact formant
values are shown in Table 1. F3 was set at 3010 Hz, F4 at 3300 Hz, and F5 at 3850 Hz for all
stimuli. The bandwidths for the five formants were 53, 77, 111, 175, and 281 Hz. Each stimulus
was 435 ms long. Pitch rose from 112 to 130 Hz over the first 100 ms and dropped to 92 Hz
over the remainder of the stimulus. Stimuli were normalized in Praat (Boersma, 2001) to have
a mean intensity of 70 dB.

For stimuli in the noise condition, 435 ms of white noise was created using Praat by sampling
randomly from a uniform [−0.5,0.5] distribution at a sampling rate of 11,025 Hz. The mean
intensity of this waveform was then scaled to 70 dB. The white noise was added to each of the
13 stimuli, creating a set of stimuli with a zero signal-to-noise ratio.

Procedure—Participants were assigned to either the no-noise or the noise condition. After
reading and signing a consent form, they completed ten practice trials designed to familiarize
them with the task and stimuli and subsequently completed a single block of 208 trials. This
block included 52 “same” trials, four trials for each of 13 stimuli, and 156 “different” trials in
which all possible ordered pairs of non-identical stimuli were presented once each. In each
trial, participants heard two stimuli sequentially with a 250 ms interstimulus interval. They
were instructed to respond as quickly as possible, pressing one button if the two stimuli were
identical and another button if they could hear a difference between the two stimuli. Responses
and reaction times were recorded.

This procedure was nearly identical to that used by Iverson and Kuhl (1995), though the
response method differed slightly in order to provide reaction times for “same” responses in
addition to “different” responses. We also eliminated the response deadline of 2000 ms and
instead recorded subjects’ full reaction times for each contrast, up to 10,000 ms.
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Results and Discussion
Fourteen of the 8,320 responses were excluded from the analysis because subjects either
responded before hearing the second stimulus or failed to respond altogether within the ten
second response period. Table 2 shows the percentage of the remaining trials on which subjects
responded “same” for each contrast. As expected, the percentage of “same” responses was
extremely high for one-step discriminations and got successively lower as the psychoacoustic
distance between stimuli increased. This correlation was significant in a by-item analysis for
both the no-noise (r = −0.85; p < 0.01) and the noise (r = −0.87; p < 0.01) conditions.4 Figure
12 (a) shows these confusion data schematically, where darker squares indicate a higher
percentage of “same” responses. This schematic representation highlights three differences
between the conditions. First, the overall percentage of “same” responses was higher in the
noise condition than in the no-noise condition, as evidenced by the higher number of dark
squares. Second, the percentage of “same” responses declines more slowly in the noise
condition than in the no-noise condition with increasing psychophysical distance, as reflected
by a more gradual change from dark squares to light squares in the noise condition. Third, the
difference between within-category and between-category contrasts was greater in the noise
condition than in the no-noise condition. Whereas the no-noise condition shows fairly constant
performance along any given diagonal, with only a small dip in the percentage of “same”
responses toward the center of the stimulus continuum, the noise condition shows a much larger
difference along the diagonal, with a strong decrease in “same” responses near the between-
category contrasts at the center of the stimulus continuum. This third difference suggests that
there is a larger degree of within-category shrinkage and between-category expansion of
perceptual space in the noise condition, consistent with the predictions of the rational model.

Same-Different Model—We used the rational model to simulate these confusion data,
assuming that participants perceive speech sounds by sampling a target production from the
posterior distribution on target productions, p(T|S). We extended the model to account directly
for same-different responses by assuming that participants respond “same” if the sampled target
productions for the two speech sounds are within a threshold distance ϵ of each other; otherwise
they respond “different”. The parameter ϵ thus plays a similar role to the response criterion of
the observer in Signal Detection Theory (Green & Swets, 1966), determining the magnitude
of a difference that will yield a positive response. Under this model, the number of “same”
responses to a given contrast is predicted to follow a binomial distribution B(n, p) where n is
the number of trials in which a given contrast was presented and p is the probability that the
two sampled target productions for that contrast are within a distance ϵ of each other, p(|TA −
TB| ≤ ϵ|SA, SB). This probability can be computed as described in Appendix D.

The simulation used the same category means μ/i/ and μ/e/ and category variance  as the
simulation of the Iverson and Kuhl data. The noise variance was a free parameter that could
vary between conditions to capture differences in perceptual warping; in addition, the decision
threshold ϵ was a free parameter that could vary between the two conditions, allowing the
model to capture the overall greater number of “same” responses in the noise condition. These
free parameters were chosen to maximize the likelihood of the same-different data. The best-
fitting model used parameters of ϵ=76 mels and  (σS=30 mels) for the no-noise
condition and ϵ=111 mels and  (σS=46 mels) for the noise condition. Using these
parameters, the percentage of “same” responses predicted by the model for each contrast was
highly correlated with that found empirically (r = 0.98 for the no-noise condition; r = 0.97 for
the noise condition), and these correlations remained high even after controlling for acoustic

4All statistical significance tests reported in this paper are two-tailed.
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distance (r = 0.94 and r = 0.87 for the no-noise and noise conditions, respectively). Model
performance is shown schematically in Figure 12 (b).

The key prediction for this experiment was that the noise variance parameter  could account
for differences in performance between the no-noise and noise conditions. However, in the
above simulation, ϵ was an additional free parameter that could vary between conditions. To
demonstrate quantitatively that noise parameter accounted for differences above and beyond
those accounted for simply by varying the decision threshold, we used a generalized likelihood
ratio test (e.g. Rice, 1995) to compare the full model described above with a restricted model
(Figure 12 (c)) in which the noise parameter was constant across conditions. Like the full model,
the restricted model used category means and the category variance from the previous
simulations, and the decision threshold was a free parameter that could vary between the two
conditions.5 The models differed only in their assumptions about the noise parameter. These
two models thus constitute a nested hierarchy, and we can determine whether the additional
noise parameter makes a statistically significant difference by examining the difference
between the log likelihoods of the models, computed using the maximum likelihood estimates
of the parameters. Under the null hypothesis that the data were generated from the restricted
model, twice this difference has a χ2(1) distribution. The log likelihood of the data was −676
under the restricted model6 and −568 under the full model. The full model therefore accounted
for these data significantly better than the restricted model (χ2(1) = 216, p < 0.0001); allowing
the noise parameter to change between the noise and no-noise conditions resulted in a
statistically significant improvement in fit.

This comparison indicates that the rational model accounts for additional differences between
conditions beyond the overall increase in “same” responses. As noted earlier, there are two
such differences apparent in the data. First, the decrease in “same” responses with
psychophysical distance is more gradual in the noise condition than the no-noise condition. In
the rational model, this occurs because listeners in the noise condition assume that the speech
sound might have come from a wider range of target productions, leading to higher variability
in the posterior distribution (Equation 25). Higher posterior variance leads to a shallower
decline in “same” responses. Second, the responses are more categorical in the noise condition
than the no-noise condition, as evidenced by response patterns along each diagonal. This occurs
in the rational model due to increased weighting of category information in higher noise
conditions (Equation 7).

While both these aspects of the data are compatible with the rational model, a straightforward
alternative explanation is available for the first. In modeling these data we have made the
assumption that the stimulus heard by experimental participants is identical to the stimulus
played. This assumption allows the use of known stimulus values S when computing listeners’
optimal percepts. However, in reality there is likely to be some variability in the stimuli heard
by listeners, and this variability should be higher in the noise condition than in the no-noise
condition. The shallow decrease in “same” responses in the noise condition might then be a
simple result of higher stimulus variability. Taking into account experimental noise might
improve the performance of the restricted model by providing a mechanism to account for this
shallower decrease in “same” responses in the noise condition.

5Constraining ϵ to be the same between the two conditions significantly decreases the likelihood of the data; however, even under the
assumption of a constant threshold, allowing the speech signal noise parameter to vary between conditions makes a statistically significant
difference.
6The maximum likelihood parameters for the restricted model were ϵ=85 mels and ϵ=103 mels for the no-noise and noise conditions,

respectively, and  (σS=38 mels).

Feldman et al. Page 23

Psychol Rev. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To investigate this possibility, we simulated experimental noise in the restricted model by
drawing values of S, the speech sound heard by listeners, from a Gaussian distribution centered
around each stimulus value. The probability of a “same” response for a given contrast was
approximated by drawing 100 samples of each speech sound in the pair and computing the
probability of a “same” response for each pair of samples. These probabilities were then
averaged to obtain the expected probability of a “same” response for each contrast, and a
binomial model was used to compute the likelihood of the data. The experimental noise
variance was a free parameter that varied between the two conditions, under the assumption
that listeners in the two conditions heard the stimuli through different amounts of noise. A third
noise parameter which governed listeners’ inferences was held constant between the two
conditions, as in the restricted model, implementing an assumption that listeners weight
category information equally in the two conditions. This model yielded a log likelihood of
−618, significantly higher than the restricted model described above (χ2(2) = 116, p < 0.0001)
but lower than the full model despite having one more free parameter.7 The remaining
difference in likelihood between this model and the full model reflects listeners’ increased
reliance on category information in higher noise conditions, as captured by our rational model.

Multidimensional Scaling—The two noise parameters used in the simulation of our
confusion data were both lower than the noise variance estimated based on the Iverson and
Kuhl data. However, the ambient noise level in Iverson and Kuhl’s experiment should have
been comparable to that of our no-noise condition and was almost certainly lower than the zero
signal-to-noise ratio in our noise condition. This discrepancy may reflect a difference in
analysis methods. Whereas Iverson and Kuhl used multidimensional scaling to analyze their
results, we based our analysis directly on subject confusion data. To draw a closer comparison
to the results from Iverson and Kuhl, and to further help visualize the difference between the
noise and no-noise conditions, we used multidimensional scaling to create perceptual maps
from the behavioral data.

Our multidimensional scaling analysis incorporated information from both reaction times and
same-different responses. Reaction time data were normalized across subjects by first taking
the log transform to ensure normal distributions and then converting these to z-scores for each
subject. Psychoacoustic distance had a significant positive correlation with these normalized
reaction times for “same” responses (r = 0.45, p < 0.01 for the no-noise condition; r = 0.27,
p < 0.02 for the noise condition),8 reflecting the predicted result that subjects who responded
“same” were slower when the stimuli were separated by a greater psychoacoustic distance.
Conversely, the data showed a significant negative correlation between psychoacoustic
distance and normalized reaction times on “different” responses (r = −0.69, p < 0.01 for the
no-noise condition; r = −0.56, p < 0.01 for the noise condition), indicating that subjects were
faster to respond “different” when the stimuli were farther apart in psychoacoustic space. Both
“same” and “different” reaction times were therefore included as measures of perceptual
distance in our multidimensional scaling analysis.

The intuition behind our multidimensional scaling analysis, which is supported by the
correlations presented above, is that reaction times and same-different responses are consistent
with a subject’s perceptual map of the stimuli. “Different” responses with short reaction times

7This model cannot be compared to the full model in a generalized likelihood ratio test because the two models are not nested. To make
a nested variant of the full model, we augmented it with the same two free parameters for experimental noise. This augmented full model
had a log likelihood of −568. It therefore accounted for the data significantly better than the augmented restricted model (χ2(1) = 100,
p < 0.0001), though it did not yield any improvement over the original full model. This again indicates that allowing the inference-related
noise parameter to differ between the two conditions results in a statistically significant improvement in fit.
8These correlations are relatively low due to sparse data in cells where most participants responded “different”. The correlations go up
to r = 0.72 and r = 0.52 (both p < 0.01) for the no-noise and noise conditions, respectively, when the analysis is limited to only 0, 1, 2,
and 3-step contrasts.
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indicate that stimuli are far apart in this perceptual map; “different” responses with long
reaction times indicate that stimuli are closer together; “same” responses with long reaction
times indicate that stimuli are even closer; and “same” responses with short reaction times
indicate that stimuli are extremely close together in the perceptual map. Non-metric
multidimensional scaling (Shepard, 1980) is an optimization method that aims to minimize
violations of distance rankings in a perceptual map. It assumes a monotonic relation between
reaction times and perceptual distance but does not assume any parametric form for this
relation.9

A similarity matrix for each condition was constructed that mirrored these intuitions. This was
implemented computationally by subtracting z-scores for “same” responses from a z-score of
six,10 effectively transforming “same” responses into “different” responses with extremely
long reaction times, such that shorter reaction times on a “same” response mapped onto longer
reaction times on a “different” response. This is similar to the procedure used by Iverson and
Kuhl, who substituted a reaction time of 2000 ms (the trial length in their experiment) for any
“same” response. The median score across subjects for each contrast was then entered into the
similarity matrix and scores were normalized to fall between zero and one.

Non-metric multidimensional scaling solutions based on these similarity matrices are shown
in Figure 13. The plots are modeled after Figure 5: the horizontal axis shows acoustic space,
and the vertical axis shows perceptual space. A linear function would indicate a linear mapping
between acoustic and perceptual space, whereas non-linearities suggest that perceptual space
is warped relative to acoustic space. Areas that are more nearly horizontal indicate greater
shrinkage of perceptual space. These multidimensional scaling solutions suggest that there is
a difference in subjects’ perceptual maps between the two conditions. Consistent with results
from Iverson and Kuhl, there is some evidence of perceptual warping in the no-noise condition,
but here interstimulus distances are relatively constant. As predicted by our model, perceptual
space is more warped in the noise condition than in the no-noise condition. Unambiguous
stimuli near category centers are very close together in perceptual space, whereas stimuli near
the category boundary are much farther apart. The precise stimulus locations in these
multidimensional scaling solutions are not compatible with the parameters used for the
simulation of raw confusion data, suggesting that multidimensional scaling yields an imperfect
perceptual map of the stimuli. It is possible that Iverson and Kuhl’s multidimensional scaling
analysis produced a parallel exaggeration of the degree of warping, yielding the discrepancy
in noise parameters discussed above. However, the multidimensional scaling solution
illustrates the same qualitative difference between the conditions as is seen in the raw confusion
data: subjects in the noise condition relied more on category information than subjects in the
no-noise condition.

As predicted for moderate noise levels, we observed increased perceptual warping with
increased speech signal noise. These results provide evidence that listeners are sensitive to the
level of speech signal noise and that their perception reflects these differing noise levels in a
way that is compatible with the optimal behavior predicted by the rational model. This effect
of noise is not directly predicted by previous models, though it may be compatible with some
of them, as discussed in the next section.

9This differs from Iverson and Kuhl’s (1995) assumption of a linear relationship between log reaction times and perceptual distance.
10The exact value did not affect the analysis, as long as the value was high enough that z-scores for “different” responses and z-scores
for “same” responses did not overlap substantially.
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Comparison to Previous Models
Our rational model has taken a new approach to explaining the perceptual magnet effect,
framing it as the optimal solution to the inference problem of perceiving speech sounds in the
presence of noise. However, the solution derived in this analysis shares elements with several
previous computational models, which have implicitly incorporated mechanisms that
implement reliance on prior information and optimal inference of category membership. These
parallels allow the various approaches to be seen as complementary descriptions of the same
system that we describe here, articulated at different levels of analysis (Marr, 1982). Previous
models provide process-level accounts showing how a system like the one we propose might
be implemented, while the rational model uses analysis of the computational-level problem to
explain why the mechanisms proposed by previous models should work.

Exemplar Model
A direct mathematical connection occurs with Lacerda’s (1995) model, in which listeners’
discrimination abilities are the side effect of an exemplar-based categorization problem.
Lacerda’s model rests on the assumption that phonetic categories have approximate Gaussian
distributions and that listeners store labeled exemplars from these categories. Perception
requires listeners to determine the category membership of a new speech sound. Lacerda
defines a speech sound’s similarity to a category as the proportion of stored exemplars within
some distance ϵ from the speech sound that belong to the category. Listeners’ discrimination
of two speech sounds then depends on the difference between the two speech sounds’ similarity
values.

In a system with two categories A and B, the similarity of a speech sound x to category A
(sA) is defined in the exemplar model as

(15)

where N eighbA(x, ϵ) indicates the number of neighbors within range ϵ of speech sound x. The
discrimination function depends on the difference in similarity between neighboring speech
sounds; as the distance between neighboring speech sounds approaches zero, this corresponds
to the derivative of the similarity function. The discrimination function is therefore defined as

(16)

where k is an arbitrary constant. This indicates that the discriminability at a point in perceptual
space depends on the rate of change of category membership.

The mathematics underlying this exemplar model have a direct connection to our rational
model. The first point of connection is that the similarity function in the exemplar model
approximates the posterior probability of category membership in the rational model. This can
be seen by noting that the exemplars are generated from a Gaussian distribution so that listeners

who have heard N A exemplars from category A have heard approximately 
exemplars from category A within a range ϵ from speech sound x. As epsilon approaches zero,
the number of neighbors is proportional to p(x|A)NA. The similarity metric then becomes
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(17)

which is equivalent to Bayes’ rule as long as the number of stored exemplars in each category,
NA and NB, are proportional to the prior probabilities of the categories, p(A) and p(B). This
calculation yields the posterior probability p(A|x), indicating that the similarity metric used in
the exemplar model approximates the posterior probability of category membership.

Furthermore, the discrimination function defined in the exemplar model is a component of the
measure of warping defined in the rational model. This can be shown by substituting p(A|x)
and its analogue p(B|x) into the discrimination function, yielding

(18)

Recall that Equation 14, which defined perceptual warping in the rational model, included the

term . There is a direct correspondence between the derivative terms in the two
equations: both indicate that the discriminability at a particular point in perceptual space is a
linear function of the rate of change in the identification function. The constant k in the exemplar
model corresponds in our model to a number that is based on the speech signal noise, category
variance, and distance between the two category means, as discussed in Appendix C. Unlike
in the exemplar model, discriminability in the rational model includes an additional component
that is not based on category membership: listeners can discriminate speech sounds that differ
acoustically to the extent that they rely on acoustic information from the speech sounds.

This analysis shows that the rational model incorporates the idea from Lacerda’s exemplar
model that discrimination peaks occur near category boundaries due to the distributions of
exemplars in phonetic categories. Our model also goes beyond the exemplar model to account
for better than chance within-category discriminability and to provide independent justification
for why discrimination should be best near those speech sounds where category uncertainty is
highest. This maximum discriminability occurs because of the attractors that form at each
phonetic category, based on optimal compensation for speech signal noise. The attractors pull
equally on speech sounds that are on the boundary between phonetic categories, but as soon
as a speech sound is to one side or the other of the boundary, perception is influenced more by
the mean of the more probable category.

Despite their similarities, the two models differ in the goal they assign to the listener. Whereas
Lacerda argues that listeners perceive only similarity to phonetic categories, shown here to be
a measure of category membership, the rational model is based on the assumption that listeners
are trying to extract acoustic detail from the speech signal. Because of this theoretical
difference, the two models yield differing predictions on the role of speech signal noise in
speech perception: Lacerda’s model does not predict the experimental result that reliance on
category information should increase due to increased speech signal noise.

Neural Network Models
Additional links can be drawn between our rational model and several neural network models
that have been proposed to account for categorical effects in speech perception. Guenther and
Gjaja (1996) focused specifically on the perceptual magnet effect, proposing that Gaussian
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distributions of speech sounds can create a bias in neural firing preferences that favors category
centers. In their model, most neurons preferentially respond to speech sounds near category
centers, whereas few neurons favor speech sounds near category edges. This is a direct result
of their unsupervised learning mechanism, which causes the distribution of neural firing
preferences to mirror the distribution of speech sounds in the input. With such a distribution
in place, a population vector computed over the entire population of neurons will include
disproportionately many responses from neurons that detect sounds near category centers,
biasing perception toward prototypical speech sounds.

While learning is not addressed in our model, the perceptual mechanism used in the neural
model has a direct link to the model proposed here. Shi, Feldman, and Griffiths (2008)
demonstrated that one can perform approximate Bayesian inference using an exemplar model
by storing samples from the prior distribution, weighting each sample by its likelihood, and
averaging over the values of these weighted samples. The neural model proposed by Guenther
and Gjaja can be interpreted as implementing this type of approximate inference. In their model,
the neural firing preferences come to mirror the distribution of speech sounds in the input so
that the firing preference of each neuron represents a possible target production sampled from
the prior. The activation of each neuron in the model then depends on the similarity of its firing
preference to the speech sound heard. Specifically, the similarity is given by the dot product
of the two unit vectors representing formant values, which has its maximum when the two
formant values are equal. Though this differs from the Gaussian likelihood function we have
proposed, it implements the idea that formant values most similar to the speech sound are given
the highest weight. Finally, the percept of a sound is given by the population vector, which is
a weighted average of neural firing preferences in which the weight assigned to each neuron
is equal to its activation. Perception through the neural map therefore implements approximate
Bayesian inference: the prior is given by neural firing preferences, and the likelihood function
is given by the activation rule. While this neural implementation itself makes no predictions
about the dependence of perceptual warping on speech signal noise, our analysis indicates that
the dependence can be implemented in this framework through a mechanism that changes the
neural activation rule, parallel to changing the likelihood function, based on noise levels.

Vallabha and McClelland (2007) present a neural model of the /r/ and /l/ categories that learns
based on Gaussian distributions of speech sounds as well. This model has three layers of
representation: an acoustic layer determined entirely by the input, a middle layer that represents
perceptual space, and a final layer that represents category information. The category layer
contains bidirectional connections with the perceptual layer such that the perception of a speech
sound can help determine its category, but the category identification then exerts a bias on
perception, moving the perceptual representation closer to the mean of a phonetic category.
This is similar to the account of categorical perception provided by the TRACE model
(McClelland & Elman, 1986). The model shares several theoretical components with the
rational model, since it allows both category information and acoustic information to influence
perception. However, we know of no explicit mathematical connections between the two
models, and the authors do not address the neural model’s dependence on noise.

Several models of categorical perception are presented and reviewed by Damper and Harnad
(2000). These models have in common that they are trained, in a supervised or unsupervised
manner, on endpoint stimuli comprising voiced and voiceless tokens and tested on a VOT
continuum between these endpoints. Results indicate that both a perceptron and a Brain-State-
in-a-Box model (following J. A. Anderson, Silverstein, Ritz, & Jones, 1977) can reproduce the
sharp category boundary between voiced and voiceless stops. In the perceptron, this
categorization behavior likely results from the sigmoid activation function of the output unit,
which resembles the logistic categorization function given in Equation 12. The Brain-State-
in-a-Box model does not include this logistic categorization function but does include a

Feldman et al. Page 28

Psychol Rev. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mechanism mapping each input to its nearest attractor, creating a sharp change in behavior
near the category boundary. These models therefore capture the idea that the discrimination
function is dependent on categorization, but they fail to capture the within-category
discriminability that has been shown for vowels. Because they only model categorization
behavior, these models also fail to predict increased reliance on category information under
noisy conditions.

These neural network models all implement some of the ideas contained in the rational model:
either the idea that prior probability favors speech sounds near the center of a category, or the
idea that discrimination is best near category boundaries. Models that implement the idea of
bias toward category centers could theoretically be extended to account for increased bias under
noisy conditions. However, the rational model goes further than this to explain why the
dependence on noise should occur at all.

Acoustic and Phonetic Memory
Finally, the idea that both acoustic information from the speech sound and phonetic information
from the category mean contribute to a listener’s percept has been suggested previously by
Pisoni (1973) and others, who argue that the differences between vowel and consonant
perception stem from the fact that vowels rely more on acoustic memory, whereas consonants
rely more on phonetic memory. Like the Bayesian model, this account of acoustic and phonetic
memory predicts that as the acoustic uncertainty increases, listeners should rely increasingly
on phonetic memory, making perception more categorical. This idea has been tested in
empirical studies that interfered with acoustic memory to obtain more categorical perception
of vowels (Repp et al., 1979) or encouraged use of acoustic memory to obtain less categorical
perception of consonants (Pisoni & Lazarus, 1974). In addition, tasks that required less memory
load were found to increase especially the within-category discriminability of vowels (Pisoni,
1975).

This model is compatible with our Bayesian analysis, given some assumptions about the
interaction between acoustic and phonetic memory and the degree to which each is used. The
perception of speech sounds in the Bayesian model is a weighted average of the speech sound
S and the means μc of a set of phonetic categories. One possible mechanism for implementing
this approach would be to store the speech sound in acoustic memory and activate the phonetic
category mean in phonetic memory. Under this assumption, the Bayesian model complements
the process-level memory model by predicting the extent to which each mode of memory is
used: for categories with high variability and in lower noise conditions, listeners should rely
more on acoustic memory, whereas for categories with low variability and in higher noise
conditions, listeners should rely more on phonetic memory.

It is worth noting that the closed-form solution given in Equation 11 holds only in the case of
Gaussian phonetic categories and Gaussian noise. Qualitatively similar effects are predicted
for any unimodal distribution of speech sounds, but these cases generally do not yield a
quantitative solution that takes the form of a weighted average between acoustic and phonetic
components. However, the weighted average may provide a close approximation to optimal
behavior even in these cases.

Summary
In this section, we have shown that direct links can be drawn between the rational model and
several process-level models that have been proposed to account for the perceptual magnet
effect and categorical perception more generally. Any of these mechanisms might be consistent
with the computational-level account we propose, and our analysis does not provide evidence
for one particular implementation over another. Instead, our model contributes by providing a
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higher-level explanation of the principles that underlie the behavior of many of these models
and by identifying phenomena such as the importance of speech signal noise that have not been
predicted by previous accounts.

General Discussion
This paper has described a Bayesian model of speech perception in which listeners infer the
acoustic detail of a speaker’s target production based on the speech sound they hear and their
prior knowledge of phonetic categories. Uncertainty in the speech signal causes listeners to
infer a sound that is closer to the mean of the phonetic category than the speech sound they
actually heard. Assuming that a language has multiple phonetic categories, listeners use the
probability with which different categories might have generated a speech sound to guide their
inference of the acoustic detail. Simulations indicate that this model accurately predicts
interstimulus distances in the detailed perceptual map from Iverson and Kuhl’s (1995)
multidimensional scaling experiment as well as discrimination data from a novel experiment
investigating the effect of noise on listeners’ use of category information. The remainder of
the paper revisits the model’s assumptions and qualitative predictions in the context of previous
research on the perceptual magnet effect, phonetic category acquisition, spoken word
recognition, and categorical effects in other domains.

The Perceptual Magnet Effect
The rational model predicts that three factors are key in determining the nature of perceptual
warping: category frequency, category variance, and speech signal noise. Nearly all values of
these parameters imply the same pattern of perception, though to differing degrees. Speech
sounds are pulled toward the means of nearby categories, yielding reduced discriminability
near the centers of phonetic categories and increased discriminability near category edges. This
is qualitatively in line with previous descriptions of the perceptual magnet effect. However,
research on the perceptual magnet effect has found seemingly conflicting empirical data:
several studies have found better discrimination near category boundaries than near the
prototype, consistent with the idea of a perceptual magnet effect (Grieser & Kuhl, 1989; Kuhl,
1991; Iverson & Kuhl, 1995; Diesch et al., 1999; Iverson & Kuhl, 1996; Iverson et al., 2003),
whereas other studies have found that the effect does not extend to other vowel categories
(Sussman & Gekas, 1997; Thyer et al., 2000) or that methodological details affect the degree
to which categorical effects are observed (Lively & Pisoni, 1997; Pisoni, 1973). The model’s
predictions concerning differences in category variance and noise conditions suggest some
avenues by which this debate might be resolved.

The predicted influence of category variance on perceptual warping may provide a reason why
some categories show a higher degree of categorical perception than others. Data from
Hillenbrand et al. (1995) suggest that the /i/ category has lower variance than other vowel
categories in the direction tested by Iverson and Kuhl (1995), and it may be because of these
higher levels of variability that the perceptual magnet effect has been difficult to find in other
categories. Clayards et al. (2008) have demonstrated that adults are sensitive to the degree of
within-category variability in an identification task, and our model predicts that this sensitivity
carries over to discrimination tasks and makes perception less categorical in categories with
high variability.

A second factor that should affect perceptual warping is the amount of speech signal noise,
and the results of our experiment demonstrate that the perceptual magnet effect in the English /
i/ and /e/ categories can be modulated by adding white noise. One immediate implication of
this is that details of stimulus presentation are critical in speech perception experiments. Poor
stimulus quality might actually yield better categorical perception results, and similar
manipulations of memory uncertainty should also have this effect. This idea is consistent with
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results that show more pronounced discrimination peaks at category boundaries with longer
interstimulus intervals, where memory uncertainty should be highest (Pisoni, 1973). Further
research is necessary to determine the extent to which these factors can explain the variability
in empirical results.

Another debate in the literature discusses the extent to which the perceptual magnet effect is
a between-category or within-category phenomenon, and the rational model provides a way of
reconciling these two characterizations. The within-category account involves speech sound
prototypes that act as perceptual magnets, pulling the perception of speech sounds toward them
(Kuhl et al., 1992). The idea of a perceptual magnet is formalized in Equation 7, where speech
sounds are perceived based on the mean of the category that produced them. The between-
category account ties the perception of speech sounds to the task of inferring category
membership (Lacerda, 1995). In line with this, the Bayesian solution to the problem of speech
perception with multiple categories (Equation 11) is consistent with the idea that listeners
calculate the probability of each phonetic category having generated a speech sound. However,
in contrast to Lacerda’s model, which assumes that listeners are perceiving only category
membership, the present model predicts that listeners perceive speech sounds in terms of
speakers’ intended target productions, a continuous variable that depends only partly on
category membership. The rational model therefore synthesizes these two previous proposals
into a single framework in which the perceptual magnet effect arises through the interaction
between shrinkage of perceptual space toward category centers and enhanced discrimination
between categories through optimal inference of category membership.

Similar to probabilistic models in visual perception (e.g. Yuille & Kersten, 2006), the use of
the term inference here is not meant to imply that listeners are performing explicit
computations, and the model does not attempt to distinguish between inference and perception.
Likewise, in determining which categories might have generated a speech sound, listeners need
not be making explicit categorization judgments. This computation may involve nothing more
than implicit and automatic activation of the relevant phonetic categories, or even simple
retrieval of stored exemplars (Shi et al., 2008). The argument presented here is that the
perceptual magnet effect results from a process that approximates the mathematics of optimal
inference and that this process is advantageous to listeners because it allows them to perceive
speech sounds accurately.

Phonetic Category Acquisition
The rational model assumes that listeners have prior knowledge of phonetic categories in their
language. While this is true of adult listeners, it poses an acquisition problem because infants
need to learn which categories are present in their native language. This acquisition problem
has been studied in the context of several computational models that learn Gaussian categories
from unlabeled input using a mixture of Gaussians approach. Boer and Kuhl’s (2003) model
learned from a batch of stored exemplars, using the Expectation Maximization algorithm
(Dempster, Laird, & Rubin, 1977) to find an appropriate set of three vowel categories. More
recently, McMurray, Aslin, and Toscano (2009) used an incremental algorithm to learn the
category parameters for a voicing contrast and Vallabha, McClelland, Pons, Werker, and
Amano (2007) applied this incremental algorithm to vowel formant and duration data from
English and Japanese infant-directed speech. Incremental algorithms lend psychological
plausibility to this account, allowing infants to learn from each speech sound as it is heard. The
Gaussian categories learned by this type of algorithm would provide the necessary prior
information assumed in our Bayesian model.

Learning explicit Gaussian categories yields a prior that is consistent with this model, but it is
also possible to relax the assumptions of normality and of discrete categories so that the
perceptual magnet effect arises simply as a result of listeners’ estimating the distribution of

Feldman et al. Page 31

Psychol Rev. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



speech sounds in their language. Formal analyses of models of categorization have shown that
simply storing exemplars can provide an alternative method for estimating the distribution
associated with a category (Ashby & Alfonso-Reese, 1995). If it is assumed that probabilities
are assigned to stimuli in a way that is determined by their similarity to previously observed
exemplars, and that the distribution associated with a category results from summing the
probabilities produced by each exemplar from that category, the result is a kernel density
estimator, a nonparametric method for estimating probability distributions (Silverman, 1986).
Given sufficiently many exemplars, the distribution estimated in this fashion will approximate
the distribution associated with the category. If the category distribution is Gaussian, the result
will be approximately Gaussian. However, listeners do not need explicit knowledge of this
larger structure. Rather, they can obtain the same perceptual effect by treating each exemplar
as its own category. In this scenario, listeners need to take many small overlapping categories,
or kernels, into account using Equation 11. In our discussion of limits on category variance,
we showed that if two Gaussian categories produce a collective unimodal distribution, all of
perceptual space is biased inward toward a point between the categories. Here, kernels that
represent speech sounds from a Gaussian phonetic category will combine to produce a
unimodal Gaussian distribution. The mathematics of this case reduce to the mathematics of the
case of a single discrete category, with the weight on speech sound S equal to the sum of the
kernel width and the variance in the locations of kernels.

This method of learning distributions based on individual speech sounds removes the need for
listeners to have knowledge of explicit categories, reducing the severity of the learnability
problem. It suggests that the perceptual magnet effect requires prior knowledge of the
distributions of speech sounds in the input but does not require knowledge of the discrete
categories that these distributions represent. The mere presence of the perceptual magnet effect
does not necessarily imply knowledge of discrete phonetic categories. Furthermore, this
analysis can be used to relax the assumptions of Gaussian phonetic categories. Any unimodal
distribution in the locations of exemplars should produce a qualitatively similar effect to that
obtained with Gaussians, since as soon as the kernels representing exemplars are close enough
together to yield a combined unimodal distribution, perception will be biased inward to a point
between those exemplars.

Multiple Dimensions
This paper has examined a simplified problem in speech perception, involving stimuli that lie
along a single psychoacoustic dimension. Real speech input contains multiple dimensions that
are relevant for categorizing and discriminating stimuli, and in future work it will be interesting
to examine discrimination patterns in categories that vary along multiple dimensions (e.g.
Iverson et al., 2003) as well as patterns of trading relations in phoneme identification (e.g.
Repp, 1982). Both of these problems require the use of more complex representations, such as
multidimensional Gaussians, to represent phonetic categories and noise processes.

Preliminary simulations of the two-dimensional /r/−/l/ data from Iverson and Kuhl (1996) using
multidimensional Gaussians suggest that our rational model captures some aspects of these
data, but that the model would need to be extended to fully capture human data in multiple
dimensions. These /r/−/l/ data show two basic effects. First, there is shrinkage toward category
means along the F3 dimension, the dimension that separates the two categories. This shrinkage
is weakest near the boundary between the categories, as predicted by the rational model.
Second, the data show shrinkage in the F2 dimension, and this F2 shrinkage is strongest at
F3 values that are near the category means. While the rational model predicts shrinkage in the
F2 dimension, it predicts the same amount of F2 shrinkage at any value of F3.

This issue can potentially be addressed in two ways within the framework of the rational model.
First, one can relax the assumption of Gaussian categories and Gaussian noise, an assumption
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that we have adopted only for computational simplicity. The neural map proposed by Guenther
and Gjaja (1996) provides evidence that relaxing the Gaussian assumption will allow the model
to capture human performance. As discussed above, Guenther and Gjaja’s model implements
an approximate form of optimal Bayesian inference (Shi et al., 2008). The likelihood is given
by their activation function, which is non-Gaussian, and the prior distribution is given by neural
firing preferences in their neural map, which may be non-Gaussian as a result of their learning
algorithm. This neural model therefore implements an approximation of our rational model
that relaxes the Gaussian assumption. Their model obtains a close fit to the two-dimensional /
r/−/l/ data, suggesting that in principle, the rational model is capable of capturing this pattern.

A second potential extension to the rational model would allow sounds to be generated from
non-speech categories. Currently, all sounds are assumed to belong to the /r/ and /l/ categories,
but incorporating a non-speech category would allow sounds that are different from native
language categories to be classified as non-speech. In the data from Iverson and Kuhl (1996),
sounds that are furthest from phonetic category centers are biased less than predicted by our
current model. Consistent with this, a non-speech category with a uniform distribution over
acoustic space would weaken the perceptual bias for sounds that are very different from native
language categories. This would accord with suggestions from the speech perception literature
that sounds dissimilar to native language phonetic categories remain perceptually
unassimilated (e.g. Best, McRoberts, & Sithole, 1988). It would also parallel the suggestion
by Huttenlocher et al. (2000) that participants performing a visual stimulus reproduction task
are less likely to treat extreme stimulus values as belonging to the category of experimental
stimuli, weakening the bias toward the edge of the category.

Phoneme Identification and Spoken Word Recognition
Speech perception involves recognizing not only speech sounds, but also words, and our
framework is potentially compatible with several models of spoken word recognition. Shortlist
B (Norris & McQueen, 2008) uses a Bayesian framework to characterize word recognition in
fluent speech at a computational level, and a potential connection to this model comes through
the quantity p(c|S), which is used as a primitive in Shortlist B to compute word and path
probabilities for spoken utterances. On an implementational level, our model is potentially
compatible with either interactive (McClelland & Elman, 1986) or feed-forward (Norris,
McQueen, & Cutler, 2000) architectures, which give different accounts as to how acoustic and
lexical information are combined during phoneme recognition. Any computation that
ultimately yields the posterior on target productions p(T|S) is compatible with our model. Under
a feed-forward account, acoustic and lexical information would combine at a decision level to
generate the posterior distribution, whereas in an interactive account, an initial guess at the
distribution on target productions might be recursively updated by lexical feedback until it
settles on the correct posterior distribution. The model is also potentially compatible with either
an episodic lexicon (e.g. Bybee, 2001) or a more abstract lexicon (e.g. McClelland & Elman,
1986) that nevertheless includes phonetic detail. As discussed above, groups of exemplars can
produce perceptual patterns similar to those obtained using abstract categories. The presence
of a perceptual magnet effect for isolated phonemes suggests that some prior information is
available at the level of the phoneme (see also McQueen, Cutler, & Norris, 2006), but this
might be achieved either through abstraction or through analogy with stored lexical items.

At the level of phoneme perception, the rational model is aimed primarily at explaining
discrimination performance, but the quantity p(c|S) can potentially account for performance in
explicit phoneme identification tasks as well. Consistent with our model’s predictions,
Clayards et al. (2008) have demonstrated that listeners are sensitive to the degree of category
variance when performing explicit categorization tasks. Nevertheless, we acknowledge the
possibility that the quantity p(c|S) used for identification tasks is different from that used for
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discrimination tasks. Such divergence might be due to incorporation of additional information
(e.g. lexical information) into explicit categorization tasks or to loss of information through
imperfect approximations of the target production T before explicit categorization occurs.
These possibilities remain open to further investigation.

Central to the rational model is the assumption that listeners have knowledge of phonetic
categories but are trying to infer phonetic detail. This contrasts with previous models that have
assumed listeners recover only category information about phonemes. Phonemes do
distinguish words from one another; however, it is not clear that listeners abstract away from
phonetic detail when storing and recognizing words (Goldinger, 1996; McMurray, Tanenhaus,
& Aslin, 2002; Ju & Luce, 2006). Evidence has shown that listeners are sensitive to sub-
phonemic detail at both neural and behavioral levels (Pisoni & Tash, 1974; Andruski,
Blumstein, & Burton, 1994; Blumstein, Myers, & Rissman, 2005; Joanisse, Robertson, &
Newman, 2007). Phonetic detail provides coarticulatory information that can help listeners
identify upcoming words and word boundaries, and data from priming studies have suggested
that listeners use this coarticulatory information on-line in lexical recognition tasks (Gow,
2001). This implies that listeners not only infer a speech sound’s category, but also attend to
the phonetic detail within that category in order to gain information about upcoming phonemes
and words. Though one could contend that listeners ultimately categorize speech sounds into
discrete phonemes, their more direct goal must be to extract all relevant acoustic information
from the speech signal. Because of its core assumption that listeners recover the phonetic detail
of speech sounds they hear, the rational model is in accord with these behavioral results
showing the use of phonetic detail in spoken word recognition.

Categorical Effects in Other Domains
The assumptions underlying the rational model are not specific to the structure of speech, and
this makes the modeling results potentially applicable beyond the specific case of vowel
perception. The extent to which this model can account for phenomena such as categorical
perception of consonants, colors, or faces is an exciting question for future research. A
generalization of these results to consonant perception would seem to be the most
straightforward, and results that are qualitatively compatible with the rational model’s
predictions have been found in stop consonant perception as measured by identification tasks
(Ganong, 1980; Burton & Blumstein, 1995; Clayards et al., 2008). To the extent that consonants
can be modeled as distributions of speech sounds along acoustic dimensions, the same
principles that apply to vowel perception should yield insight into consonant perception.
However, additional factors may need to be taken into account when modeling perception of
consonants, especially stop consonants. Discrimination peaks have been found near stop
consonant boundaries in animals (Kuhl & Padden, 1982, 1983) and very young infants (Eimas
et al., 1971), suggesting that patterns in stop consonant perception are not solely the result of
estimating distributions of speech sounds in the input, but also involve auditory discontinuities.
Auditory discontinuities are found in non-speech stimuli as well (J. D. Miller et al., 1976;
Pisoni, 1977) and might result from differential perceptual uncertainty depending on the
stimulus value (Pastore et al., 1977). Influences of auditory discontinuities on category learning
has been shown in adults (Holt et al., 2004), and future research might investigate how these
discontinuities interact with learned categories in speech perception, and whether they continue
to influence perception after phonetic categories are acquired.

The rational model suggests that cross-linguistic differences in speech perception result from
differences in the distributions of speech sounds heard by listeners, where perception is biased
toward peaks in these distributions. A key issue in applying these results to color and face
perception therefore involves examining the extent to which categories in these domains can
be characterized as clusters of exemplars. This seems plausible for both facial expressions and
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facial identities; however, the distribution of colors in the world is unlikely to depend on
linguistic experience. Categorical perception of color appears instead to be mediated by
linguistic codes, and effects of verbal interference on categorical perception of facial
expressions parallel those in color perception (Roberson & Davidoff, 2000; Tan et al., 2008).
The model presented here does not incorporate the notion of linguistic codes, and it may need
to be extended to account for these results. Nevertheless, direct behavioral parallels have been
drawn between color perception and speech perception (e.g. Bornstein & Korda, 1984). In the
domain of face perception, stronger categorical effects in familiar faces than in unfamiliar faces
(Beale & Keil, 1995) and shifts in the discrimination peak based on shifted category boundaries
(Pollak & Kistler, 2002) are consistent with the rational model’s predictions. Indeed,
categorical perception of facial identity has been argued to be more in line with prototype bias
accounts than with labeling accounts (Roberson et al., 2007). These qualitative similarities may
indicate that categories based on exemplar distributions and those based on linguistic codes
are processed in a similar manner, but further investigation is required to determine the extent
of these parallels.

Finally, evidence that our results are applicable beyond the specific case of speech perception
comes from non-linguistic domains in which versions of this model have previously been
proposed. Huttenlocher et al. (2000) used the same one-category model to explain category
bias in visual stimulus reproduction, and this has been followed by demonstrations of similar
effects with other types of visual stimuli (Huttenlocher, Hedges, Corrigan, & Crawford,
2004; Crawford, Huttenlocher, & Hedges, 2006). Köording and Wolpert (2004) explained
subjects’ behavior in motor tasks using the same analysis. Similar ideas have also been used
to describe optimal visual cue integration (Landy, Maloney, Johnston, & Young, 1995) and
audiovisual integration (Battaglia, Jacobs, & Aslin, 2003). While this does not mean that the
mechanisms being used in these domains are equivalent, it at least implies that several low-
level systems use the same optimal strategy when combining sources of information under
uncertainty, explaining why categories should influence perception in each of these cases.
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Appendix A

Computing Expected Target Productions

Given a generative model where  and , we can use Bayes’
rule for the one-category case, p(T|S, c) ∝ p(S|T, c)p(T|c), to express the posterior on targets
as

(19)

The normalizing constants can be eliminated while still retaining proportionality, so this
expression becomes

(20)
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Expanding the terms in the exponent and eliminating those terms that do not depend on T, we
get

(21)

The expression in the exponent can be simplified into one term that depends on T2 and a second
term that depends on T, so that

(22)

We make the form more similar to a Gaussian distribution,

(23)

and multiply by the constant  to complete the square, preserving
proportionality because this new term does not depend on T. The expression

(24)

now has the form of a Gaussian distribution with mean  and variance . The
posterior distribution in the one-category case is therefore

(25)

and the expected value of T is the mean of this Gaussian distribution,

(26)

To compute the expectation E[T|S] in the case of multiple categories, we use the formula E
[T|S] = ∫Tp(T|S)dT where p(T|S) is computed by marginalizing over categories, p(T|S) = ∑c p
(T|S, c)p(c|S). The expression for the expectation becomes
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(27)

Bringing T inside the sum and then exchanging the sum and the integral yields

(28)

Since p(c|S) does not depend on T, this is equal to

(29)

where ∫ Tp(T|S, c)dT denotes E[T|S, c], the expectation in the one-category case (Equation 26).
The expectation in the case of multiple categories is therefore

(30)

which is the same as the expression given in Equation 10.

Appendix B

Calculating Category Parameters from Identification Curves
Given a logistic identification curve for the percentage of participants that identified each
stimulus as belonging to category 1 in a 2-category forced choice identification task, one can
derive the category means and common variance by noting that the curve is an empirical
measure of p(c1|S), which in a two-category forced choice task is defined according to Bayes’
rule (Equation 4) as

(31)

Each part of the fraction can be divided by the quantity in the numerator. Two inverse functions
are applied to the last term, the exponential power and the natural logarithm, yielding

(32)

Assuming the two categories c1 and c2 have equal prior probability, and using the distribution
for p(S|c) given in Equation 3, Equation 32 can be simplified to a logistic equation of the form

(33)
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where . Thus given values for g, b, and μ1, one can calculate the
value of μ2 and the sum  as follows:

(34)

(35)

Without the assumption of equal prior probability, the bias term instead becomes

, which produces a shift of the logistic toward the mean of the less

probable category. Since the category boundary occurs where , this bias term

produces a shift of magnitude  where g is the gain of the logistic. The extra bias term
therefore creates a larger shift in boundary locations for small values of the gain parameter,
which can arise through high category variance , high noise variance , or small separation
between category means μ1 − μ2.

Appendix C

Measure of Warping
Perceptual warping, which is a measure of the degree of shrinkage or expansion of perceptual
space, corresponds mathematically to the derivative of the expected target E[T|S] with respect
to S. We begin with the expectation from Equation 11

(36)

and compute its derivative, using the chain rule to compute the derivative of the second term.

(37)

This is the expression given in Equation 14. However, this derivative includes a term that
corresponds to the derivative of the identification function. In the two-category case, the

identification function has the form of a logistic function  whose derivative
is given by
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(38)

where . Since p(c2|S) = 1 − p(c1|S) in the two-category case, the derivative of the
logistic for p(c2|S) is identical to Equation 38 except that the gain has the opposite sign.
Substituting this into Equation 37 and expanding the sum yields

(39)

which can be simplified to

(40)

or, substituting in the expression for the gain of the logistic,

(41)

Appendix D

Same-Different Task
Given two stimuli SA and SB, the posterior probability that the targets TA and TB are within
range ϵ of each other is p(|TA − TB| ≤ ϵ|SA, SB), which is equivalent to p(−ϵ ≤ TA − TB ≤ ϵ|SA,
SB). This probability can be computed analytically by marginalizing over category assignments
for the two stimuli,

(42)

under the assumption that the two stimuli are generated independently (cA and SA are
independent of cB and SB). To compute the first term, note that the distributions p(TA|cA, SA)
and p(TB|cB, SB) are both Gaussians as given by Equation 6. Their difference therefore follows
a Gaussian distribution with its mean equal to the difference between the two means and its
variance equal to the sum of the two variances,

(43)

Given this density, the probability of falling within a range between −ϵ and ϵ can be expressed
in terms of the standard cumulative normal distribution Φ,
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(44)

where . The second and third terms in
Equation 42 can then be computed independently for stimuli SA and SB using Equation 12.
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Figure 1.
Map of vowel space from Hillenbrand et al.’s (1995) production experiment. Ellipses delimit
regions corresponding to approximately 90% of tokens from each vowel category.
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Figure 2.
Predicted relationship between acoustic and perceptual space in the case of (a) one category
and (b) two categories.
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Figure 3.
Relative distances between neighboring stimuli in Iverson and Kuhl’s (1995) multidimensional
scaling analysis and in the model.
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Figure 4.
Identification percentages obtained by Lotto et al. (1998) with reference stimuli 5 and 9 were
averaged to produce a single intermediate identification curve in the model (solid line).
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Figure 5.
Model predictions for location of stimuli in perceptual space relative to acoustic space. Dashed
lines indicate patterns corresponding to a single category; solid lines indicate patterns
corresponding to two categories of equal variance.
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Figure 6.
Model predictions for (a) identification, (b) displacement, and (c) warping. Dashed lines
indicate patterns corresponding to a single category; solid lines indicate patterns corresponding
to two categories of equal variance.
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Figure 7.
Effects of prior probability manipulation on (a) identification, (b) displacement, and (c)
warping. The prior probability of category 1, p(c1), was either increased or decreased while all
other model parameters were held constant.
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Figure 8.
Effects of category variance on (a) identification, (b) displacement, and (c) warping. The
category variance parameter  was either increased or decreased while all other model
parameters were held constant.
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Figure 9.
Categories that overlap to form a single unimodal distribution act perceptually like a single
category: speech sounds are pulled toward a point between the two categories.
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Figure 10.
Effects of speech signal noise on (a) identification, (b) displacement, and (c) warping. The
speech signal noise parameter  was either increased or decreased while all other model
parameters were held constant.
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Figure 11.
Effects of speech signal noise on the magnitude of a boundary shift. Simulations at both noise
levels used prior probability values for c1 of 0.3 (left boundary) and 0.7 (right boundary). The
boundary shift is nevertheless larger for higher levels of speech signal noise.
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Figure 12.
Confusion matrices showing the percentage of “same” responses to each contrast in (a) subject
data, (b) the full model in which the noise parameter varied between conditions, and (c) the
restricted model in which the noise parameter was constrained to be the same between
conditions. The left-hand plots show the no-noise condition and the right-hand plots show the
noise condition. Darker cells indicate a higher percentage of “same” responses.
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Figure 13.
Perceptual maps for the (a) no-noise and (b) noise conditions obtained through
multidimensional scaling. Data from (c) Iverson and Kuhl’s (1995) multidimensional scaling
experiment are shown for comparison.
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Table 1

Formant values for stimuli used in the multidimensional scaling experiment, reported in Iverson and Kuhl
(2000).

Stimulus Number F1 (Hz) F2 (Hz)

1 197 2489

2 215 2438

3 233 2388

4 251 2339

5 270 2290

6 289 2242

7 308 2195

8 327 2148

9 347 2102

10 367 2057

11 387 2012

12 408 1968

13 429 1925
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