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The information and resources generated from diverse “omics” technologies provide opportunities for producing novel
biological knowledge. It is essential to integrate various kinds of biological information and large-scale omics data sets through
systematic analysis in order to describe and understand complex biological phenomena. For this purpose, we have developed
a Web-based system, Plant MetGenMAP, which can comprehensively integrate and analyze large-scale gene expression and
metabolite profile data sets along with diverse biological information. Using this system, significantly altered biochemical
pathways and biological processes under given conditions can be retrieved rapidly and efficiently, and transcriptional events
and/or metabolic changes in a pathway can be easily visualized. In addition, the system provides a unique function that can
identify candidate promoter motifs associated with the regulation of specific biochemical pathways. We demonstrate the
functions and application of the system using data sets from Arabidopsis (Arabidopsis thaliana) and tomato (Solanum
lycopersicum), respectively. The results obtained by Plant MetGenMAP can aid in a better understanding of the mechanisms
that underlie interesting biological phenomena and provide novel insights into the biochemical changes associated with them
at the gene and metabolite levels. Plant MetGenMAP is freely available at http://bioinfo.bti.cornell.edu/tool/MetGenMAP.

The rapid proliferation of genome-scale data for
plants and other organisms makes it possible to sys-
tematically study diverse cellular processes. As het-
erogeneous high-throughput data sets have been
acquired from different technologies in the “omics”
fields, such as genomics, transcriptomics, proteomics,
and metabolomics, it has become necessary to develop
computational tools that can integrate and analyze
them efficiently (Yuan et al., 2008). Microarrays and
recently emerged RNA-Seq technology have proven to
be crucial tools in producing transcriptional data sets
by simultaneously detecting the expression of thou-
sands of genes (Wang et al., 2009). These data sets hold
useful information for the study of gene functions in
diverse biological processes, including stress re-
sponses and developmental programs. Meanwhile,
metabolomics, which investigates the profiles of all
metabolites in an organism under specific conditions

using techniques such as gas chromatography-mass
spectrometry (GC-MS), has been regarded as an im-
portant research field in the postgenomic area, espe-
cially for plants due to their significant chemical
diversity (Oksman-Caldentey and Saito, 2005).

In recent years, new functional annotations of genes
have been added to diverse biological networks, in-
cluding regulatory networks, protein-protein interac-
tion networks, and metabolic pathways. Despite these
advances, dynamic behaviors of genes in specific
pathways under specific conditions are still largely
unexplored. Thus, in addition to the integration of
heterogeneous data sources, analysis of them under
the context of pathways is regarded as an essential
step for functional studies of a complex biological
system. In this type of analysis, transcriptomic data are
normally mapped onto specific metabolic pathways to
investigate the coordinated behavior of a set of genes.
Developing efficient tools for this type of analysis is
important in systematically characterizing and under-
standing the dynamics of biochemical pathways
through utilization of multilevel information.

As detailed information of biological pathways has
been developed, both experimentally and computation-
ally, more complete and precise pathways have been
mapped. Currently, the representative biochemical
pathway databases include MetaCyc (http://metacyc.
org/) and the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG; http://www.genome.ad.jp/kegg/).
MetaCyc contains experimentally verified metabolic
pathway and enzyme information curated from the
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scientific literature as well as computationally pre-
dicted metabolic networks for more than 1,600 different
organisms (Krieger et al., 2004). KEGG is a knowledge
base in terms of the network of genes and molecules
resulting from their activities (Ogata et al., 1999;
Kanehisa et al., 2008). These databases are the primary
resources that can be utilized to understand how genes
andmolecules are connected in biochemical pathways.
Moreover, they can be combined with new resources
or technologies for genomic and functional analysis,
making it possible to expand previous databases and
obtain increased depth and range of functions. For
example, thedatabaseEGENESwasdeveloped toplace
genomic information, including ESTs of many plant
species, into metabolic pathways and was integrated
into theKEGGsuite of databases (Masoudi-Nejad et al.,
2007).
Several analytical tools have been developed to iden-

tify patterns of gene expression that are responsible for
potent biological effects by integrating large-scale tran-
scriptomic data with diverse biological information
such as pathways and associated metabolites. Pathway
Processor is a tool for visualizing expression data on
metabolic pathways and evaluating which metabolic
pathways are affected by transcriptional changes
(Grosu et al., 2002). However, the use of this tool is
limited to yeast. A similar tool, Pathway Miner, was
developed to mine gene associations and networks of
biological pathway information within mammalian
organisms such as human and mouse (Pandey et al.,
2004). Recently, several similar tools have been devel-
oped specifically for plant species. The most widely
used is MapMan, a user-driven tool that displays large
data sets onto diagrams of metabolic pathways or
biological processes (Thimm et al., 2004). One of the
main functions of MapMan is to classify genes into
functional categories called bins. The extended version
of MapMan is able to identify statistically overrepre-
sented functional categories (Usadel et al., 2005). An-
other analysis system for plant species is KaPPA-View,
a Web-based tool for displaying quantitative data for
individual transcripts and metabolites on plant meta-
bolic pathway maps stored in KEGG (Tokimatsu et al.,
2005). The Omics Viewer in the Pathway Tools package
allows scientists to visualize large-scale gene expres-
sion and metabolomics data sets on metabolic path-
ways predicted by the Pathway Tools for any organism
of interest (Paley and Karp, 2006). However, both
KaPPA-View and Omics Viewer provide very limited
functions of statistical analysis or project management.
We have developed a Web-based system, Plant

MetGenMAP, which can identify significantly altered
biochemical pathways and highly affected biological
processes and predict functional roles of pathway
genes and potential pathway-related regulatory motifs
from transcript and metabolite profile data sets. Plant
MetGenMAP is an easy-to-use, powerful analysis sys-
tem that supports many functions of systems biology
analyses in the context of biochemical pathways and
Gene Ontology (GO) terms. It provides an analytical

platform in which highly altered pathways can be
explored rapidly and efficiently through intuitive vi-
sualization and robust statistical tests. Since it allows
for the analysis of transcriptional and metabolic
changes simultaneously for each pathway, the asso-
ciation between gene expression and biochemical
changes in specific pathways under specific conditions
can be easily inferred. Functional analysis of differen-
tially regulated pathways can help to properly define
functional roles of genes within pathways. In addition,
the system embeds a function that can identify major
regulators putatively related to the change of tran-
scripts and metabolites in specific pathways. The
functions of Plant MetGenMAP were demonstrated
using transcript and/or metabolite profiles from the
model plant species Arabidopsis (Arabidopsis thaliana)
and tomato (Solanum lycopersicum). We present com-
prehensive results identified with Plant MetGenMAP,
including differentially regulated metabolic pathways,
functions of genes associated with pathway changes,
putative regulators associated with these genes, and
probabilistic associations between genes, metabolites,
and phenotypes.

RESULTS AND DISCUSSION

Description of the Plant MetGenMAP System

Plant MetGenMAP is a Web-based system that can
comprehensively integrate and analyze large-scale
gene expression and metabolite profile data sets along
with diverse biological information such as biochem-
ical pathways and GO terms. As shown in Figure 1, the

Figure 1. Overview of the Plant MetGenMAP system. Plant MetGen-
MAP contains three functional components (Data Management,
Pathway Browser, and Dataset Analyzer), four analysis modules
(PathVisualizer, PathFinder, PromAnalyzer, and FunctAnnotator), and
four data repositories (Pathway Repository, Sequence Repository, Gene
Function Repository, and User Dataset).
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system consists of four data repositories, three func-
tional components, and four analysis modules. All
parts are flexibly integrated to perform user-requested
tasks.

The four data repositories in the Plant MetGenMAP
system are biochemical pathways from several major
plant species (Pathway Repository), promoter and
coding sequences of all genes collected in the system
(Sequence Repository), functional annotations of all
genes, including gene descriptions and associated GO
terms (Gene Function Repository), and user-uploaded
data sets (User Dataset; Fig. 1). The system maintains
the pathway structure information in a flat file format
written with the DOT language that can be processed
by the Graphviz program (Ellson et al., 2003). Infor-
mation regarding the relationship between pathways
and genes/metabolites, gene annotations and se-
quences, and the user-uploaded data sets, including
project information, are stored in the back-endMySQL
database for efficient manipulation.

The three functional components in Plant MetGen-
MAP are data management, pathway browser, and
data set analyzer (Fig. 1). The data management com-
ponent deals with data uploading and the overall
information and management of user-created projects
(Fig. 2A). Plant MetGenMAP takes normalized and
processed expression and metabolite profile data
(mainly ratios/fold changes and P values that are
derived from statistical analysis programs) as the
input to identify significantly affected biological pro-
cess and biochemical pathways. The system allows
users to upload and analyze gene expression and
metabolite profile data separately or simultaneously. A
new project is created during each data upload pro-
cess. The project information contains the project title
and description and the corresponding platform and
organism information. All projects are managed by a
data management component, making it possible to
analyze the associated data sets further by setting
new values of parameters, such as the cutoff values of
fold change and P values that define the up- and down-
regulation of genes/metabolites. In addition, the
system provides a summary that lists the number of
up- and down-regulated genes/metabolites under
each condition for each project. The system also allows
users to completely remove their projects from the
system. To ensure security of user-uploaded data sets
and project information, the system is designed such
that projects can only be accessed and managed by the
users who create them. The pathway browser compo-
nent is the visualization part that lists metabolic path-
ways in which transcript or metabolite changes are
observed. Plant MetGenMAP retrieves the list of met-
abolic pathways that are highly correlated to the given
expression or metabolite profiles. The list of pathways
can be shown in two ways: the tree view and the
ranked list. The tree view allows users to navigate all
available pathways in a hierarchical structure with the
altered pathways highlighted (Fig. 2B). On the other
hand, the ranked list only displays altered pathways in

the ascending order of P values. Furthermore, this
component also shows the detailed information of
genes in the altered pathways and provides promoter
analysis of coexpressed genes to identify regulatory
motifs potentially involved in regulating specific path-
ways. Finally, the data set analyzer component allows
users to identify enriched GO terms (e.g. biological
process) under specific experimental conditions as
well as to categorize genes into different functional
classes. In addition, the keyword search can be per-
formed to identify terms of interest, including metab-
olites, enzymes, and pathways.

The analysis modules support the corresponding
functional components through different kinds of
analyses using the data repositories. They include (1)
statistical analysis of pathway changes (PathFinder);
(2) identification of regulatory motifs (PromAnalyser);
(3) functional analysis of gene annotations (FunctAn-
notator); and (4) visualization of individual pathways
(PathVisualizer; Fig. 1). PathFinder calculates the sig-
nificance of pathway changes based on changes in
gene expression levels or metabolite content and then
rapidly retrieves significantly altered pathways. The
raw P values indicating the significance of pathway
changes can be further corrected for multiple testing
using the false discovery rate (FDR; Benjamini and
Hochberg, 1995) or Bonferroni correction. PromAna-
lyzer retrieves the promoter sequences of coexpressed
genes in an altered pathway and identifies enriched
regulatory motifs from said promoter sequences.
FunctAnnotator analyzes a list of up- and/or down-
regulated genes under specific conditions and reports
a list of significantly enriched GO terms. FunctAnno-
tator can also classify a list of genes into different
functional categories using a set of plant-specific GO
slims, which are a list of high-level GO terms provid-
ing a broad overview of the ontology content (http://
www.geneontology.org/GO.slims.shtml). A sample
output of the functional classification generated by
the system is shown in Figure 2C. PathVisualizer
provides an intuitive visualization of each individual
pathway, with genes and metabolites decorated using
different colors reflecting the changes of their respec-
tive levels (e.g. ratios) and the significances of the
changes (e.g. P values; Fig. 2D). The expression
changes of genes from a given family are displayed
on the pathway separately for each individual gene.
This is a more accurate representation than using
average or extreme values, since genes from the
same family often behave differently. In addition,
tables listing the absolute values of quantitative
changes as well as the significance of the changes of
all the genes and metabolites in the pathway are
provided in the system.

Plant MetGenMAP currently supports different ex-
pression profiling platforms for several major plant
organisms, including (1) ATH1 genome array and The
Arabidopsis Information Resource (TAIR) Arabidop-
sis Genome Initiative locus number for Arabidopsis;
(2) Affymetrix genome array and genome locus num-
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ber for rice (Oryza sativa); and (3) TOM1 array, TOM2
array, Affymetrix genome array, and Solanaceae Ge-
nome Network (SGN) unigenes for tomato. More
platforms from additional plant species can be easily
added to the system. Plant MetGenMAP operates on a
Linux system under an Apache Web server, and the
majority of the functions in the system were imple-
mented with Perl/CGI or R scripts.

Mapping Gene Expression Profiles to Metabolic
Pathways in Arabidopsis

We first demonstrated the functions of the Plant
MetGenMAP system using a publicly available ex-
pression data set generated from Arabidopsis seed-
lings treated with 14 different light conditions, among
which seven were treated for 4 h (long-term light
treatments) and seven were treated for 45 min (short-
term light treatments; Supplemental Table S1). The
normalized and processed microarray data set was
uploaded into the Plant MetGenMAP system. Genes
with fold changes greater than 1.5 and corrected P
values (FDR) less than 0.05 were regarded as differ-
entially expressed genes. The system can efficiently
map genes onto each biochemical pathway and identify
significantly altered pathways under each condition.

The significantly altered pathways under each of the
14 light treatment conditions were retrieved with a P
value cutoff of less than 0.05. The list of all significantly
altered pathways is provided in Supplemental Table
S2. As expected, a number of known light-regulated
metabolic pathways were among the list of the most
highly altered pathways, including photosynthesis,
Calvin cycle, and carotenoid biosynthesis pathways.
Significant differences in pathway changes between
long-term and short-term light treatments were also
observed. Table I lists pathways that were significantly
altered only under either long-term or short-term light
treatment in at least four out of the seven conditions.
Several notable light-regulated pathways, including
photosynthesis, photosynthesis (light reaction), and
chlorophyllide a biosynthesis, were significantly al-
tered under all seven long-term light treatment con-
ditions, while none of these were significantly altered
under short-term conditions. In addition, the Calvin
cycle and salicylic acid biosynthesis pathways were
also affected specifically by the long-term light treat-
ments (Table I). Our analysis could provide an expla-
nation at the molecular level with relevance to the
finding that UV light stimulates the accumulation of
salicylic acid in plant leaves (Yalpani et al., 1994).

As shown in Table I, pathways regulated specifically
by short-term light treatments include anthocyanin

Figure 2. Screen images of the Plant MetGenMAP system. A, Data
management system in Plant MetGenMAP. B, Tree view of all meta-

bolic pathways under a specific experimental condition with altered
pathways shown in red. C, Sample output of gene functional classifi-
cation. D, Visualization of an altered pathway. Changes of gene and
metabolite levels as well as the significance of the changes are
represented by different background colors.
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biosynthesis, flavonoid biosynthesis, spermidine bio-
synthesis, spermine biosynthesis, stachyose biosyn-
thesis, and polyamine biosynthesis. It is well known
that light plays a critical role in the regulation of
anthocyanin and flavonoid biosynthesis (Koes et al.,
2005; Grotewold, 2006). In addition, through an inte-
grated analysis of gene expression and metabolite
profiling, Jumtee et al. (2008) found that the photore-
ceptor phytochrome A regulated the biosynthesis of
polyamines, including spermidine and spermine.
However, no previous reports that we are aware of
have described the possible participation of light in-
volvement in stachyose biosynthesis.

Several reports have described the biochemical
pathways affected by different qualities and quantities
of light based on whole genome expression profiling
analysis (Ma et al., 2001; Jiao et al., 2005). Our analysis
identified a large number of previously described as
well as novel light-regulated biochemical pathways
from a comprehensive gene expression data set (Sup-
plemental Table S2). The functions implemented in the
Plant MetGenMAP system are able to retrieve highly
affected pathways efficiently and comprehensively
and allow us to visualize the detailed gene expression
changes within a pathway intuitively, which facilitates

insights into important biological processes that re-
main to be fully characterized.

Promoter Analysis of Coexpressed Genes in a
Specific Pathway

Plants have evolved the ability to synthesize a large
variety of metabolites to protect themselves against
various attacks and to attract flower pollinators. The
regulation of metabolite biosynthesis is coordinated
by specific transcription factors (Grotewold, 2005). A
notable example is the regulation of the anthocyanin
biosynthetic pathway by MYB transcription factors
(Gantet and Memelink, 2002). Bioinformatics analysis
has indicated that genes within the same pathway,
especially those clustered together in the pathway
structure, are usually highly coexpressed (Wei et al.,
2006). This implies that those genes might be regulated
by common transcription factors. Experimental evi-
dence also supports that a subset of genes in the same
pathway could be regulated by common transcription
factors (Borevitz et al., 2000; Jin et al., 2000; van der Fits
and Memelink, 2000). Based on these reports, we
implemented a function in Plant MetGenMAP to
identify overrepresented motifs from promoter se-
quences of a set of coexpressed genes in a specific
metabolite pathway. These motifs may play an impor-
tant role in transcriptional regulation of enzymes
controlling specific pathways.

To demonstrate the efficiency of this function, we
extracted overrepresented motifs in six significantly
altered pathways using the microarray data sets gen-
erated under long-term UV-A and short-term blue
light treatments. The six pathways are photosynthesis,
photosynthesis (light reaction), chlorophyllide a bio-
synthesis, Leu degradation, Val biosynthesis, and
spermine biosynthesis. Among a number of overrep-
resented motifs generated in these pathways, a total of
four are known to be related to light-responsive genes
(Table II). The motif CACGTGGC was enriched in
promoters of up-regulated genes in the photosynthesis
(light reaction) pathway. This motif is similar to
G-boxes, elements with the core CACGTG that are
found repeatedly in light-regulated genes (Terzaghi
and Cashmore, 1995). Another similar element,
GmCACGTG, was also identified in the photosynthe-
sis pathway. In addition, a motif (GCCACGTG) found
in the photosynthesis (light reaction) pathway con-
tains the computationally identified phytochrome

Table I. Pathways specifically regulated by long-term or
short-term light

Pathway Light Treatmenta

Photosynthesis AL, BL, FL, PL, RL, UL, WL
Photosynthesis, light reaction AL, BL, FL, PL, RL, UL, WL
Chlorophyllide a biosynthesis AL, BL, FL, PL, RL, UL, WL
Calvin cycle BL, FL, RL, WL
Salicylic acid biosynthesis BL, FL, RL, UL
Anthocyanin biosynthesis FS, PS, RS, WS
Flavonoid biosynthesis AS, FS, PS, RS
Spermidine biosynthesis AS, BS, PS, WS
Spermine biosynthesis AS, BS, PS, US, WS
Stachyose biosynthesis AS, BS, US, WS
Superpathway of polyamine

biosynthesis
AS, BS, PS, US, WS

aTreatments under which the pathway was significantly altered. AL,
BL, FL, PL, RL, UL, andWL represent long-term (4 h) treatment of UV-A/
dark, blue, far-red, red/dark, red, UV-A/B/dark, and white light, respec-
tively; AS, BS, FS, PS, RS, US, and WS represent short-term (40 min)
treatment of UV-A/dark, blue, far-red, red/dark, red, UV-A/B/dark, and
white light, respectively. A detailed description of each treatment is
available in Supplemental Table S1.

Table II. Known enriched regulatory motifs from the altered pathways in light treatments

Consensus Pathway Motif Name

P Value of

Motif

Enrichment

Reference of Known Motif

CACGTGGC Photosynthesis, light reaction G-box 2.13e-12 Terzaghi and Cashmore (1995)
GCCACGTG Photosynthesis, light reaction SORLIP 1 2.13e-12 Jiao et al. (2005)
GmCACGTG Photosynthesis G-box 3.5e-11 Terzaghi and Cashmore (1995)
AGATAAGA Leu degradation pathway I-box 2.03e-4 Giuliano et al. (1988); Chattopadhyay et al. (1998);

Martinez-Hernandez et al. (2002); Escobar et al. (2004)
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A-induced motif, SORLIP 1 (GCCAC), which is over-
represented in light-induced genes (Jiao et al., 2005).
The element AGATAAGA was enriched in promoters
of coexpressed genes in the Leu degradation pathway.
This element consists of an I-box motif (GATAAG) that
has been reported to be conserved in the upstream
sequences of light-regulated genes (Giuliano et al.,
1988; Martinez-Hernandez et al., 2002) and can confer
responsiveness to diverse light spectra, including far-
red, red, and blue light (Chattopadhyay et al., 1998;
Escobar et al., 2004). Similar elements, GATmAGnm,
AGATAAGn, and AGATAAGA, were also identified
in the Leu degradation pathway under the far-red, red,

and blue light treatments, respectively (data not
shown). In addition, our analysis identified a number
of novel motifs that might have potential roles in
regulating specific biochemical pathways under dif-
ferent light treatments. Sequence logos of all the iden-
tified known and novel motifs are provided in
Supplemental Figure S1. In summary, the motif iden-
tification tool provided in the Plant MetGenMAP
system can aid us in identifying important candidate
transcriptional regulators that coordinately modulate
the expression of a subset of genes in a specific
metabolic pathway and in further engineering the
production of important plant metabolites.

Figure 3. Functional analysis of
gene expression profiles under light
treatments in Arabidopsis. A, Sig-
nificantly enriched GO terms of the
biological process category identi-
fied from up-regulated genes in
each of 14 light treatments with a
P value cutoff of less than 1.0e-10
in at least one light treatment.
Numbers on the color bar indicate
2log(P value), where P value
represents the significance of
the enrichment. B, Functional
classification of genes up-regulated
in each of the 14 light treatments.
The genes were classified into a set
of plant-specific GO slims of the
biological process category. Num-
bers on the color bar represent the
percentage of genes classified into
a specific GO slim. AL, BL, FL, PL,
RL, UL, and WL represent long-
term (4 h) treatment of UV-A/dark,
blue, far-red, red/dark, red, UV-
A/B/dark, and white light, respec-
tively; AS, BS, FS, PS, RS, US, and
WS represent short-term (40 min)
treatment of UV-A/dark, blue, far-
red, red/dark, red, UV-A/B/dark,
and white light, respectively. A de-
tailed description of each light
treatment is available in Supple-
mental Table S1.
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Functional Analysis of Gene Expression

Large-scale expression profiling experiments such
as microarray and RNA-Seq often produce a list of
differentially expressed genes, which could contain
hundreds or thousands of genes of interest. Translat-
ing such lists of genes into biologically meaningful
information is normally required to better understand
the underlying biological phenomena. This can be
achieved in part by applying GO term enrichment
analysis. Through this kind of analysis, a set of over-
represented GO terms, which represent highly af-
fected biological processes, can be extracted from a
list of differentially regulated genes. Using the GO
term enrichment analysis tool implemented in Plant
MetGenMAP, we were able to identify a total of 218
significantly enriched GO terms belonging to the bio-
logical process category from lists of up-regulated
genes in the 14 light treatment conditions using a
cutoff Bonferroni-corrected P value of #0.05 (Supple-
mental Fig. S2). Figure 3A shows the most enriched
GO terms (P# 1.0e-10), amongwhich two (response to
radiation and response to light stimulus) are highly
enriched in all 14 conditions. In addition, a number of
GO terms that were highly enriched only in long-term
or short-term light treatment conditions were identi-
fied (Fig. 3A; Supplemental Fig. S2), which clearly
showed the differences in plant responses to different
durations of light treatment.

One of the major tasks in gene expression data
analysis is to classify a list of genes of interest into
different functional categories. In the Plant MetGen-
MAP system, we implemented a tool that uses a set of
plant-specific GO slims to classify genes. Using this
tool, we functionally categorized up-regulated genes
in each of the 14 light treatments. As shown in Figure
3B, most of the light-induced genes fall into categories
such as response to stress, response to abiotic stimulus,
transcription, and metabolic process, indicating that
light treatments trigger systems that help plants to
fight against light stresses and that light treatments
caused significant changes of associated primary and
secondary metabolite levels.

Associating Genes, Metabolites, and Phenotypes in
Tomato Using Plant MetGenMAP

Tomato has long served as the primary physiolog-
ical, biochemical, genetic, and molecular model for
fleshy fruit development and ripening (Giovannoni,
2001, 2004). A collection of tomato lines harboring
single, defined, and overlapping introgressions from
the wild species Solanum pennellii was generated

Figure 4. Changes of the carotenoid biosynthesis pathway in tomato
introgression line IL3-2. A, Ripening fruit of IL3-2 and its cultivated S.
lycopersicum parent line M82. B, Changes of gene expression levels

and metabolite contents of the carotenoid biosynthesis pathway in
IL3-2 compared with M82. Genes/metabolites with green background
are down-regulated in IL3-2, those with yellow background are not
changed, and those with gray background are not measured. Steps
after b-carotene in the pathway are not shown since they were not
investigated in this study.
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(Eshed and Zamir, 1994) and has proved to be a
valuable resource for tomato quantitative trait locus
mapping and breeding. Substantial line-to-line varia-
tions of various different phenotypes (traits) and the
levels of transcripts and metabolites have been ob-
served among these introgression lines (Baxter et al.,
2005; Schauer et al., 2006; Tieman et al., 2006). Among
the many interesting lines in this collection, IL3-2 has
the yellow fruit phenotype (Fig. 4A). This line includes
the S. pennellii introgression segment containing the
R gene (fruit-specific phytoene synthase; Fray and
Grierson, 1993) and has very low levels of lycopene
(Rousseaux et al., 2005). To systematically understand
transcript and metabolite changes in this interesting
line, we performed comparative transcriptome and
target metabolite analyses on IL3-2 and its cultivated
S. lycopersicum parent line M82.
Tomato TOM1 cDNA arrays were used to investi-

gate the genome-wide transcript changes between
ripening fruit of IL3-2 and the M82 control. The
contents of a set of metabolites in the carotenoid
biosynthesis pathway, including trans-lycopene, phyto-
ene, phytofluene, cis-lycopene, g-carotene, b-carotene,
a-carotene, d-carotene, and lutein, were also measured
in ripening fruit of IL3-2 and M82. The normalized
transcript and metabolite profiles were simultaneously
analyzed using the Plant MetGenMAP system. We
treated genes and metabolites with changes between
IL3-2 and M82 greater than 2-fold as significantly
modified genes/metabolites. We were able to identify
a number of significantly altered pathways (FDR ,
0.05) in IL3-2 (Table III). As expected, the carotenoid
biosynthesis pathway was highly altered. Figure 4B,
which was generated automatically by the system
based on the expression andmetabolite levels, provides
visualization of the gene and metabolite changes of the
carotenoid biosynthesis pathway in IL3-2. It clearly
shows that the decreased level of phytoene synthase, an
upstream enzyme in the pathway, was associated with
significant decreases in all downstreammetabolites that
were investigated and that is causal of the yellow fruit
phenotype of IL3-2.
Several other pathways were also significantly

altered in IL3-2, including the Suc degradation path-
way, lipoxygenase pathway, jasmonic acid biosyn-
thesis, Glu degradation, and Arg degradation.
b-Fructofuranosidase (or acid invertase), a major en-
zyme in the Suc degradation pathway, cleaves Suc

and related sugars into hexoses such as Glc and Fru
and controls sugar composition. The expression of
b-fructofuranosidase is highly induced during tomato
fruit ripening (Klann et al., 1993). In IL3-2, we found
that the expression of b-fructofuranosidase was sig-
nificantly repressed. We then further investigated
changes of Glc and Fru levels in IL3-2. Consistent
with the changes of b-fructofuranosidase, the contents
of Glc and Fruwere also significantly decreased (Fig. 5).
Lipoxygenase (LOX) has been suggested to play a role
in wound responses, pathogen attack, potato (Solanum
tuberosum) tuber enlargement (Feussner andWasternack,
2002), and fruit flavor generation (Griffiths et al., 1999).
LOX is also an enzyme in the jasmonic acid biosynthesis
pathway (León and Sánchez-Serrano, 1999). Several LOX
genes have been identified in tomato, among which the
expression of TomloxA declines during fruit ripening
while TomloxB and TomloxC expression is enhanced
(Griffiths et al., 1999). It was reported that TomloxA
displays negative correlation with respect to carot-
enoid accumulation and may provide an essential de-
fense component in unripe fruit (Griffiths et al., 1999).
Consistent with this report, we observed that in IL3-2,
which accumulates much less carotenoid, the expres-
sion of TomloxA was significantly increased. Glu de-
carboxylase, the key enzyme in the Glu degradation
pathway, has been reported to be down-regulated by
fruit ripening (Gallego et al., 1995), while the relative
content of Glu, the substrate of Glu decarboxylase,
increased markedly in red fruit (Boggio et al., 2000;
Pratta et al., 2004). In IL3-2, we found that the level of
Glu decarboxylase was significantly increased. How-
ever, to get a deeper understanding of the changes of

Table III. Pathways significantly altered in tomato introgression
line IL3-2

Pathway P (FDR)

Carotenoid biosynthesis 0.00073
Glu degradation III 0.00073
Suc degradation I 0.00135
Arg degradation VII (arginase 3 pathway) 0.01583
LOX pathway 0.04162
Jasmonic acid biosynthesis 0.04162

Figure 5. Contents of Glc and Fru in IL3-2 andM82. Ripe fruit (7 d after
the onset of ripening) were taken from tomato introgression line IL3-2
and its cultivated S. lycopersicum parent line M82, and the contents of
Glc and Fru were determined. Results are means 6 SE of at least four
replicate samples. fw, Fresh weight.
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the above pathways, further study is required to
obtain comprehensive metabolite profiles of these
pathways.

In summary, using the Plant MetGenMAP system,
we could efficiently identify significantly altered bio-
chemical pathways in a tomato introgression line, IL3-2.
Besides the changes of the expected carotenoid biosyn-
thesis pathway that cause the yellow fruit phenotype
of IL3-2, several other ripening-related biochemical
pathways were also significantly altered. In addition,
the intuitive pathway visualization tool in Plant Met-
GenMAP allowed for a better understanding of the
underlying molecular complexity resulting in the yel-
low fruit phenotype of IL3-2.

CONCLUSION

During the past decade, the amount of biological
data and knowledge has increased immensely thanks
to genomics tools and approaches. The explosion of
genomic data along with other omics data has put a
great responsibility on the bioinformatics community
to aid in the management and analyses of such data.
There is a need to not only analyze but also to integrate
these data with functional information and a priori
knowledge. The development of efficient and power-
ful in silico integrative analysis techniques can allow
for higher levels of discovery and knowledge that
may not be obtained otherwise. We have developed a
Web-based system, Plant MetGenMAP, which can
efficiently integrate genomic and functional genomics
resources with diverse biological information such as
biochemical pathways and GO terms to produce in-
formative results through robust statistical analyses
and intuitive visualizations. Plant MetGenMAP has
several advantages of complementary approaches in
data analysis and visualization. First, the system is
platform independent, user friendly, and simple to
use. It does not require any additional software except
aWeb browser or anyWeb plug-ins for users to run the
system. Second, the system keeps previously analyzed
projects and allows users to analyze the projects suf-
ficiently and repeatedly using different parameter
settings without the need to reupload their data sets.
Third, the system returns very reliable results in the
analysis of altered pathways and biological processes
through several robust statistical tests. The system also
provides an intuitive visualization of pathways in
which users can obtain details of changes in gene
expression and metabolite contents within a pathway.
Finally, the system provides a unique function that
aids in promoter analysis to identify major potential
regulators of interesting metabolite pathways.

The demonstration with data sets from Arabidopsis
and tomato suggested that Plant MetGenMAP is a
powerful analysis and visualization package for plant
systems biology. The system can greatly help researchers
to generate novel biological hypotheses and derive new
conclusions from high-throughput omics data sets.

MATERIALS AND METHODS

Collection and Processing of Biochemical Pathway and
Gene Annotation Information

The attribute value flat files of AraCyc (Arabidopsis [Arabidopsis thaliana]

metabolic pathway database), RiceCyc (rice [Oryza sativa] metabolic pathway

database), and LycoCyc (tomato [Solanum lycopersicum] metabolic pathway

database) pathways were obtained from TAIR (http://www.arabidopsis.org/),

Gramene (http://www.gramene.org/), and SGN (http://www.sgn.cornell.

edu), respectively. The pathway structure information was extracted from

these files using a custom python script and then converted to the DOT

language, a plain text graph description language that can be processed by the

Graphviz package for visualization (Ellson et al., 2003), using an in-house Perl

script. Synonyms for each metabolite in the pathways were also collected from

these pathway databases and stored in the system. Plant MetGenMAP accepts

full metabolite names as well as their synonyms.

The promoter sequences (1 kb upstream) and annotations (including GO

terms) of Arabidopsis and rice genes were obtained from TAIR and the Rice

Genome Annotation Project (http://rice.plantbiology.msu.edu/), respec-

tively. No promoter sequences are currently used for tomato, since its whole

genome sequencing is not finished yet. Tomato genes were annotated by

comparing their sequences against GenBank nr and Swiss-Prot/TrEMBL

protein databases using the BLAST program with an E-value cutoff of 1e-15.

InterPro and Pfam domains were also identified for tomato genes by com-

paring their sequences against the InterPro (Hunter et al., 2009) and Pfam

(Finn et al., 2008) databases, respectively. GO terms were assigned to tomato

genes using the GO Annotation Database (Camon et al., 2004) based on their

top Swiss-Prot/TrEMBL hits and using the InterPro-2GO and Pfam2GO

mappings (http://www.geneontology.org/external2go) based on their corre-

sponding InterPro and Pfam domains. To functionally classify genes into

different categories, GO terms assigned to each gene were mapped to a set of

plant-specific GO slims using a Perl script, map2slim.pl. Both the plant GO

slims and the Perl script were obtained from the GO Web site (http://www.

geneontology.org/GO.slims.shtml). All of the pathway and gene annotation

data in the system are updated to the most recent releases from the

corresponding source databases.

Statistical Test for Identifying Altered Pathways

The identification of significantly altered pathways in Plant MetGenMAP

is achieved by analyzing the distribution of genes or metabolites for all

pathways. The significance of an altered pathway is determined by the hyper-

geometric test:

Phyper ¼ +
n

i¼x

�
M
i

��
N2M
n2 i

�
�
N
n

�

where N is the total number of genes or metabolites in all the pathways, M is

the total number of genes or metabolites in a particular pathway, n is the total

number of significantly changed genes or metabolites in all the pathways, and

x is the total number of significantly changed genes or metabolites in that

particular pathway. Suppose that we have a total of N genes in all the

pathways and M genes belong to a particular pathway; then the P value

represents the possibility that we observe x or more changed genes belonging

to that particular pathway from a sample of n changed genes of all the

pathways. The P values obtained from the hypergeometric test can be

adjusted for multiple tests using the FDR control as proposed by Benjamini

and Hochberg (1995) and the Bonferroni correction, which were implemented

in the system using the R language.

Identification of Enriched Regulatory Motifs

The overrepresented regulatory motifs can be identified from the pro-

moters of coexpressed genes in a specific pathway.Here, the coexpressed genes

are defined as significantly up- or down-regulated genes under a specific

condition. Plant MetGenMAP employs MotifSampler, a motif-sampling

tool that is based on Gibbs sampling and a higher order background model

(Thijs et al., 2001), to identify overrepresented motifs. Plant MetGenMAP

uses third order Markov models for MotifSampler to identify motifs. Each

identified motif is then screened against all promoter sequences of the
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1766 Plant Physiol. Vol. 151, 2009



corresponding organism and against the promoters of the list of coexpressed

genes using PatMatch (Yan et al., 2005) to identify the frequency of the motif.

A posthoc test is then performed to calculate the P value of the motif

overrepresentation in coexpressed genes based on the hypergeometric distri-

bution. For eachmotif, the system provides its consensus sequences, P value of

its enrichment, the sequence logo generated by theWebLogo program (Crooks

et al., 2004), as well as their positions in the corresponding promoters.

Identification of Overrepresented GO Terms

Plant MetGenMAP provides a tool to identify enriched GO terms from a

list of up- and/or down-regulated genes under a specific experimental

condition. The tool was implemented based on the GO::TermFinder Perl

module, which uses the hypergeometric distribution to calculate the signif-

icance of GO term enrichment (Boyle et al., 2004). Three different multiple test

correction methods are provided in the module: FDR, simulation-based

correction, and Bonferroni correction.

Arabidopsis Gene Expression Data Set

CEL files of the light treatment expression data set were obtained from the

Nottingham Arabidopsis Stock Centre (Craigon et al., 2004). Detailed de-

scription of the data set is available at the Nottingham Arabidopsis Stock

CentreWeb site (http://affymetrix.arabidopsis.info/narrays/experimentpage.

pl?experimentid=124). The data set was generated from hypocotyls and

cotyledons of Arabidopsis seedlings treated with different light spectra,

including far-red, UV-A, white, UV-A/B, blue, and red light (Supplemental

Table S1), using the Arabidopsis ATH1 genome array. The CEL files were

processed and normalized at the probe level using the GC content-based

robust multiarray algorithm (Wu et al., 2004). Significance of gene expression

changes between each light-treated plant and the control plant was deter-

mined using the LIMMA test, which is based on linear models and empirical

Bayes methods (Smyth, 2004). Raw P values from each comparison were

corrected for multiple tests using the FDR control as proposed by Benjamini

and Hochberg (1995).

Tomato Gene Expression and Metabolite Profile Data Set

Comparison of transcriptomes of red ripe fruit (7 d after the onset of fruit

ripening) between Solanum pennellii-derived introgression line IL3-2 (Eshed

and Zamir, 1994) and its S. lycopersicum parent M82 was conducted using the

publicly available tomato TOM1 cDNA array. The procedures of total RNA

extraction, cDNA synthesis and labeling, microarray hybridization and scan-

ning, and microarray image analysis were the same as described by Alba et al.

(2004, 2005). Three biological replicates were performed for the comparison.

Raw quantified array data were normalized using the print-tip LOWESS

normalization strategy implemented in the marray package in Bioconductor

(Yang et al., 2002). Data points flagged by the image analysis program as poor

quality and spots with mean signal intensities less than local background

intensities plus 2 SDs of the local background in both channels were filtered

out. Only spots with three nonfiltered replicated data points were used for the

analysis. In addition, spots with coefficient of variation greater than 0.3 were

discarded except those with all three replicates having greater than 1.5-fold

change. The remaining spots with high-quality and reproducible data points

were then mapped to SGN unigenes, and the average ratio of gene expression

between IL3-2 and M82 was derived for each unigene.

The contents of carotenoids in the ripe fruit of IL3-2 and M82 were

measured using the same methods as described by Alba et al. (2005). The

carotenoids investigated in this study include trans-lycopene, phytoene,

phytofluene, cis-lycopene, g-carotene, b-carotene, a-carotene, d-carotene, and

lutein. At least four biological replicates were performed for each metabolite,

and the ratio of average content between IL3-2 and M82 was derived.

Glc and Fru contents of M82 and IL3-2 ripe fruit were determined by the

method of Tandon et al. (2003) with some modifications. Ripe fruit was

harvested and homogenized in a blender. The homogenate was immediately

frozen in liquid nitrogen and stored at 280�C until analysis. Samples were

thawed, and 4 mL of water was added to 5 g of homogenate, followed by

heating at 90�C for 15 min. The sample was filtered through Miracloth

(Calbiochem), followed by filtration through a Sep-Pak C18 filter (Waters) and

a Millipore 0.45-mm filter (Millipore). Prepared samples were separated on a

Waters SugarPak1 column maintained at 90�C with a mobile phase of 1 mM

Ca2EDTA and detection with a Waters 2410 refractive index detector.

All tomato microarray andmetabolite profile data, as well as the associated

experiment information, were deposited in the Tomato Functional Genomics

Database (http://ted.bti.cornell.edu; Fei et al., 2006).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Overrepresented motifs identified from coex-

pressed genes in highly altered pathways.

Supplemental Figure S2. Enriched GO terms of biological process cate-

gory in light treatments.

Supplemental Table S1. Description of the light treatment conditions.

Supplemental Table S2. Significantly altered pathways (P # 0.05) under

each of the 14 light treatment conditions.
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