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The resolution of inflammation is an active process controlled by endogenous mediators with selective actions on neutrophils
and monocytes. The initial phase of the acute inflammatory response is characterized by the production of pro-inflammatory
mediators followed by a second phase in which lipid mediators with pro-resolution activities may be generated. The
identification of these mediators has provided evidence for the dynamic regulation of the resolution of inflammation. Among
these endogenous local mediators of resolution, lipoxins (LXs), lipid mediators typically formed during cell–cell interaction,
were the first to be recognized. More recently, families of endogenous chemical mediators, termed resolvins and protectins,
were discovered. LXs and aspirin-triggered LXs are considered to act as ‘braking signals’ in inflammation, limiting the trafficking
of leukocytes to the inflammatory site. LXs are actively involved in the resolution of inflammation stimulating non-phlogistic
phagocytosis of apoptotic cells by macrophages. Furthermore, LXs have emerged as potential anti-fibrotic mediators that may
influence pro-fibrotic cytokines and matrix-associated gene expression in response to growth factors. Here, we provide a review
and an update of the biosynthesis, metabolism and bioactions of LXs and LX analogues, and the recent studies on their
therapeutic potential as promoters of resolution and fibro-suppressants.
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Introduction

Inflammation is a key process in effective host defence. It is a
critical response to microbial invasion and tissue injury, and
is characterized by site-specific accumulation and activation
of leukocytes. The resolution of such inflammatory responses

is necessary to re-establish homeostasis, limiting excessive
tissue injury and minimizing the development of chronic
inflammation, and depends on the biological actions of
several anti-inflammatory and pro-resolving mediators,
expressed by various cell types, as well as on apoptosis and
clearance of inflammatory cells (Lawrence et al., 2002; Serhan
and Savill, 2005; Serhan, 2007; Serhan et al., 2007). A failure
of any step in this process may lead to chronic inflammation
with possible further tissue destruction, fibrosis and eventu-
ally organ failure. The first evidence that the resolution of
inflammation is an active rather than a passive process came
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with the discovery of pro-resolution biochemical signalling
circuits (Serhan et al., 2000; 2007; Bannenberg et al., 2005).
During the initial phase of inflammation, eicosanoids includ-
ing prostaglandins and leukotrienes (LTs) play important role
as local mediators in the development of an inflammatory
condition, evoking potent chemotactic responses of leuko-
cytes whose activation is coupled to the production of proin-
flammatory (Th1-derived cytokines) at sites of inflammation
(Borgeat and Naccache, 1990). This is a biphasic process; the
second stage is coupled to the biosynthesis of lipid mediators
that actively limit inflammation and promote resolution. The
new genus of pro-resolving mediators of molecules include
lipoxins (LXs) and their aspirin-triggered carbon-15 epimers
(ATL) (Levy et al., 2001; Serhan, 2005), as well as the recently
discovered resolvins and protectins which are derived from
w-3 fatty acids (Serhan et al., 2000; 2008a,b). Resolvins and
protectins were first identified in self-resolving murine
exudates using the murine dorsal air pouch model of inflam-
mation (Serhan et al., 2000). In parallel studies, it was dem-
onstrated that prostaglandin E2 and D2 stimulate the
translation of neutrophil 15-lipoxygenase (LO) involved in
LX biosynthesis, providing evidence for class switching
within the eicosanoid pathways during the evolution of an
inflammatory exudate (Levy et al., 2001). Figure 1 shows the
cellular and molecular mechanisms involved in the onset and
resolution of inflammation.

In this review, we will give an overview and an update of
the role of LXs as pro-resolution and anti-fibrotic agents with
particular focus on the potential development of LX
analogues as therapeutics.

Biosynthesis of LXs

The term LXs is an acronym for LO interaction products.
These lipid mediators were first recognized to have dual anti-
inflammatory and pro-resolution activities (Maderna and
Godson, 2003; Kieran et al., 2004; McMahon and Godson,
2004; Serhan, 2005). 5S,6R,15S-trihydroxy-7,9,13-trans-11-cis-
eicosatetraenoicacid (LXA4) and its positional isomer
5S,14R,15S - trihy-droxy-6,10,12- trans -8-cis-eicosatetraenoic
acid (LXB4) are the principal species formed in mammals
(Serhan et al., 1986a,b). LXs are typically formed by transcel-
lular metabolism through distinct biosynthetic pathways
depending on the cellular context (Kieran et al., 2004;
McMahon and Godson, 2004; Chiang et al., 2005; Serhan,
2005). There are two main LO-mediated pathways of LX bio-
synthesis in human cells and tissues. The first of these
involves the sequential lipoxygenation of arachidonic acid by
15-LO in epithelial cells and monocytes, and 5-LO in neutro-
phils (Serhan et al., 1984a,b). This pathway not only leads to
LX biosynthesis, but also reduces LT formation, resulting in
an inverse relationship between LT and LX byosynthesis in
human leukocytes (Serhan, 1989). Indeed, it has recently
been shown that in acute post-streptococcal glomerulone-
phritis up-regulation of 15-LO and subsequent LX biosynthe-
sis supersede production of proinflammatory LTB4 (Wu et al.,
2009). The second major route of LX formation involves
platelet/leukocyte or platelet/leukocyte microaggregate inter-
actions that promote LX formation by transcellular conver-
sion of the 5-LO epoxide product, LTA4 to LXA4 and LXB4 by
the LX-synthetase activity of the 12-LO in platelets (Serhan

PMN

Apoptotic PMN

Platelet

Monocyte

Macrophage

Lymphatics

Phagocytosis

y p

In
fl
a

m
m

a
to

ry

re
s
p

o
n

s
e

LXs, Rvs, PDs

ATLs

AT-Rvs
+ ASA

TGFβ, VEGF,

IL-10, PAF, PGE2

IL-1β, TNFα
LTs, GM-CSF,

IL-1β, TNFα
LTs, GM-CSF, 

Txs, PGs

Txs

Figure 1 Representation of the temporal cellular and biochemical events in the onset and resolution of inflammation. The early phase of
inflammation is characterized by the release of pro-inflammatory mediators and extravascular accumulation of neutrophils, followed by
infiltration of monocytes that differentiate into macrophage. This phase is characterized by the formation of anti-inflammatory and pro-
resolution mediators (LXs, resolvins). These mediators stop further neutrophil trafficking and facilitate the removal of apoptotic cells. The
ingestion of apoptotic cells results in potent anti-inflammatory effects through the production of anti-inflammatory cytokines such as TGF-b1,
IL-10 and PGE2, and the decrease of release of pro-inflammatory mediators, including IL-8, TNF-a and TXA2. This figure is adapted from Serhan
et al. (2007). IL = interleukin; TNF-a = tumour necrosis factor-a; LTs = leukotrienes; Tx = thromboxane; GM-CSF = granulocyte–macrophage
colony-stimulating factor; PGs = prostaglandins; ASA = aspirin; LXs = lipoxins; Rvs = resolvins; PDs = protectins; ATL = aspirin-triggered lipoxins;
ATRv = aspirin-triggered resolvins; TGF-b = transforming growth factor b; VEGF = vascular endothelial growth factor; PAF = platelet-activating
factor; PGE2 = prostaglandin E2.
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and Sheppard, 1990). Interestingly, platelets are not able to
produce LXs on their own, but this pathway has been high-
lighted as a major route for LX formation within the vascu-
lature where activated platelets become a major source of LXs
after adhesion to neutrophils (Chiang et al., 2005; Serhan,
2005).

In addition to the transcellular routes, another recognized
source of LX biosynthesis involves a form of cellular ‘priming’
with the esterification of 15-HETE in inositol-containing
phospholipids within the membranes of human neutrophils
(Brezinski and Serhan, 1990). Discovery of this pathway sug-
gests that during disease or host defence, precursors of LX
biosynthesis might be stored within the membranes of the
inflammatory cells and released after stimulation (Brezinski
and Serhan, 1990).

The signalling networks involved in LX formation show
even greater complexity given the potential regulation of
biosynthetic enzymes by specific cytokines (Serhan et al.,
1996). For example, interleukin 4 (IL-4) and IL-13, putative
negative regulators of inflammatory and immune responses,
promote transcellular LX generation through enhanced
expression of 15-LO in monocytes and epithelial cells (Nassar
et al., 1994; Munger et al., 1999). Cytokines such as
granulocyte–macrophage colony-stimulating factor (GM-CSF)
and IL-3 up-regulate 5-LO transcripts (Ring et al., 1996), while
pro-inflammatory cytokines such as IL-1b, IL-6 and tumour
necrosis factor (TNF-a) have been shown to induce
cyclooxygenase-2 (COX-2), thus potentially contributing to
the formation of ATLs in vivo (Parente and Perretti, 2003).

LXs are generated in vivo within an inflammatory milieu,
and it has been suggested that an impaired LX biosynthesis
may correlate with an inability to resolve the acute inflam-
matory reaction contributing to a more chronic inflammatory
phenotype (Lee et al., 1990; Brezinski et al., 1992; Chiang
et al., 1999; Munger et al., 1999; Bandeira-Melo et al., 2000;
Pouliot et al., 2000; Bonnans et al., 2002; Karp et al., 2004).
Recently, it has been described that exogenous resolvin E1
stimulated the production of endogenous LXA4 during the
resolution of allergic airway (Haworth et al., 2008). There is a
growing body of evidence that indicates an immunomodula-
tory role for LXs during infections. Toxoplasma gondii, a pro-
tozoan parasite, which encode their own 15-LO, has been
shown to activate LXA4 biosynthesis, resulting in increased
evasion of the parasite from host defence (Aliberti et al., 2002;
Bannenberg et al., 2004b).

ATLs

Aspirin triggers the generation of epimeric forms of LXs
(Claria and Serhan, 1995). Cells that express COX-2 (i.e. vas-
cular endothelial cells, epithelial cells, macrophages, neutro-
phils) are able to produce ATLs by the actions of aspirin that
triggers the endogenous formation of carbon-15 epimeric
LXs, namely ATL (Claria and Serhan, 1995). In particular, in
a cytokine primed milieu, aspirin acetylation of COX-2
switches the catalytic activity of the enzyme to an R-LO with
the formation of 15R-HETE that is rapidly converted by 5-LO
to 15-epimeric-LXA4 or 15-epimeric LXB4 (Claria and Serhan,
1995). Interestingly, ATL formation has been detected in vivo

in various murine models of inflammation such as peritonitis
(Chiang et al., 1998), dorsal air pouches (Perretti et al., 2002)
and in aspirin-intolerant asthmatics (Sanak et al., 2000).
Administration of low doses of aspirin to healthy subjects
significantly increases plasma levels of ATL with a concomi-
tant inhibition of thromboxane biosynthesis, suggesting that
ATL may account for some of the beneficial effects of aspirin
that are not strictly related to its anti-thrombotic actions
(Chiang et al., 2004). A further synthetic route for the produc-
tion of 15-epi LXA4 has been demonstrated in rat myocar-
dium in response to statins and the PPAR-g ligand
pioglitazone (Birnbaum et al., 2006; 2007), providing a novel
mechanism for immune regulation by statins.

Metabolic inactivation of LXs

LXs are rapidly generated in response to stimuli, act locally
and undergo rapid metabolic inactivation. Using monocytes
or isolated enzymes, it has been possible to demonstrate that
the major route of LXs degradation is via dehydrogenation at
C-15 and possibly by w-oxidation at C-20 (Serhan et al., 1995;
Clish et al., 2000). A similar inactivation pathway was also
shown for LXB4 (Maddox et al., 1998). ATLs are converted
in vitro to their 15-oxo-metabolite with a slower rate com-
pared to native LXs, indicating that the hydrogenation step is
highly specific (Serhan et al., 1995). Furthermore, ATLs, when
generated in vivo, display longer biological half-life than
native compounds and enhanced ability to evoke bioactions
(Serhan et al., 1995; Maddox et al., 1997; Clish et al., 1999).

Synthetic LX analogues

The rapid inactivation and short half-life of LXs in vivo have
prompted the development of novel analogues designed to
resist metabolism, maintain their structural integrity and bio-
availability and their potential beneficial bioactions. The
initial design of metabolically stable LXA4 analogues focused
on identifying poor substrates for PGDH, which maintained
potency in in vitro assays. The discovery that 15-epi-LXA4 was
equipotent in in vitro assays to LXA4, but was a poorer
substrate for PGDH, provided support for exploiting these
observations in novel analogue design. However, although
15-epi-LXA4 has enhanced metabolic stability over LXA4

in vivo, its pharmacokinetics remain poor, which, in addition
to low chemical stability, creates challenges for development
of analogues with better therapeutic potential. Therefore, a
series of LX and ATL analogues were designed with specific
modifications of the native structures of LXA4 and LXB4, such
as the addition of methyl groups on C-15 and C-5 of LXA4 and
LXB4, respectively (Serhan et al., 1995), and phenoxyl or para-
fluoro-phenoxyl groups at C-16 of both LXA4 and 15-epi ATL,
protecting the molecules from the w-oxidation and dehydro-
genation in vivo (Serhan et al., 1995; Maddox et al., 1997;
Clish et al., 1999). Consequently, these analogues were widely
used in a number of studies exploring the biological functions
of LX and ATL in experimental models of disease (Scalia
et al., 1997; Takano et al., 1997; Filep et al., 1999; Hachicha
et al., 1999; Jozsef et al., 2002; Ariel et al., 2003). A second
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generation of LX stable analogues, 3-oxa-LXA4 analogues,
with enhanced chemical and metabolic stability, has shown
potency and efficacy comparable to ATL in diverse animal
models after topical, intravenous or oral delivery (Bannenberg
et al., 2004a; Guilford et al., 2004). More recently, we have
developed a stereoselective synthesis of chemically stable aro-
matic LXA4 and LXB4 analogues (O’Sullivan et al., 2007). This
synthetic route establishes the required stereochemistry by
way of Sharpless epoxidation, Pd-mediated Heck coupling
and diastereoselective reduction reactions (Figure 2). LXs, ATL
and their stable analogues share potent protective actions in
controlling inflammation, and provide new opportunities to
explore the actions and therapeutic potential for LXs and ATL
as it will be outlined later in this review.

LXA4 and ATL receptors

Several mechanisms have been proposed to underlie the bio-
actions of LXs as shown in Figure 3. These include activation
of a high-affinity LX-specific G-protein coupled receptor, acti-
vation of subclasses of cysteinyl peptide receptors and/or cel-
lular uptake of LX which in turn facilitates interactions with
intracellular targets such as nuclear receptors (Fiore et al.,
1992; Simchowitz et al., 1994; Schaldach et al., 1999; Chiang
et al., 2000; 2004; McMahon et al., 2001; Planaguma et al.,
2002).

A specific LX recognition site was first described in human
neutrophils, and demonstrated to be responsible for the spe-
cific LXA4-evoked actions on these cells (Fiore et al., 1992).
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This G-protein coupled receptor was later designated as ALXR
(FPRL-1) (Serhan, 1997; Chiang et al., 2005; 2006). Although
LXA4 and LXB4 share many of the biological activities, LXB4

does not bind ALXR, and the LXB4 receptor remains to be
identified. Human ALXR belongs to a family of three
members (FPR1, FPRL-1/ALXR and FPR3), and is expressed in
several types of leukocytes such as neutrophils (Fiore et al.,
1994), monocytes (Maddox et al., 1997), activated T cells
(Ariel et al., 2003), as well as resident cells such as intestinal
epithelial cells (Kucharzik et al., 2003), synovial fibroblasts
(Sodin-Semrl et al., 2000), bronchial epithelial cells (Bonnans
et al., 2003), astrocytes (Decker et al., 2009) and renal mesan-
gial cells (McMahon et al., 2000). Transcription of ALXR had
been shown to be up-regulated by various cytokines, suggest-
ing regulation of receptor expression in an inflammatory
milieu (Gronert et al., 1998; Sodin-Semrl et al., 2000). It has
recently been shown that gene and cell surface expression of
ALXR are significantly decreased in peripheral blood leuko-
cytes of asthmatic subjects compared to healthy individuals
(Planaguma et al., 2008).

The GPCR-designated ALXR can bind pleiotropic ligands,
that is, both lipid and peptides eliciting either pro-
inflammatory or anti-inflammatory responses (Chiang et al.,
2000). Among the various ligands are MHC binding peptide (a
potent necrotactic peptide derived from NADH dehydroge-
nase subunit 1 from mitochondria) (Chiang et al., 2000), anti-
microbial peptides (e.g. LL37 and temporin A) (De et al., 2000;
Chen et al., 2004), truncated chemotactic peptides (e.g.
CKbeta8-1) (Elagoz et al., 2004), a urokinase-type plasmino-

gen activator receptor fragment (Resnati et al., 2002) and the
HIV envelope peptides (Su et al., 1999a; Le et al., 2000). ALXR
can also bind prion protein (Le et al., 2001b), serum amyloid
A (Su et al., 1999b) and amyloid b42 (Le et al., 2001a).

Another ligand of particular interest is annexin 1, a
glucocorticoid-inducible protein (Perretti et al., 2002) that
mediates many of the anti-inflammatory actions of glucocor-
ticoids in models of acute and chronic inflammation
(reviewed in Perretti and Flower, 2004; Lim and Pervaiz, 2007;
Perretti and D’Acquisto, 2009). Interestingly, glucocorticoids
induce up-regulation of the expression of ALXR by leukocytes
and in in vivo model of dermatitis (Sawmynaden and Perretti,
2006; Hashimoto et al., 2007). Recently, a novel peptide
agonist of ALXR with potent anti-inflammatory and cardio-
protective effects was identified using a computational plat-
form (Hecht et al., 2009). These data highlight the therapeutic
potential of ligands designed as agonists of the ALXR in
applications such as acute and chronic inflammation.

The binding of lipids and small peptides to the receptor
occurs with different affinities and/or at discrete interaction
sites, facilitating activation of distinct signalling pathways
that depends on the cell type and system (Bae et al., 2003).
N-glycosylation of ALXR is proposed to be important for
ligand specificity and may play a role in switching receptor
functions at local host defence sites, suggesting receptor
versatility (Chiang et al., 2000).

Mouse and rat ALXR homologues have been cloned from a
spleen cDNA library (Takano et al., 1997) and from peripheral
blood leukocytes, respectively (Chiang et al., 2003). The
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overall homology between the human, murine and rat recep-
tors is relatively high in particular in their second intracellular
loop (100%) and between the sixth transmembrane domain
(97%), suggesting important roles for these regions in ligand
recognition and functional G protein coupling.

The partial antagonism of a subclass of peptide-LT receptors
(CysLTs) is a potential mechanism through which LXs may
contribute to the anti-inflammatory bioactions of LXs in
several tissues and cell types other than leukocytes (Badr et al.,
1989; McMahon et al., 2000; Gronert et al., 2001; Chiang
et al., 2006). In mesangial cells, LXs (nanomolar) are potent
inhibitors of proliferative responses to LTD4 by modulating
LTD4-induced transactivation of the platelet-derived growth
factor (PDGF) receptor and subsequent phosphotidylinositol
3-kinase activation and mitogenic responses (McMahon et al.,
2000). The counter-regulatory responses identified for LX
were insensitive to a CysLT1-specific receptor antagonist, but
blocked by a non-selective antagonist (McMahon et al., 2002).
These data are intriguing given the proposal that the interac-
tion between CysLT1 and CysLT2 receptors regulates inflam-
matory responses such that activation of the CysLT2 receptor
can exert a net inhibitory response on CysLT1 receptor
responses (Jiang et al., 2007). By analogy, it might be proposed
that LXA4 activation of the CysLT2 receptor regulates the
pro-inflammatory response of the CysLT1; however, this has
not been definitively demonstrated.

Further studies show that LXs inhibit proliferation induced
by growth factors such as PDGF, epidermal growth factor
(EGF) and connective tissue growth factor (CTGF) with a
mechanism that involves cross-talk between AXLR and recep-
tor tyrosine kinases (McMahon et al., 2000; 2002; Wu et al.,
2006). This inactivation seems to be mediated through the
coupling of the ALXR to the activation of the protein tyrosine
phosphatase, SHP-2, and it is proposed that the association of
the PDGF receptor b within lipid raft microdomains renders it
susceptible to LXA4-mediated dephosphorylation by possible
reactivation of oxidatively inactivated SHP-2 (Mitchell et al.,
2007). The ALXR ligand annexin-1 also regulates protein
phosphorylation of EGF and PDGF receptors (Mitchell et al.,
2007).

It is noteworthy that LX-mediated dephosphorylation of
intracellular proteins seems to be a recurrent feature of LXA4

signalling. In addition to dephosphorylation of receptor
tyrosine kinases, LX-stimulated phagocytosis of apoptotic leu-
kocytes as described below is dependent on dephosphoryla-
tion of myosin IIA (Reville et al., 2006). Recent evidence
highlights the importance of LXA4 as regulators of eosinophil
responses to GM-CSF through inhibition of protein tyrosine
phosphorylation (Starosta et al., 2008). Additionally, LXA4

and ATL have been shown to regulate vascular endothelial
growth factor (VEGF) receptor-2 phosphorylation in endothe-
lial cells (Fierro et al., 2002; Cezar-de-Mello et al., 2006; 2008;
Baker et al., 2009).

Another potential receptor for LXA4 is the aryl hydrocarbon
receptor (AhR), a ligand-activated transcription factor. In a
murine hepatoma cell line, LXA4 has been shown to bind and
activate AhR (Schaldach et al., 1999). In dendritic cells, LXA4,
signalling through AhR and ALXR modulate innate and
acquired immune responses (Machado et al., 2006). It has
recently been demonstrated that both LXA4 and ATL acting

via the AhR inhibit innate immune responses of dendritic
cells by up-regulating suppressor of cytokine signalling 2
(SOCS-2), which in turn promotes ubiquitinylation and deg-
radation of TNF receptor-associated factor-6, a component of
TNF-a, TLR signalling pathways (Machado et al., 2008). It
should be noted that responses to the AhR require concentra-
tions of LXA4 in the micromolar range, whereas cellular
responses generated through ALXR (or CysLT) are typically
maximal in the nanomolar range, and the Kd of the ALXR is
subnanomolar (Fiore et al., 1994).

Anti-inflammatory, pro-resolution and anti-fibrotic
effects of LXs

LXs and ATLs have been shown to modulate specific actions
in cells involved in the immune–inflammatory response
(Figure 4) (for extensive reviews, see: McMahon et al., 2001;
Kieran et al., 2004; Maderna and Godson, 2005; Serhan,
2005; Serhan et al., 2007; 2008b). The role for LXs as anti-
inflammatory molecules is well defined, with bioactions
involving the inhibition of neutrophil and eosinophil
recruitment and activation (Lee et al., 1989; Colgan et al.,
1993; Soyombo et al., 1994; Papayianni et al., 1995; 1996;
Filep et al., 1999). In addition, LXs and ATLs are proposed
to directly stimulate gene expression (i.e. NAB1) that is
involved in endogenous anti-inflammation and resolution
(Qiu et al., 2001) and to regulate NF-kB activation (Decker
et al., 2009).

The actions of LXs and ATL are not limited to counter-
regulating the evolution of inflammation, but also to promote
resolution at different levels. LXs stimulate monocyte chemo-
taxis and adherence, without causing degranulation or release
of reactive oxygen species (Maddox et al., 1997), suggesting
that the actions of LXs are related to the recruitment of
monocytes to sites of injury. These monocyte activities may
be host protective in view of the important role of these cells
in wound healing and resolution at inflammatory sites.
Indeed, LXs and ATLs stimulate the in vitro clearance of apo-
ptotic cells by human monocyte-derived macrophages in a
non-phlogistic manner (Godson et al., 2000; Mitchell et al.,
2002; Reville et al., 2006). LXs stimulate phagocytosis of exog-
enously administered excess apoptotic PMN in a murine
model of thioglycollate-induced peritonitis in vivo, suggesting
that LXs rapidly promote the clearance of apoptotic leuko-
cytes within an inflammatory milieu (Mitchell et al., 2002).
Consistent with a role for LX promoting the resolution of
inflammation are the observations that LX-stimulated phago-
cytosis is associated with increased transforming growth
factor-b1 (TGF-b1) release from macrophages, and a decrease
of IL-8 and monocyte chemoattractant protein-1 (MCP-1)
release (Godson et al., 2000). The effect of LXs on phagocyto-
sis of apoptotic cells by macrophages is mediated by protein
kinase C and PI-3-kinase (Godson et al., 2000; Mitchell et al.,
2002). A modulatory role for cAMP is suggested by the obser-
vation that LX-induced phagocytosis is inhibited by a cell
permeant cAMP analogue, and mimicked by a protein kinase
A inhibitor (Godson et al., 2000). Furthermore, LXs prime
macrophages for chemotaxis and phagocytosis, through
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myosin IIa assembly, re-organization of the cytoskeleton, pro-
moting the cell polarization and formation of actin filaments
and pseudopodia (Maderna et al., 2002; Reville et al., 2006).
Assembly of non-muscle myosin is coupled to serine dephos-
phorylation, a process stimulated by LXA4 through a process
that may involve phosphatase activation as described in
mesangial cells (Mitchell et al., 2007).

Other ligands of ALXR, and in particular endogenous
annexin-1 and its peptidomimetic Ac2-26, promote
phagocytosis of apoptotic cells through a mechanism involv-
ing ALXR and changes in F-actin re-organization (Maderna
et al., 2005). Interestingly, we have shown that cells undergo-
ing apoptosis release annexin-1 that can then stimulate
phagocytosis through ALXR (Scannell et al., 2007), demon-
strating that the ALXR is activated by soluble ‘eat me’ signals
released from apoptotic cells. Figure 5 illustrates the possible
mechanisms of LXs in the phagocytosis of apoptotic cells and
resolution of inflammation.

In addition to promoting resolution by non-phlogistic
phagocytosis of apoptotic cells, LX can act to reprogramme
cytokine-primed macrophages from a classic pro-
inflammatory (M1) phenotype to an alternatively activated
phenotype demonstrating enhanced phagocytic capacity for
apoptotic cells (Mitchell et al., 2002). This feature may suggest
novel therapeutic strategies in chronic inflammation charac-
terized by massive macrophage infiltration.

As discussed earlier, LXs are potent inhibitors of mesangial
cell proliferation in response to LTD4 and growth factors with

a mechanism that involves cross-talk between AXL and recep-
tor tyrosine kinases (McMahon et al., 2000; 2002; Mitchell
et al., 2004). In addition, LXA4 can counteract PDGF-induced,
fibrosis-related gene expression in mesangial cells, suggesting
that LXA4 might act as a potential anti-fibrotic agent, prevent-
ing growth factor-induced mesangial matrix production and
the progression of renal disease (Rodgers et al., 2005). PDGF-
treated renal mesangial cells were shown to secrete factors
that promote the onset of tubulointerstitial damage, as
observed by epithelial-to-mesenchymal transformation in
proximal tubular epithelial cells, an effect attenuated by pre-
treatment with LXA4 (Rodgers et al., 2005). Further to these
data, Wu et al. demonstrated that TNF-a-induced prolifera-
tion and cytokine release, as well as CTGF-mediated release of
fractalkine, MCP-1 and RANTES, were modulated by LXA4 in
rat mesangial cells (Wu et al., 2005; 2006). In addition to
evidence that LX can maintain the integrity of renal epithelia
are data demonstrating that LXA4 stimulates the expression of
ZO-1, claudin and occludin, and the maintenance of tran-
sepithelial resistance in cultured bronchial epithelial cells
(Grumbach et al., 2009).

The synthetic LX analogue 15-epi-16-(para-fluoro)-
phenoxy-LXA4 inhibits VEGF-induced endothelial cell prolif-
eration and migration via inhibition of actin polymerization
and assembly of focal adhesions (Fierro et al., 2002; Cezar-de-
Mello et al., 2006). In addition, in endothelial cells, the
15-epi-16-(para-fluoro)-phenoxy-LXA4 induces the gene and
protein expression of heme oxygenase-1 (HO-1), a key modu-
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lator of both innate and adaptative immunity (Nascimento-
Silva et al., 2005). The pathophysiological importance of this
finding is reflected by the fact that HO-1 synthesis triggered
by ATL is required for the inhibition of TNF-a-induced adhe-
sion molecule expression on endothelial cells which may
impair leukocyte influx during the resolution phase of inflam-
mation. Mice lacking 15-LO type I have an impaired HO-1
response. Topical application of LXA4 in these mice restores
HO-1 expression and protects them from inflammatory chal-
lenge (Biteman et al., 2007).

The powerful anti-inflammatory, pro-resolution and more
recently appreciated potential anti-fibrotic properties of LXs
contribute to the overall anti-inflammatory mechanisms of
LXs that can modulate the activation and migration of
inflammatory cells.

LXs, ATLs and LX analogues in experimental model
of diseases

There is reliable evidence that demonstrates that LXs or their
stable analogue mimetics can reduce inflammation and symp-

toms in several experimental models of inflammatory disor-
ders. As discussed earlier, the metabolism of LXs suggests that
these molecules are highly susceptible to rapid inactivation;
therefore, the availability of stable analogues has been a
useful tool to extend the beneficial anti-inflammatory role of
LXs to possible therapeutic applications.

One of the first analogues to be synthesized was 15-epi-16-
(para-fluoro)-phenoxy-LXA4, an ATL analogue, widely used in
systemic or topical therapy for a number of inflammatory
conditions (Takano et al., 1998; Clish et al., 1999; Gewirtz
et al., 1999; Karp et al., 2004). A role for LXA4 in reducing
cutaneous inflammation has been shown in a variety of skin
inflammation models, including psoriasis, atopic dermatitis
and allergic contact dermatitis (Takano et al., 1997; Schotte-
lius et al., 2002; Guilford et al., 2004). Topical application of
LX analogues to mouse ear skin prevented vascular leakage
and neutrophil infiltration in LTB4/PGE2-stimulated ear skin
inflammation (Takano et al., 1997; Schottelius et al., 2002;
Bannenberg et al., 2004a).

The anti-inflammatory spectrum of activity of LXs is well
documented in in vivo models of glomerulonephritis and
acute renal failure (Badr et al., 1989; Papayianni et al., 1995;

LXA4
• ••

Annexin 1Apoptotic PMN

Macrophage

Monocyte
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Figure 5 Phagocytosis of apoptotic cells by macrophages is augmented by ligands of the lipoxin (LX) receptor. LXs and other lipoxin A4

receptor (ALXR) ligands (i.e. aspirin-triggered lipoxins and annexin-1) engage ALXR on the macrophages, leading to intracellular signalling
events, including activation of the small GTPases RhoA, Rac and Cdc42; myosin assembly; and actin rearrangement, priming the macrophages
for the phagocytosis of apoptotic cells. Following ingestion, the production of anti-inflammatory cytokines is increased, whereas the release of
pro-inflammatory mediators is decreased as depicted in schematic. Images depict human monocyte-derived macrophages and apoptotic
neutrophil (A); after stimulation with LXA4 (1 nM), rearrangement of actin cytoskeleton is observed (B) and phagocytosis ensues (note two
DAPI-stained nuclei in C).These conclusions are based on Maderna et al. (2002) and Reville et al. (2006).
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Ohse et al., 2004), as well as in in vitro models (McMahon
et al., 2000; 2002; Mitchell et al., 2004; Rodgers et al., 2005).
In a murine model of ischaemic renal injury (IRI) disease,
administration of 15-epi-16-(para-fluoro)-phenoxy-LXA4,
before onset of experimental ischaemia, resulted in a signifi-
cant functional and morphological protection with a mark-
edly reduced neutrophil infiltration to the IRI kidney, while
maintaining glomerular function and morphology, and
attenuating chemokine and cytokine responses including
up-regulation of SOCS-2 (Leonard et al., 2002). Using a tran-
scriptomic approach to investigate the mechanism underly-
ing the protective action of LXA4, specific cohorts of genes
whose expression was altered in renal IRI and modulated by
15-epi-16-(para-fluoro)-phenoxy-LXA4 were identified (Kieran
et al., 2003). Some of these genes included chemoattractants,
cytokines, chemokines and chemokine receptors, growth
factors and their receptors, adhesion molecules and molecules
implicated in maintaining epithelial barrier function such as
claudins (Kieran et al., 2003). These data are especially note-
worthy given the evidence that LXA4 regulates transepithelial
resistance in bronchial epithelia by a mechanism that
includes up-regulation of claudin expression. It has been pro-
posed that defective LX biosynthesis in cystic fibrosis (Karp
et al., 2004) and asthma (Levy, 2005) could contribute to
compromised epithelial barrier function (Grumbach et al.,
2009). In vivo models of peritonitis have frequently been used
to highlight anti-PMN trafficking effects of LX analogues
(O’Sullivan et al., 2007). Interestingly, a recent report demon-
strated the effect of ajulemic acid (AjA), a synthetic cannab-
inoid, on enhanced LXA4 production, an effect attributed to
the observed reduction in peritoneal infiltration in a mouse
model where AjA treatment before zymosan-induced perito-
nitis was associated with LO-dependent LX generation (Zurier
et al., 2009).

A second generation of LX/ATL analogues was designed to
subvert metabolism by b-oxidation through insertion of a
3-oxa group and to have improved chemical stability (Guil-
ford et al., 2004). The changes resulted in significantly
enhanced stability and plasma half-life, maintaining similar
biological activity with a better pharmacokinetic profile over
the 15-epi analogue (Fiorucci et al., 2004; Guilford et al., 2004;
Levy et al., 2007). The potent anti-inflammatory and protec-
tive actions of LXs in intestinal inflammation make them an
attractive candidate as a potential therapy for various inflam-
matory conditions of the digestive system, including Crohn’s
disease and ulcerative colitis. Indeed, ATL is protective in
intestinal inflammation in a mouse model of dextran sodium
sulphate-induced colitis (Gewirtz et al., 2002), and the
b-oxidation resistant 3-oxa-ATL (ZK-192) has been shown to
potently attenuate trinitrobenzene sulphonic acid (TNBS)-
induced colitis, a Crohn’s disease model (Fiorucci et al., 2004).
When orally administered, ZK-192 reduced TNBS colitis both
in preventive and therapeutic regimens, attenuating weight
loss, macroscopic and histological colon injury, mucosal neu-
trophil infiltration, colon wall thickening, as well as decreas-
ing mucosal mRNA levels for several inflammatory mediators
(Fiorucci et al., 2004).

In asthma, the ZK-994 LX/ATL analogue (5S,6R,7E,9E,
13E,15S) -16-(4-fluoro-phenoxy)-3-oxa-5,6,15-trihydroxy-7,9,
13-hexadecatrien-11-ynoic acid was effective in reducing

airway inflammation and airway bronchoconstriction (Levy
et al., 2007).

Recently, we have described the activity of new LX ana-
logues that show the substitution of the reactive hexatriene
system with an aromatic ring. Beside a capacity to stimulate
in vitro phagocytosis of apoptotic cells by macrophages, these
LX analogues show potent anti-inflammatory activity in vivo
(O’Sullivan et al., 2007). We used an in vivo model of mouse
peritonitis, and examined neutrophil trafficking to the peri-
toneal cavity in response to zymosan A challenge. When
administered intravenously, (1R)-3a inhibited the acute
inflammatory cell recruitment into mouse peritoneum.

Summary

The successful resolution of inflammation is an integral com-
ponent of effective host defence. The various steps of resolu-
tion are regulated by endogenous mediators and by clearance
of apoptotic cells by phagocytes. In this context, LXs are a
class of lipid mediators that serve as local endogenous anti-
inflammatory and pro-resolution signals. The potential thera-
peutic applications of LXs and their stable synthetic
analogues are significant; it will be of interest to learn whether
these or related agonists of resolution can be exploited in a
therapeutic context to ensure the effective restoration of
tissue homeostasis and prevention of fibrosis subsequent to
an inflammatory response.
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Note added in proof

During the final revision of this manuscript a new nomencla-
ture for the FPR family of receptors was recommended by the
International Union of Basic and Clinical Pharmacology
LXXIII. On the basis of this classification, LXA4 is defined as
an endogenous ligand for FPR2/ALX, instead of the previously
used nomenclature of FPRL1/ALXR as used in this review (Ye
et al., 2009).
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